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ABSTRACT: In the current research work, we present an improvement of mesh-
less boundary element method (MBEM) based on the shape functions of radial basis
functions-QR (RBF-QR) for solving the two-dimensional elasticity problems. The
MBEM has benefits of the boundary integral equations (BIEs) to reduce the dimen-
sion of problem and the meshless attributes of moving least squares (MLS) approxima-
tions. Since the MLS shape functions don’t have the delta function property, applying
boundary conditions is not simple. Here, we propose the MBEM using RBF-QR to
increase the accuracy and efficiency of MBEM. To show the performance of the new
technique, the two-dimensional elasticity problems have been selected. We solve the
mentioned model on several irregular domains and report simulation results.
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1. Introduction

Recently, the meshless methods have attracted many attentions to simulate the most phenomena in natural
science [25, 26]. The meshless methods don’t require any mesh. The meshless approach has been employed in
boundary integral equations (BIEs) such as boundary node method (BNM) [14, 34], boundary element method
[36, 37, 38, 39] and the hybrid boundary node method [51]. These methods are based on the discretization of the
boundary problem. For example, the boundary element method is a meshless method that discretizes the boundary
of problem [9, 10, 11]. The boundary node techniques employ the moving least-squares (MLS) approximation for
the test and trial functions. The main advantage of these methods is reducing the dimension of problem one less.
Also, since the MLS shape functions lack the delta function, the boundary conditions can not be applied with more
accuracy as this is the main defect of these methods. For overcoming the mentioned issue Li and Zhu [19] employed
the improved MLS approximation [24] in boundary node method to overcome the explained problem. The main aim
of [27] is to present a very important and unique property of the linearly conforming point interpolation method
(LC-PIM). Also, author of [33] proposed the direct meshless Local Petrov-Galerkin (DMLPG) method for solving
elasto-static problems.

Authors of [18] formulated and implemented a new improved complex variable element-free Galerkin (ICVEFG)
method for solving two-dimensional large deformation problems of elastoplasticity in total Lagrangian description.
The main aim of [3] is developing the complex variable reproducing kernel particle method (CVRKPM) for solving
the bending problems of isotropic thin plates on elastic foundations. Based on the interpolating moving least-
squares (IMLS) method a novel improved element-free Galerkin (IEFG) method has been proposed in [4] for
solving nonlinear elastic large deformation problems. In [31], the authors presented the dimension split element-free
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Galerkin (DSEFG) method for three-dimensional potential problems as the main purpose of the DSEFG method
is transforming a three-dimensional potential problem into a series of two-dimensional problems.

The main aim of the current paper is to apply a new meshless boundary element method (MBEM) based on the
shape functions of RBF-QR approach to simulate the multi-dimensional elasticity problems. The shape functions
of RBF-QR have been combined with a variational formulation of BIEs. The shape functions of RBF-QR are
employed as the test and trial functions of the variational form. The shape functions of RBF-QR approach have
spectral accuracy thus the accuracy of MBEM will be increased. The multi-dimensional Vlasov-Poisson and Vlasov-
Poisson–Fokker–Planck systems have been solved by using the RKPM method in [6]. Also, the improved meshless
methods are used in [7, 8] to simulate some models in fluid dynamics such as incompressible Navier–Stokes and
compressible Euler equations.

In this manuscript, we consider two-dimensional elasticity problems in solid mechanics that are solved by mesh-
less methods [1, 3, 15, 28]. Also, this model has been solved by finite element approximation [16], adaptive finite
element-boundary element method [12], improved complex variable element free Galerkin method [5, 18], the com-
plex variable element-free Galerkin (CVEFG) method [35], local boundary integral equation method [40] and etc.
The GBNM has been employed for many problems, for example, potential theory [20, 52], Stokes flow [21, 22, 23, 43],
2D crack problems [44], magneto-hydrodynamic (MHD) equation [45], 2D elasticity [29, 32, 48] and Kirchhoff plates
[49]. The RBF-QR method produces a new class of shape functions based on the Gaussian radial basis functions
with spectral accuracy. This method is presented by Forenberg, Larsson and their co-workers [13, 17]. Authors
of [30] developed a new version of interpolating moving least-squares (IMLS) method to apply it in the boundary
element-free method (BEFM) for solving elasticity problems.
In this paper, we consider the following equation [50]

∇ · σ + b = 0, in Ω,

in which

• ∇ is the divergence operator,

• σ is the stress tensor,

• b is the body force,

• Ω is the computational domain.

The boundary conditions for the above equation are [50]

u(x, y) = ũ(x, y), (x, y) ∈ ΓD,

t(x, y) = σ(x, y) · n = t̃(x, y), (x, y) ∈ ΓN ,

where

• u(x, y) is the displacement vector,

• ũ(x, y) is the displacement vector on ΓD,

• t(x, y) is the traction vector,

• t̃(x, y) is traction vector on ΓN ,

• n is unit outward normal to Γ = ΓD

⋃
ΓN .

The strain and stress-strain for two-dimensional elasticity problems, respectively, are [50]

ε = ∇u,

σ = Dε,

in which D for a plane strain problem is

D =
E

1− v2

⎡⎣ 1 v 0
v 1 0
0 0 1−v

2

⎤⎦ ,
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and for a plane stress problem is

D =
E

(1 + v)(1− 2v)

⎡⎣ 1− v v 0
v 1− v 0
0 0 1−2v

2

⎤⎦ .

Also, in the above formula E is the Young’s modulus and v is the Poisson’s ratio.

2. RBF-QR shape functions

This is clear that the direct RBFs method has ill-conditioned interpolation matrix. Larsson et al [17] and
Forenberg with his co-workers [13] proposed a new class of well-posed shape functions to overcome this important
issue and to obtain more accurate numerical results. Here, we present some explanations on the RBF-QR method
however the interested readers can refer to [13, 17] to find more information.

We approximate the Gaussian functions as follows [13, 17]

e−ε2‖x−xk‖2

=

∞∑
j=0

ε2jcj(xk)e
−ε2x2

Tj(x), (2.1)

in which Tj(x) are Chebyshev functions and [13, 17]

cj(xk) =
2tj
j!

e−ε2x2
kxj

k 0F1

(
; j + 1; εkx2

k

)
, t0 =

1

2
, tj = 1, j > 0.

Also, in the above equation 0F1 is hypergeometric function that is defined as

F1 (; a; z) =

∞∑
n=0

zn

an!
.

Now, we consider

φ (|x− xj |) = e−ε2|x−xk|2 ,

and we collocate p terms of right hand side Eq. (2.1) at points {x1, x2, . . . , xN} then we have [13, 17]

⎡⎢⎢⎢⎣
φ (|x− x1|)
φ (|x− x2|)

...
φ (|x− xN |)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

−→
Φ(x)

=

⎡⎢⎢⎢⎣
c0(x1) ε2c1(x1) . . . ε2pcp(x1)
c0(x2) ε2c1(x2) . . . ε2pcp(x2)

...
...

. . .
...

c0(xN ) ε2cp(xN ) . . . ε2pcp(xN )

⎤⎥⎥⎥⎦
N×(p+1)︸ ︷︷ ︸

M

⎡⎢⎢⎢⎢⎣
e−ε2x2

T0(x)

e−ε2x2

T1(x)
...

e−ε2x2

Tp(x)

⎤⎥⎥⎥⎥⎦
(p+1)×1︸ ︷︷ ︸

−→
N (x)

.

Using the QR decomposition for matrix M we can get [13, 17]

M = QR = Q

⎡⎢⎢⎢⎣
m1,1 ε2m1,2 . . . ε2pm1,p+1

0 ε2m2,2 . . . ε2pm2,p+1

...
...

. . .
...

0 0 . . . ε2pmn,p+1

⎤⎥⎥⎥⎦

= Q

⎡⎢⎢⎢⎢⎣
1 0 . . . 0

0 ε2 . . .
...

... . . .
. . . 0

0 . . . 0 ε2p

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

E

⎡⎢⎢⎢⎣
m1,1 ε2m1,2 . . . ε2pm1,p+1

0 m2,2 . . . ε2(p−1)m2,p+1

...
...

. . .
...

0 0 . . . mn,p+1

⎤⎥⎥⎥⎦ .
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A =

⎡⎢⎢⎢⎣
φ (x1)
φ (x2)

...
φ (xN )

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
φ (|x1 − x1|) φ (|x1 − x1|) . . . φ (|x1 − x1|)
φ (|x2 − x1|) φ (|x2 − x1|) . . . φ (|x2 − x1|)

...
...

. . .
...

φ (|xN − x1|) φ (|xN − x1|) . . . φ (|xN − x1|)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
e−ε2x2

1T0(x1) e−ε2x2
1T1(x1) . . . e−ε2x2

1Tp(x1)

e−ε2x2
2T0(x2) e−ε2x2

2T1(x2) . . . e−ε2x2
2Tp(x2)

...
...

. . .
...

e−ε2x2
NT0(xN ) e−ε2x2

NT1(xN ) . . . e−ε2x2
NTp(xN )

⎤⎥⎥⎥⎥⎦RTETQT .

As a result, we have [13, 17]
A = NTRTETQT .

We refer any interested readers for more information to papers [13, 17].

3. New meshless boundary element method

At first, we consider the following boundary integral equation based on the load point ϑ in which inside Ω, we
have

ui(ϑ) =

∫
Γ

u∗
ji(ϑ,x)tj(x)dΓ−

∫
Γ

t∗ij(ϑ,x)uj(x)dΓ +

∫
Ω

u∗
ij(ϑ,x)fj(x)dΩ.

Also

Θij(ϑ)uj(ϑ) =

∫
Γ

u∗
ij(ϑ,x)tj(x)dΓ−

∫
Γ

t∗ij(ϑ,x)uj(x)dΓ +

∫
Ω

u∗
ij(ϑ,x)fj(x)dΩ, (3.1)

where ϑ is located on the boundary Γ and Θij is the function of the internal angle. Also, u∗
ij and t∗ij chosen as the

displacement and the traction of Kelvin’s solution, are the jth components of the displacement and traction due to
a unit load in the xi direction.

Let the boundary Γ be divided by sub-domains Γm for m = 1, 2, . . . , N . So

Γ =
N⋃

m=1

Γm.

Now, Eq. (3.1) can be rewritten as follows

Θki(ϑ)ui(ϑ) =
N∑

m=1

∫
Γm

u∗
ki(ϑ,x)ti(x)dΓ−

N∑
m=1

∫
Γm

t∗ki(ϑ,x)ui(x)dΓ. (3.2)

We consider some points on each sub-domain that the influence domain of each node is constructed. Let

ui(x) =

np∑
p=1

φp(x)ui(xp),

ti(x) =

np∑
p=1

φp(x)ti(xp).

Thus, Eq. (3.2) will be

Θki(ϑq)ui(ϑq) =

N∑
m=1

∫
Γm

u∗
ki(ϑq,x)

np∑
p=1

φp(x)ti(xp)dΓ−
N∑

m=1

∫
Γm

t∗ki(ϑ,x)
np∑
p=1

φp(x)ui(xp)dΓ, (3.3)
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in which ϑq are nodes and np is the number of nodes in each sub-domain. By applying the numerical integration,
Eq. (3.3) is transformed to

ΘqUq + ΞqU = ΥqT,

in which

Uq =
[
uq1 uq2

]T
,

U =
[
u11 u12 u21 u22 . . . unp1 unp2

]T
,

T =
[
t11 t12 t21 t22 . . . tnp1 tnp2

]T
,

Θq =

⎡⎣ Θq
11 Θq

12

Θq
21 Θq

22

⎤⎦ ,

Ξq =

⎡⎣ Ξ1q
11 Ξ1q

12 Ξ2q
11 Ξ2q

12 . . . Ξ
npq
11 Ξ

npq
12

Ξ1q
21 Ξ1q

22 Ξ2q
21 Ξ2q

22 . . . Ξ
npq
21 Ξ

npq
22

⎤⎦ ,

Υq =

⎡⎣ Υ1q
11 Υ1q

12 Υ2q
11 Υ2q

12 . . . Υ
npq
11 Υ

npq
12

Υ1q
21 Υ1q

22 Υ2q
21 Υ2q

22 . . . Υ
npq
21 Υ

npq
22

⎤⎦ ,

Ξpq
ij =

N∑
m=1

∫
Γm

t∗ij(ϑq,x)φp(x)dΓ,

Υpq
ij =

N∑
m=1

∫
Γm

u∗
ij(ϑq,x)φp(x)dΓ.

Thus, for all nodes, we can get
ΘU+ ΞU = ΥT,

in which

Θ =

⎡⎢⎢⎢⎣
Θ1 0 . . . 0
0 Θ1 . . . 0
...

...
. . .

...
0 0 . . . Θnp

⎤⎥⎥⎥⎦ ,

Ξ =
[
Ξ1 Ξ2 . . . Ξnp

]T
,

Υ =
[
Υ1 Υ2 . . . Υnp

]T
.

4. Numerical results

In this part of paper, we test the proposed new technique on four test problems. The used plate or in other
word the computational domains are non-rectangular that show the efficiency of the present method. We employ
the Matlab 7 software based on version of 2010 with 4 Gbyte of memory. In numerical examples, we employ four
complex domains that are shown in Figure 1.
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Figure 1: The considered computational domains

4.1. A cantilevered beam

At first, we consider a cantilevered beam with its left end fixed. Figure 2 shows the free end of the beam is
subjected to a parabolic downward traction. The analytical solutions of the displacement components are [50]

u1 = − Py

6EI

[
(6L− 3x)x+ (2 + v)

(
y2 − D2

4

)]
,

u2 =
P

6EI

[
3vy2(L− x) + (4 + 5v)

D2x

4
+ (2L− x)x2

]
,

in which

• moment of inertia is I =
D3

12
,

• Poisson’s ratio v = 0.3,

• Young’s modulus E = 30 MPa.

Also, the stress components that correspond to the foregoing displacements are

σ1 = −P (L− x)y

I
, σ2 = 0, σ12 =

P

2I

(
D2

4
− y2

)
,

6
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Figure 2: Cantilever beam loaded with external force P at the end of the beam.

Figure 3: The obtained errors as a function for a different number of boundary nodes for Example 1.

in which P = 103 N, the length of domain is L = 50 mm and the width of the beam is D = 10 mm. We would like
to solve this problem using the new technique proposed in the current work. We select ε = 0.001 and use different
numbers for boundary node to simulate Example 1 on a square plate where the obtained results are depicted in
Figure 3. Also, we consider Figure 1 part (a) as the computational domain and obtain the results for it with
Nb = 10 and Nb = 15 based on different values of ε where the results are presented in Figure 4. As well as, in Table
1 the obtained results using the method presented in the current article are compared with the developed method
in [50].

Table 1

Comparison between the method of [50] and the present method

Method of [50] Present method

N Displacement Stress Nb Displacement Stress time(s)

9× 7 7.095× 10−3 2.663× 10−2 4 4.581× 10−5 7.735× 10−4 3.21

17× 13 7.469× 10−4 6.411× 10−3 6 2.710× 10−5 3.009× 10−4 7.50

25× 19 1.924× 10−4 3.775× 10−3 8 8.079× 10−6 1.491× 10−4 13.11

33× 19 1.191× 10−4 2.745× 10−3 10 5.188× 10−6 8.691× 10−5 27.42

33× 25 7.548× 10−5 2.446× 10−3 12 2.310× 10−6 4.205× 10−5 34.27

41× 31 3.672× 10−5 1.714× 10−3 14 9.714× 10−7 2.196× 10−5 54.77

7
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Figure 4: The obtained errors as a function for different values of ε on domain Ω1 for Example 1 .

Figure 5: A rectangular plate with a hole subjected to a distributed load.

4.2. A square plate with a central circular hole

For the second example, a square plate with a central circular hole is considered that is depicted in Figure 5.
The exact solutions for the stresses are [50]

σ11(r, θ) = q

{
1− a2

r2

[
3

2
cos(2θ) + cos(2θ)

]
+

3

2

a4

r4
cos(4θ)

}
,

σ22(r, θ) = q

{
a2

r2

[
1

2
cos(2θ)− cos(4θ)

]
+

3

2

a4

r4
cos(4θ)

}
,

τ12(r, θ) = −q

{
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3

2

a4

r4
sin(4θ)

}
.

8
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Figure 6: The obtained errors as a function for different values of ε on domain Ω1 for Example 2.

Also, the analytical solutions for the displacements are

ur(r, θ) =
q

4E

{
r

[
k − 1

2
+ cos(2θ)

]
+

a2

r
[1 + (1 + k) cos(2θ)]− a4

r3
cos(2θ)

}
,

uθ(r, θ) =
q

4E

[
(1− k)

a2

r
− r − a4

r3

]
sin(2θ),

in which

k =

{
3− 4v, plane strain
3− v
1 + v , plane stress

,

and (r, θ) are the polar coordinates. In this case, plane strain condition is assumed and the material properties are
E = 2.0 × 105 MPa and v = 0.25. Symmetry conditions are imposed on the left and bottom edges and also the
inner boundary of the hole is traction free.

Table 2

Comparison between the method of [50] and the present method

Method of [50] Present method

N Displacement Stress Nb Displacement Stress time(s)

5× 11 3.264× 10−4 2.663× 10−1 4 1.381× 10−5 4.251× 10−3 2.33

6× 11 2.879× 10−4 6.411× 10−1 6 1.169× 10−5 3.509× 10−3 8.67

7× 11 3.160× 10−4 3.775× 10−1 8 8.905× 10−6 9.183× 10−4 15.93

8× 11 2.870× 10−4 2.745× 10−2 10 3.991× 10−6 7.601× 10−4 27.77

9× 11 8.651× 10−5 2.446× 10−2 12 1.073× 10−6 3.131× 10−4 40.13

We consider Figure 1 part (b) as the computational domain and obtain the results for it with Nb = 10 and Nb = 15
based on the different values of ε where the results are presented in Figure 6. Also, in Table 2 the obtained results
using the method presented here are compared with the developed method in [50].

9
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4.3. Internal and external pressurized hollow cylinder

For the third example, a hollow cylinder under internal pressure is considered similar to Figure 8. The analytical
solutions are [50]

σr =
a2b2(Pb − Pa)

b2 − a2
· 1

r2
+

a2Pa − b2Pb)

b2 − a2
,

σθ = −a2b2(Pb − Pa)

b2 − a2
· 1

r2
+

a2Pa − b2Pb)

b2 − a2
,

ur =
1

E

{
(1− v)

a2Pa − b2Pb)

b2 − a2
· r − (1 + v)

a2b2(Pb − Pa)

b2 − a2
· 1
r

}
,

uθ = 0,

in which v = 0.25, a = 1 and b = 5. We apply the new method for solving this problem. We select ε = 0.0001 and
use different numbers for boundary node to simulate Example 3 on a hollow cylinder under internal pressure and
the obtained results are compared with method presented in [50] also these results are shown in Table 3. Also, we
consider Figure 1 parts (c) and (d) as the computational domain and obtain the results for it with Nb = 10 and
Nb = 15 based on the different values of ε where the results are demonstrated in Figure 7.

Figure 7: The obtained errors as a function for different values of ε on domain of part (c) (left panel) and part (d) (right panel) for
Example 3.

Table 3

Comparison between the method of [50] and the present method

Method of [50] Present method

N Displacement Stress Nb Displacement Stress

8× 11 2.176× 10−3 7.262× 10−2 4 1.760× 10−5 7.761× 10−5

9× 11 1.539× 10−3 4.731× 10−2 6 1.023× 10−5 5.490× 10−5

10× 11 4.879× 10−4 2.374× 10−2 8 8.039× 10−6 2.340× 10−5

11× 11 3.862× 10−4 9.013× 10−3 10 5.398× 10−6 1.219× 10−5

10
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Figure 8: A rectangular plate with a hole subjected to a distributed load.

Figure 9: The consideration domain and meshless points in Boussinesq problem.

4.4. 3D Boussinesq problem

We consider the Boussinesq problem which is described as a concentrated load acting on a semi-finite elastic
medium with no body force. For this example, the exact displacement field is [46]

ur =
(1 + ν)P

2Eπρ

[
zr

ρ2
− (1− 2ν)r

ρ+ z

]
,

w =
(1 + ν)P

2Eπρ

[
z2

ρ2
+ 2(1− ν)

]
,

in which

1. ur is the radial displacement,

2. w is the vertical displacement,

3. ρ =
√
x2
1 + x2

2 + x2
3 is the distance to the loading point,

4. r =
√

x2
1 + x2

2 is the projection of ρ on the loading surface.

11
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Then the exact stresses are

σr =
P

2πρ2

[
−3zr

ρ3
− (1− 2ν)ρ

ρ+ z

]
,

σθ =
(1− 2ν)P

2πρ2

[
z

ρ
− ρ

ρ+ z

]
,

σzz = −3πz3

2πρ5
,

τzr = τrz = −3πrz2

2πρ5
.

We solve this problem using the proposed technique.

Table 4

Error obtained using the present method with different values of shape functions

ε = 0.01 ε = 0.005

N ur w ur w

6× 6× 6 8.2511× 10−2 7.0189× 10−2 6.2813× 10−2 5.8101× 10−2

8× 8× 8 3.8017× 10−2 3.1389× 10−2 1.4513× 10−2 1.0019× 10−2

10× 10× 10 9.2589× 10−3 8.7880× 10−3 7.9013× 10−3 5.1961× 10−3

12× 12× 12 4.9809× 10−3 3.6918× 10−3 2.2813× 10−3 1.7315× 10−3

14× 14× 14 9.4511× 10−4 9.0180× 10−4 5.5541× 10−4 4.8189× 10−4

Table 4 shows the error obtained using the boundary node method based on the RBF-QR approach for different
values of shape parameter ε.

5. Conclusion

In the current paper, the boundary element method has been combined with the RBF-QR approach. The
boundary element method can be classified in the meshless methods in which to simulate the considered problem, we
need to set some nodes in the boundary problem. The shape functions of RBF-QR approach have spectral accuracy
for small shape parameters. Thus, we combined the boundary element method with the RBF-QR technique and
obtained a high accuracy version of the boundary element method. We checked the new numerical algorithm for
solving the multi-dimensional elasticity problems on non-rectangular plates. Numerical results confirm the efficiency
of the new method developed in the current paper.
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