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ABSTRACT:  In recent decades, Reinforced Concrete (RC) structures have been impressively grown 
in construction and research fields. The RC Column is a major component of RC building structures. 
Design of RC columns and shear walls is an iterative and time-consuming process which often carried 
out using P-M interaction diagrams (PMID) in hand calculations. In this paper, with a different attitude on 
conventional approaches and using curve and surface fitting techniques, a simple Formula-based Design 
(FbD) method for design of RC column and Uniformly Reinforced Shear Wall (URSW) is proposed by 
which the longitudinal reinforcement area to section gross area ratio can be determined according to 
sectional details and other assumptions. This proposed dimension-independent method is compatible 
with any applied axial loads and bending moments, and decreases the complexity and time of design 
iterations in hand calculations of design and analysis process. Also, these well-organized formulas are 
useful for direct modeling of standard shapes of column in different research fields. Further, a procedure 
for determining the strength reduction factor is provided according to ACI 318 Code requirements. The 
validity and accuracy of the proposed FbD method is investigated by comparing with conventional hand 
calculation methods, and by several assessments, which shows that this method is suitable for the faster 
hand design of RC columns and URSWs with satisfying accuracy.
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1- INTRODUCTION
By assuming a series of strain distributions and computing 

the related values of axial and bending capacities in each 
distribution, Short Column Interaction Diagrams are derived. 
Using such diagrams along principal axes of symmetry is 
common and accepted approach for the design of RC under 
combined axial load and bending moments [1]. Interaction 
diagrams for columns are generally computed by assuming 
a series of strain distributions, each corresponding to a 
particular point on the interaction diagram, and computing 
the corresponding values of P and M [1].

The general procedure of designing RC column and 
URSW is defined as a series of iteration in which a cross 
section is assumed and the corresponding interaction 
diagrams are used. When the assumed cross section satisfies 
the factored load and moment, the iteration terminates. This 
is not necessarily the exact fitted solution. For achieving a 
cross section closer to the fitted solution, the iteration has 
to continue. Any attempt of development in this iterative 
procedure without adding more computational cost and 
complexity can play an important role in structural design 
science.

 This paper proposed an accurate, efficient simple Formula-
based Design (FbD) method which does not need computer 

programs and solving the complicated equations. Using the 
proposed procedure, the longitudinal   reinforcement area 
to section gross area ratio is directly derived. In other words, 
the percentage of longitudinal reinforcement in cross section 
can be directly calculated based on the presented formula. 
Since the strength factor is used in the design procedure, a 
procedure for determining this factor is proposed. 

Like prepared common design diagrams, some values are 
provided for each case as specific options, including cross 
section shape and arrangement, compression strength of 
concrete ( '

cf ), yielding strength of steel ( yf ) and  parameter 
γ , for designing columns and URSWs.

2- PREVIOUS WORKS ON RC COLUMN ANALYSIS 
AND DESIGN

Several studies were carried out in an attempt to overcome 
the problems and difficulties of traditional methods and 
techniques of reinforced concrete column design. Most 
of the used methods proposed by concrete standards and 
concrete handbook is graphical technique such as using 
interaction diagrams along principal axes of symmetry. A 
method called reciprocal interaction equation which used 
in ACI 318 commentary was developed by Bresler [2]. many 
columns in an actual building, are subject simultaneously to 
bending moments about both major axes in addition to an 
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axial load. This type of loading is called “biaxial loading” 
or “biaxial bending”. the ultimate strength of biaxial loaded 
reinforced concrete columns has been investigated by Chu 
and Pabarcius [3]. An equivalent compression stress block for 
simulation of nonlinear behavior of concrete in compression 
zone was introduced by Whitney [4]. Acceptable strength for 
biaxial bending accompanying compression loading has been 
investigated by Hsu and Mirza [5]. A design help relationship 
considering the nominal axial load and balanced axial load 
ratio was proposed by Hsu [6]. Design recommendation for 
columns subjected to biaxial bending in addition to an axial 
load was developed Fleming and Werner [7]. 

Also, some researchers studied different shapes of 
the reinforced concrete column section and reported 
their design recommendations. Design aids for L-Shaped 
reinforced concrete column sections was developed by 
Marin [8]. Theoretical and experimental results and design 
recommendations for biaxial loaded L-Shaped reinforced 
concrete column sections presented by Hsu [9]. Hsu [10] 
reported also design recommendations for T-Shaped column 
section under biaxial bending and axial compression.

Using computer technology developments made 
researchers able to step into the different direction of 
RC column researches. A program for column analysis 
and calculating stress in steel bars and concrete with a 
programmable calculator was developed by Dinsmore [11]. 
Brondum-Nielsen [12] and Yen [13] presented techniques 
for calculating nominal flexural capacity strength of cracked 
arbitrary concrete sections under axial load combined with 
biaxial bending. Bonet et al. [14] proposed an analytical 
approach for calculating interaction moment-axial failure 
surfaces in rectangular reinforced concrete column cross 
sections with symmetrical reinforcement. Paultre et al. 
[15] presented new equations for design of confinement 
reinforcement for rectangular and circular columns. An 
interactive spreadsheet for concrete sections analysis under 
biaxial bending was developed by Barzegar and Erasito [16]. 

The behavior of reinforced concrete column under biaxial 
cyclic loading was studied by Rodrigues et al. [17]. Zenon et 
al. [18] introduced a method for designing reinforced concrete 
short columns with hoop ties using the optimization method. 
A revision to the strength reduction factor for axially loaded 
concrete columns was proposed by Lequesne-Pincheira 
[19]. Wang-Hong [20] used the reciprocal load technique 
for estimating the axial-moment capacity of reinforced 
concrete columns with high strength concrete. Ochoa [21] 
developed a computer algorithm for calculating biaxial 
axial-moment interaction diagrams for short RC column 
with arbitrary cross section. Cedolin et al. [22] proposed an 
approximate analytical solution for calculating the failure 
envelope curve of rectangular reinforced concrete columns. 
Mahamid and Houshiar [23] proposed a direct technique 
and design diagrams for RC elements such as columns and 
shear walls. Mentioned researchers make an effort to provide 
straightforward design equations or design recommendations.

3- PROBLEM STATEMENT AND RESEARCH SIGNIFI-
CANCE

As mentioned, design of RC short column and URSW 
is an iterative and time-consuming process. By knowing the 
factored load ( uP ) and moment ( uM ) which are applied to 
column or URSW, there are two common possible approach 
in hand calculations.

 In the first approach, by guessing whole section including 
area of section and size and arrangement of bars, the PMID 
of guessed section can be plotted in analysis stage, which has 
to be multiplied by strength reduction factor  ∅ . In control 
stage, it is checked whether the factored load and moment 
point Q ( uP ,  uM ) falls into the derived diagram. Fig. 1 shows 
PMID for a square cross section with  50h b cm= = , '

cf  = 210
2 /kg cm , 

yf = 3000 2 /kg cm ,  0.8γ =  and five #8  bars at each 
side of cross section, and three possible positions for Q. Every 
position means different state of satisfaction. 1Q  completely 
falls into the diagram, which means that the assumed section 
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and three possible position for point Q ( uP , u M )
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for column or URSW is suitable for satisfying the applied uP
and  uM , but in uneconomical manner. 2Q  is exactly on the 
curve, which means that guessed section is satisfactory, and 
the section is the fitted solution for the column or URSW. 

3  Q which appears out of the diagram shows that the guessed 
section is not appropriate for the applied load and moment, 
which means that the failure is occurred for the column. 
Then, a new section should be assumed, and this process will 
repeat until 1 Q  or 2Q  position happens. This trial-and-error 
procedure can cause time-consuming iterations which is 
considered as a problem in hand calculations.

In the second app roach, by assuming the dimensions of 
section and calculating the value of eccentricity e , design 
diagrams provided by codes and references for specific ' cf ,
 yf , bars arrangement and γ  can be used to determine the 
reinforcement area to section gross area ratio ρ  . Fig. 2 
illustrates the design interaction diagram with ksi  unit for 
strength parameters and inch  unit for geometric parameters, 
for rectangular cross section with ' cf  = 4  ksi ,  yf  = 60  ksi  , 

0.8γ =  [24]. The use of such diagrams can be confusing, 
and also decrease the accuracy of design procedure in hand 
calculations. Load capacity tables, 3D interaction diagrams 
and using computer programs are the other accepted 
procedures for RC column design [23].

The value ρ  derived from proposed formula is the exact 
demanded percentage of longitudinal reinforcement in cross 
section. Due to being formula-based and universality, this 
simplified method is distinguished among the others.

4- Used Techniques
To achieve the purpose of this research, the modeling 

of the column is performed in MATLAB according to the 
distribution theory provided by ACI 318-14 building code 
requirement [25]. Curve Fitting Application in MATLAB also 
has been used in the determining the presented formulas.

4.1. Assumptions and Modeling Criteria
ACI design assumptions and formulation basis considered 

in the modeling are detailed in the following subsections (see 
Fig. 3). It should be noted that for deriving the PMID of a 
giving cross section, the procedure contained the following 
four stages is performed for different values of  c  which is the 
distance from the fiber of maximum compressive strain to the 
neutral axis.

4.1.1. General Assumptions
It is assumed that the geometric proportion is established 

between strains in the reinforcing bars and concrete. Also, the 
reinforcement is considered to be stress-perfect plastic. The 
allowable interval for percentage of reinforcement in cross 
section is suggested to be 1 % 8%ρ≤ ≤ .

4.1.2. Strain and Stress Distribution Stage
Maximum strain at the extreme concrete compression 

fiber is  0.003cuε = . The strain in the i th row of bars is defined 
as:

 i
si cu

c d
c

ε ε− =   
                   �                       (1)

Where id  is the distance between i th row and fiber of 
maximum compressive strain. It should be noted that if the 

 
Figure 2 - 𝐾𝐾 -𝑅𝑅  design diagram for rectangular column 
with  𝑓𝑓𝑐𝑐′ = 4 𝑘𝑘𝑘𝑘𝑘𝑘(28MPa),  𝑓𝑓𝑦𝑦 = 60 𝑘𝑘𝑘𝑘𝑘𝑘 (420MPa), 𝛾𝛾 = 0.8 

and 5 bars at each side of cross section [24] 
 

  

Fig. 2. nK . nR  design diagram for rectangular column with '
c f  = 4  ksi (28MPa), y f  = 60  ksi  (420MPa), 

 
Figure 1 - PMID for case with ℎ = 𝑏𝑏 = 50𝑐𝑐𝑐𝑐, 𝑓𝑓𝑐𝑐′ = 

210 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2, 𝑓𝑓𝑦𝑦= 3000 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2, 𝛾𝛾 = 0.8 and five #8 
bars at each side of cross section, and three possible 

position for point 𝑄𝑄(𝑃𝑃𝑢𝑢, 𝑀𝑀𝑢𝑢) 
 

  

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

    PMID

𝑀𝑀   𝑘𝑘𝑘.𝑚𝑚 
𝑃𝑃  
   
𝑘𝑘𝑘
 

𝑄𝑄 
𝑄𝑄2

𝑄𝑄 

 and 5 bars at each 
side of cross section [24]



J. Shafaei and R. Eskandari , AUT J. Civil Eng., 4(2) (2020) 249-264, DOI: ﻿ 10.22060/ajce.2019.15753.5548

252

i th row of bars is settled at the compression zone, then ,s iε  
will be a positive value, and if the i th row of bars is settled at 
the tension zone, then ,s iε  will be a negative value. 

Since the tensile strength of concrete in flexure is 
approximately 10 to 15 percent of the compressive strength, 
the tensile strength of concrete is neglected. Also, using stress 
block to replace detailed approximation of concrete stress 
distribution is used allowable. In the defined block, uniformly 
distributed concrete stress of '0.85 cf  is assumed over an 
equivalent compressive region bounded by edge of cross 
section and a straight line parallel to the neutral axis located a 
distance 1a cβ=  from fiber of maximum compressive strain. 
The value of coefficient 1β  is suggested to be equal to 0.85  
for 25 ' 40 cf MPa≤ ≤  by ACI. The following equations can 
be used to calculate the created stress in the i th row of bars 
at tension zone, the i th row of bars at compression zone, 
respectively,

                       
             

si su si si s

si su si y

if f E
if f f

ε ε ε
ε ε

 < → =
 ≥ → =

            �    (2)

where 52 10  sE MPa= ×  is elastic modulus of steel.

4.1.3. Force Stage
After determining stress distribution, and considering 

siA  as the total area of i th row of bars and cA  as the area of 
concrete in compression zone, the force in each component of 
cross section is calculated as:

 si si siF f A=            �                                        (3)

'0.85  c c cC f A=                         �                        (4)

where , s iF  and cC  are force in i th row of bars and 

compressive force in concrete, respectively. 
In the square cross sections, the area of compressive 

concrete is determined as:

cA a b= ×                             �                           (5)

where b  is the width of cross section. In the circular cross 
sections, this parameter specified as:

( )
4
c

c
hA sin cosθ θ θ= −                           �                      (6)

where θ  in radian is

1

1

21  
2

                    
 2180 1       2

c

c

a hcos for a
h

hfor aacos
h

θ

θ

−

° −

  
= − ≤  

 


 >  = − −   

        �    (7)

and ch  is the diameter of circular cross section.

4.1.4. Capacity Evaluation Stage
Finally, the process of calculating the nominal compressive 

axial capacity  nP , and nominal flexural capacity of column
 nM  is:

1

         
n

n c si
i

P C F
=

= +∑                          �                (8)

( ) ( )
1

           
n

n c c si si
i

M C y F y
=

= +∑              �          (9)
where n , cy  and siy  are the number of bars at each 

 
 

Figure 3 - Visual behavior of column with typical cross section under eccentric load (The hatched zone is 
compression zone and the other side is tension zone) 

  

Fig. 3. Visual behavior of column with typical cross section under eccentric load (The hatched zone is compression zone and the other side 
is tension zone)
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side, the distance between centroid of compressive zone of 
concrete and principal axis P.A, and the distance between i th 
row of bars and P.A, respectively.

4.2. Curve and Surface Fitting
Curve and Surface Fitting is a process of constructing 

a mathematical function which has the best fit to a given 
series of points. The Goodness of fit is an index which can be 
evaluated by some parameters including R-square, Adjusted 
R-Square, Root Mean Square Error (RMSE) and Sum of 
Square due to Error (SSE). “Curve Fitting” is an application 
which is provided in MATLAB and can fit appropriate 
curves in 2-dimensional  coordinate system and surface in 
3-dimensional coordinate system to data points. Although 
there are some default functions available with different 
features, but fitting process can be carried out according to 
custom equations. 

5- METHOD DEVELOPMENT
As discussed above, for reaching desired PMID for a Case 

of cross section with specific options including dimensions,
' cf ,  yf , γ , and arrangement of bars, the four stages of theory 

procedure have to be carried out for different values of c . 
Here, it is done for 200 values of c  in the interval [ 20, /10]h  
where h  is the height of cross section. In fact, this creates 
200 loops of calculation in the modeling structure. Each one 
contains the theory procedure and the main idea of study. 
Some of the result points which fall into the fourth quarter of 
the derived PMIDs are neglected. 

5.1. Description of Main Idea
As can be seen in Fig. 2, there are several slanted lines 

which cut the nK - nR  curves. Each line shows a unique value 
of

 eS
h

=                            �                       (10)      

           
where 

Me
P

=                               �                     (11)

In the design procedure, P  and M  are considered as 
factored axial load uP  and bending moment  uM , respectively. 
But in this section of paper, these are defined as nominal 
capacities to reach probable eccentricities of the cross section. 
Since there is one unique point ( ),n nM P  for each  c , so also 
there is a e  for each  c . 

The dimensionless parameters

'  
n

n
c g

PK
f A

=                            �               (12)

'

 
   

n
n

c g

P eR
f A h

=                           �              (13)

where  gA bh=  for square section and 2 / 4g cA hπ=  
, establish the main design diagrams. In this paper, two 
parameters of nK  and S  are considered as the major 
parameters. In other words, the provided formula for 
determining the percentage of reinforcement in cross section 
is a two-variable function of nK  and S . Since the column 
behavior is assessed in each integer percentage of  ρ , 1%  to
 8% , the diameter of bars D  considered in rectangular cross 
section is derived as:

4  
 

g

b

A
D

n
ρ
π

=               �                            (14)

where bn  is the total number of bars in cross section. After 
determining nP and nM  of each ρ  of any case for 200  c , nK  
and S  are easily computed. Fig. 4 illustrates the main steps 
of transposing the diagrams for a case with  50 h b cm= = ,

'  28 cf MPa= ,   420 yf MPa= ,  0.8γ = ,  4%ρ = , and 5 bars at 
each side. 

5.2. Effectiveness Assessment of options
As can be figured out from Fig. 2, the dimension option is 

neglected in list of options of a case in means of dividing the 
capacity by  h . It means that these diagrams are applicable for 
any desired dimension. But in spite of dividing the capacity 
by ' cf , it still remains as an option in each case. However, 
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detailed evaluation of effectiveness of each option on capacity 
values can be useful. This assessment is carried out from a 
comparison point of view according to nK - nR  interaction 
diagrams. It is clear that any effect on such diagrams is similar 
to nK - S  diagrams which are the basis of the method. As the 
shape of cross section is an inevitable fixed option in a case, 
the effect of shape is not evaluated here. 

5.2.1. Cross-Sectional Dimension
By assuming '  28 cf MPa= ,   420 yf MPa= ,  0.8γ = ,  4%ρ =  

and 5 bars at each side, Fig. 5 shows the diagrams for two 
cross sections with a square shape of 35 h b cm= =  and 
a rectangular cross section of 150 h cm=  and 50b cm= . 
According to perfect match between data series of two cross 
sections, it is obvious that eliminating dimension from each 
case is reasonable. Also, this is shown that this method can be 
used for designing both RC columns and URSWs. This helps 

the generalization of the method by which the value of ρ  
can be determined for any desired dimension. It is useful to 
mention that the shape of the column which considered as a 
lateral option of each case is latent in dimension option .For 
more assurance, in this paper, the dimensions of 35 h b cm= =  
and 150 h b cm= =  are simultaneously studied for each case.

5.2.2. Compressive Strength of Concrete '
c f  

It is clear from nK - nR  interaction design diagrams that 
' cf  is considered as an option in each case. The mismatch 

between data points shown in Fig. 6 proves this statement. 
The parameters  50 h cm= , 420 yf MPa= ,  0.8γ = ,  4%ρ =  
and the arrangement of 5 bars at each side are considered for 

'  28 cf MPa=  and '  35 cf MPa=  in this comparison.

5.2.3. Tensile Strength of Steel y f
It seems that yf  cannot be dismissed from the list of 

 

Figure 5 - Effect of dimension on the interaction diagram 
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Figure 6 - Effect of compressive strength of concrete on the interaction diagram 
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option of a case, because this parameter does not cooperates 
in the task of dividing the capacity. For graphical proof, the 
interaction diagrams of a cross section with  50 h b cm= = ,

'   28 cf MPa= ,  0.8γ = ,  4%ρ =  and arrangement of 5 bars at 
each side for 350 yf MPa=  and 420 yf MPa=  are displayed 
in Fig. 7.

5.2.4. parameter 

50 𝑐𝑐𝑐𝑐,  𝑓𝑓𝑐𝑐
′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 = 4% and arrangement of 5 bars at each side for 𝑓𝑓𝑦𝑦 = 350 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑓𝑓𝑦𝑦 =

420 𝑀𝑀𝑀𝑀𝑀𝑀 are displayed in Figure 7. 

 

Figure 7 - Effect of tensile strength of stress on the interaction diagram 

 

5.2.4. parameter 𝜸𝜸 

The behavior of two cross sections with ℎ = 𝑏𝑏 = 50𝑐𝑐𝑐𝑐, 𝑓𝑓𝑐𝑐
′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌 = 4% and 5 bars at 

each side for 𝛾𝛾 = 0.7 and 𝛾𝛾 = 0.8 is illustrated in Figure 8. It shows that this parameter still remains as an option of 
each case. 

 

Figure 8 - Effect of parameter 𝛾𝛾 on the interaction diagram 

5.2.5. Arrangement of Bars 

The mismatch between two diagrams illustrated in Figure 9 and corresponded to a cross section with ℎ = 𝑏𝑏 =
50 𝑐𝑐𝑐𝑐,  𝑓𝑓𝑐𝑐

′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 = 4% for two arrangements of 4 and 5 bars at each side shows 
that the option of bars arrangement cannot be deleted from the list of options of a case.  
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The behavior of two cross sections with  50h b cm= = ,
'  28 cf MPa= ,   420 yf MPa= ,  4%ρ =  and 5 bars at each side 

for 0.7γ =  and 0.8γ =  is illustrated in Fig. 8. It shows that 
this parameter still remains as an option of each case.

5.2.5. Arrangement of Bars
The mismatch between two diagrams illustrated in Fig. 

9 and corresponded to a cross section with  50 h b cm= =

, '   28 cf MPa= ,   420 yf MPa= ,  0.8γ = ,  4%ρ =  for two 
arrangements of 4 and 5 bars at each side shows that the 
option of bars arrangement cannot be deleted from the list of 
options of a case. 

5.3. Net Tensile Strain Evaluation
According to basic criteria n uP P∅ ≤  and considering 

equality between two sides of inequality in design procedure, 
by substituting, nK turns to

'  
u

n
c g

PK
f A

=
∅

                       �                         (15)

where ∅  is the strength reduction factor which ,according 
to ACI, varies between 0.65  to 0.90 . This factor is a function 

 

Figure 7 - Effect of tensile strength of stress on the interaction diagram 

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

   fy = 350 MPa

    fy = 420 MPa

𝑅𝑅 (%)

𝐾𝐾  
(%

)

 

Figure 8 - Effect of parameter 𝛾𝛾 on the interaction diagram 

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

   1 = 0.7

   1 = 0.8

𝑅𝑅 (%)

𝐾𝐾  
(%

)

Fig. 7. Effect of tensile strength of stress on the interaction diagram
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of net tensile strain Ψ  ,which is defined as 

∅ =  ( )
0.75  0.002
0.75 0.002  50                         0.002 0.005
0.90  0.005

for
for
for

Ψ <
 + Ψ − ≤ Ψ ≤
 Ψ >

 ( )
0.75  0.002
0.75 0.002  50                         0.002 0.005
0.90  0.005

for
for
for

Ψ <
 + Ψ − ≤ Ψ ≤
 Ψ >

  �    (16)

for spirally reinforced columns and

∅ = ( )( )
0.65  0.002
0.65 0.002  250 / 3      0.002 0.005
0.90  0.005

for
for
for

Ψ <
 + Ψ − ≤ Ψ ≤
 Ψ >

               (17)

for other types of reinforcement. In another words, the 
value of this factor depends on the establishment zone of 
last row of bars including compression-controlled, transition 

and tension-controlled zone. Fig. 10 shows the variation of 
strength reduction factor with net tensile strain in the last 
row of steel bars for spirally and other reinforced columns. 
Therefore, it is become important to evaluate the behavior of 
this row of bars from a strain point of view. The strain values 
versus S  and nK  in a case with  50 h b cm= = , '   28 cf MPa=
,   420 yf MPa= ,  0.8γ = ,  4%ρ =  and 5 bars at each side are 
illustrated in Fig. 11 and Fig. 12, respectively. 

6- CURVE AND SURFACE FITTING AND FORMULA-
TION

After determining 400 values of each desired dimensionless 
parameter, nK  and  S , for eight ρ  in each case and then 
neglecting negative values, fitting process has to be done. A 
2D fitting is used to establish the formula ( )nK f S=  for each 

 
Figure 9 - Effect of bars arrangement on the interaction diagram 
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Fig. 9. Effect of bars arrangement on the interaction diagram

 
Figure 10 - Variation of ∅ with 𝛹𝛹 
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ρ . The type of 2D fitting used is a built-in type in Curve 
Fitting App named Rational in which the numerator and 
denominator degrees are selected 2 and 3, respectively. The 
general model used in this type is defined as:

( )
2

1 2 3
3 2

1 2 3

 
 

p x p x pf x
x q x q x q

+ +
=

+ + +
            �                 (18)

where 1p to 3p  and 1q to 3q are the coefficients whose 
determination is the main objective of fitting process. It 
should be noted that ( )f x  and x  are related to nK  and
 S , respectively. As the 2D fitting is carried out only for 
preparing data for 3D fitting, the number of coefficients does 
not play an important role. But the values which describe the 
goodness of fitting are considerable, because they affect the 
accuracy of method. Fig. 13 shows the data points and fitted 
curve for 4%ρ =  of a case with rectangular cross section, 

'  28 cf MPa= ,   420 yf MPa= ,  0.8γ =  and 5 bars at each side. 

By doing this for eight ρ  of a case,  nK - S  diagram of this 
case is derived which can be seen in Fig. 14. To represent the 
accuracy of fitting and the selecting the type, the values of 
goodness of fitting for each ρ  of this case is listed in Table 
1. When the value of 2R  which varies in the interval [-∞, 1] 
is calculated equal to 1 in the fitting process, it means that the 
curve or surface perfectly fitted the data set of points. 

The data points for 3D fitting of calculating ρ  are 
generating based on this 2D formulation, so that  the average 
value of 2R of 2D fitting for eight ρ  in each case is applied 
to the accuracy of final formulation of  ρ . 

6.1. Formulation of 

 

  
Figure 13 - Data points and fitted curve for 𝜌𝜌 = 4% of a 
case with rectangular cross section,  𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =

 420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8 and 5 bars at each side. 
 

Figure 14 - 𝐾𝐾𝑛𝑛 and 𝑆𝑆 diagram of a case with 
rectangular cross section,  𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =

 420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8 and 5 bars at each side 
 

Table 1 – Values of goodness of fitting performed in Figure 13 

 1% 2% 3% 4% 5% 6% 7% 8% 
𝑅𝑅2 1 1 1 1 1 1 1 1 
RMSE 0.001374 0.001475 0.00157 0.001722 0.001845 0.00193 0.001991 0.002027 

6.1. Formulation of 𝝆𝝆 

To present the main formula 𝜌𝜌 = 𝑓𝑓 𝐾𝐾𝑛𝑛,𝑆𝑆), a series of data point is needed. After applying 40 points in the interval 
[0,2] of 𝑆𝑆 at the 𝐾𝐾𝑛𝑛 = 𝑓𝑓 𝑆𝑆  for each eight 𝜌𝜌 ,which is derived from the 2D fitting, the data points for eight 𝜌𝜌 at each 
case are available. These sets of data are used for 3D fitting in which a Polynomial type of fitting is considered. The 
Eq. 19 and 20 shows the general mathematical models which are defined for cases with rectangular and circular cross 
section, respectively.  

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑦𝑦2 + 𝑢𝑢4𝑥𝑥𝑥𝑥                       (19) 

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑥𝑥2 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥           (20) 

 

The coefficients 𝑢𝑢1 to 𝑢𝑢5 are the main goal which should be calculated. The variables 𝑥𝑥, y and 𝑓𝑓 𝑥𝑥,𝑦𝑦  represent 𝑆𝑆, 𝐾𝐾𝑛𝑛 
and 𝜌𝜌, respectively. The selection of these models is carried out according to: (1) less coefficients to make the design 
procedure simpler, (2) higher 𝑅𝑅2 to improve the accuracy of method. A numerical comparison among the best possible 
models is provided in Table 2 for rectangular cross section and in Table 3 for circular cross section. Also, the value 
of RMSE for each model is listed in the tables for more information. These comparisons are performed based on 𝑓𝑓𝑐𝑐′ =
 28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8 and 5 bars at each side of rectangular cross section and total 8 bars at the circular 
cross section. However, the 3D visualization of the data points and final fitted surface is shown in Figure 15. Finally, 
the results of the fitting shown in Figure 15 are listed in Table 4. It is important to say that the output of the proposed 
formula for 𝜌𝜌 is calculated in percentage, so that this derived value has to be divided by 100.  
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To present the main formula  ( nf Kρ = , S ), a series of data 
point is needed. After applying 40 points in the interval [0,2] 
of S  at the ( )nK f S=  for each eight ρ  ,which is derived 
from the 2D fitting, the data points for eight ρ  at each case 
are available. These sets of data are used for 3D fitting in which 
a Polynomial type of fitting is considered. The Eq. 19 and 20 

 
Figure 11 - 𝛹𝛹-𝑆𝑆 in a case with a circular cross 

section, 𝑓𝑓𝑐𝑐
′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 =

4% and 5 bars at each side  
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Figure 12 - 𝛹𝛹-𝐾𝐾  in a case with a circular cross 

section, 𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 =
4% and 5 bars at each side  
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Figure 11 - 𝛹𝛹-𝑆𝑆 in a case with a circular cross 
section, 𝑓𝑓𝑐𝑐

′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 =
4% and 5 bars at each side  
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Figure 1 - PMID for case with ℎ = 𝑏𝑏 = 50𝑐𝑐𝑐𝑐, 𝑓𝑓𝑐𝑐′ = 

210 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2, 𝑓𝑓𝑦𝑦= 3000 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2, 𝛾𝛾 = 0.8 and five #8 
bars at each side of cross section, and three possible 

position for point 𝑄𝑄(𝑃𝑃𝑢𝑢, 𝑀𝑀𝑢𝑢) 
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Figure 4 - Stepwise graphical process of transposing diagrams from (a) PMID to (b) 𝐾𝐾 -𝑅𝑅  interaction 

diagram and then to (c) 𝐾𝐾 -𝑆𝑆  diagram for a cross section with ℎ = 𝑏𝑏 = 50 𝑐𝑐𝑐𝑐, 𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 =
0.8 and 5 bars at each side (𝜌𝜌 = 4%) 
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Fig. 12. 

 
Figure 12 - 𝛹𝛹-𝐾𝐾  in a case with a circular cross 

section, 𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, 𝜌𝜌 =
4% and 5 bars at each side  
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Figure 13 - Data points and fitted curve for 𝜌𝜌 = 4% of a 
case with rectangular cross section,  𝑓𝑓𝑐𝑐′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =
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shows the general mathematical models which are defined for 
cases with rectangular and circular cross section, respectively. 

( ) 2
1 2 3 4,f x y u u x u y u xy= + + +              �           (19)

( ) 2 2
1 2 3 4 5,f x y u u x u x u y u xy= + + + +         �    (20)

The coefficients 1u  to 5u  are the main goal which should 
be calculated. The variables  x , y and ( ),f x y  represent  S
, nK  and  ρ , respectively. The selection of these models is 
carried out according to: (1) less coefficients to make the 
design procedure simpler, (2) higher 2R  to improve the 
accuracy of method. A numerical comparison among the 
best possible models is provided in Table 2 for rectangular 
cross section and in Table 3 for circular cross section. Also, 

the value of RMSE for each model is listed in the tables for 
more information. These comparisons are performed based 
on '  28 cf MPa= ,   420 yf MPa= ,  0.8γ =  and 5 bars at each side 
of rectangular cross section and total 8 bars at the circular 
cross section. However, the 3D visualization of the data 
points and final fitted surface is shown in Fig. 15. Finally, the 
results of the fitting shown in Fig. 15 are listed in Table 4. It is 
important to say that the output of the proposed formula for 
ρ  is calculated in percentage, so that this derived value has 
to be divided by 100. 

6.2. Formulation of strength reduction factor  ∅
The straight lines which define the values of  0.002Ψ =  

and 0.005Ψ =  in design aid diagrams provided in [24] are 
slanted. Also, illustrating the variation of Ψ  with nK  and  S  
in Fig. 10 and Fig. 11, respectively, proves this fact. However, 

𝑅𝑅2

 
𝜌𝜌

𝑓𝑓(𝑥𝑥 𝑦𝑦) 𝑅𝑅2

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥  + 𝑢𝑢3𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑦𝑦  + 𝑢𝑢3𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑦𝑦2 + 𝑢𝑢3𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥  + 𝑢𝑢3𝑦𝑦2 + 𝑢𝑢4𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑥𝑥2 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥

 

Table 1. Values of goodness of fitting performed in Fig. 13

Table 2. A comparison between the best possible models for obtaining 
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 in rectangular cross sections
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𝑢𝑢1 + 𝑢𝑢2𝑦𝑦2 + 𝑢𝑢3𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑥𝑥𝑥𝑥
𝑢𝑢1 + 𝑢𝑢2𝑥𝑥  + 𝑢𝑢3𝑦𝑦2 + 𝑢𝑢4𝑥𝑥𝑥𝑥
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 in circular cross sections

𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑅𝑅2

 

Table 4.  Results of the surface fitting shown in Fig. 15
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by applying Eq. 16 or Eq. 17 to the calculated and gathered 
vectors of 𝛹 for eight ρ  of a case, 3D visualization of data 
points for ∅  versus nK  and  S  is derived which is shown in 
Fig. 16 for a case with rectangular cross section, '  28 cf MPa=
,   420 yf MPa= ,  0.8γ = , and 5 bars at each side. The behavior 
of strength reductant factor versus nK  and  S  shows that 
the value of ∅  can be approximately considered only as a 
function of nK  with neglecting the variation of this factor 
with  S . This is because the data points (  Ψ , nK , S ) or (  ∅
, nK , S ) does not show a good behavior for surface fitting 
with high accuracy. Therefore, the formulation is performed 
based on linear interpolation for bounds of  nK  in the interval

0.90 0.75 ,n nK K∅= ∅=  
 for spiral reinforcement and 0.90 0.65,n nK K∅= ∅=  

 

for other types of reinforcement. The final results of the case 
mentioned above is listed in Table 5.

7- RESULTS PRESENTATION
The described procedure for proposing the FbD method is 

carried out for some cases with commonly used options. The 
final results for process of determining ρ  and ∅  using FbD 
method are provided in Table 6 to Table 8. The considered 
mathematical models which is compatible for all of the cases 
in the corresponding table is provided. Instead of using design 
diagrams, these Tables of FbD method can be used for design 
of eccentrically loaded columns and URSWs considering the 
common strength and geometric parameters. 

 

 

 

Figure 15 - 3D visualization of: (a) data points, (b) view1 of fitted surface, and (c) view2 of fitted surface, according 
to selected general model of obtaining 𝜌𝜌, for a case with rectangular cross section ,  𝑓𝑓𝑐𝑐

′ =  28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =
 420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, and 5 bars at each side 
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Since several load combinations are considered in 
designing procedure and the maximum value of ρ  among 
the derived values is selected as the final result, using this 
method decreases the complexity and time of this procedure. 
For a given factored load uP  and factored bending moment
 uM , the following steps using FbD method are proposed for 
designing columns and URSWs:
1. Calculate eccentricity  /u ue M P= .
2. Select trail cross-sectional dimensions b  and h  for 
URSWs and rectangular and ch  for circular cross section.
3. Assume a trial 0.65∅ =  and calculate '/   n u c gK P f A= ∅  and
 /S e h= .
4. Calculate ( )nf K∅ =  according to corresponding table and 
check if the trial assumption is correct; otherwise, calculate
 nK  with derived  ∅ .

5. Calculate ( ) , nf S Kρ =  according to corresponding table.
6. Calculate total steel reinforcement area  /100stA bhρ= .

According to the effectiveness assessments, proposed 
values in these tables are only applicable for mentioned related 
options. Fig. 17 shows the flowchart of the whole process of 
obtaining the formulas for designing RC column and URSW, 
which can be used for providing the required values of desired 
options. 

Note that according to the part of the proposed tables 
which is dedicated to the  ∅ , the values of the both bounds 

0.90
nK∅=  and 0.75

nK∅=  increase with the increase in γ  for specific 
' cf  and  yf , and this happens for values of ω  vice versa.

8- METHOD VALIDATION AND ACCURACY
It is obvious that FbD method can make the hand design 

 

 

Figure 16 - 3D visualization of data points for ∅ versus 𝑆𝑆 and 𝐾𝐾  for a case with rectangular cross section,  𝑓𝑓𝑐𝑐′ =
 28 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑦𝑦 =  420 𝑀𝑀𝑀𝑀𝑀𝑀, 𝛾𝛾 = 0.8, and 5 bars at each side, (a) view1, and (b) view2 
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, and 5 bars at each side, (a) view1, and (b) view2

∅

𝐾𝐾𝑛𝑛 ∅
0.4532 ≤ 𝐾𝐾𝑛𝑛 0.65
0.1103 < 𝐾𝐾𝑛𝑛 < 0.4532 0.4532 − 𝐾𝐾𝑛𝑛) 0.6660
0.1103 ≥ 𝐾𝐾𝑛𝑛 0.90

 

Table 5. Results for obtaining ∅  in the case of Fig. 16
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• 
• 
• 

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑢𝑢1 + 𝑢𝑢2𝑆𝑆 + 𝑢𝑢3𝐾𝐾𝑛𝑛
2 + 𝑢𝑢4𝑆𝑆𝐾𝐾𝑛𝑛

𝑒𝑒   =  𝑀𝑀𝑢𝑢
𝑃𝑃𝑢𝑢

                𝑆𝑆   = 𝑒𝑒
ℎ                  𝐾𝐾𝑛𝑛 = 𝑃𝑃𝑢𝑢

∅𝑓𝑓𝑦𝑦𝐴𝐴𝑔𝑔

∅ = 0.65 𝐾𝐾𝑛𝑛
∅=0.65 ≤ 𝐾𝐾𝑛𝑛

∅ = 0.65 + (𝐾𝐾𝑛𝑛
∅=0.65 − 𝐾𝐾𝑛𝑛) 𝜔𝜔 𝐾𝐾𝑛𝑛

∅=0.90 < 𝐾𝐾𝑛𝑛 < 𝐾𝐾𝑛𝑛
∅=0.65

∅ = 0.90 𝐾𝐾𝑛𝑛
∅=0.90 ≥ 𝐾𝐾𝑛𝑛

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦 𝛾𝛾 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑅𝑅2 𝐾𝐾𝑛𝑛

∅=0.65 𝐾𝐾𝑛𝑛
∅=0.90 𝜔𝜔

 

Table 6. FbD method for Rectangular cross section and 5 bars at each side

• 
• 
• 

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑢𝑢1 + 𝑢𝑢2𝑆𝑆 + 𝑢𝑢3𝐾𝐾𝑛𝑛
2 + 𝑢𝑢4𝑆𝑆𝐾𝐾𝑛𝑛

𝑒𝑒   =  𝑀𝑀𝑢𝑢
𝑃𝑃𝑢𝑢

               𝑆𝑆   = 𝑒𝑒
ℎ                𝐾𝐾𝑛𝑛 = 𝑃𝑃𝑢𝑢

∅𝑓𝑓𝑦𝑦𝐴𝐴𝑔𝑔

∅ = 0.65 𝐾𝐾𝑛𝑛
∅=0.65 ≤ 𝐾𝐾𝑛𝑛

∅ = 0.65 + (𝐾𝐾𝑛𝑛
∅=0.65 − 𝐾𝐾𝑛𝑛) 𝜔𝜔 𝐾𝐾𝑛𝑛

∅=0.90 < 𝐾𝐾𝑛𝑛 < 𝐾𝐾𝑛𝑛
∅=0.65

∅ = 0.90 𝐾𝐾𝑛𝑛
∅=0.90 ≥ 𝐾𝐾𝑛𝑛

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦 𝛾𝛾 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑅𝑅2 𝐾𝐾𝑛𝑛

∅=0.65 𝐾𝐾𝑛𝑛
∅=0.90 𝜔𝜔

 
 

 

Table 7.  FbD method for Rectangular cross section and 4 bars at each side



J. Shafaei and R. Eskandari , AUT J. Civil Eng., 4(2) (2020) 249-264, DOI: ﻿ 10.22060/ajce.2019.15753.5548

262

• 
• 
• 

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦

𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑢𝑢1 + 𝑢𝑢2𝑆𝑆 + 𝑢𝑢3𝑆𝑆2 + 𝑢𝑢4𝐾𝐾𝑛𝑛
2 + 𝑢𝑢5𝑆𝑆𝐾𝐾𝑛𝑛

𝑒𝑒   =  𝑀𝑀𝑢𝑢
𝑃𝑃𝑢𝑢

                𝑆𝑆   = 𝑒𝑒
ℎ                  𝐾𝐾𝑛𝑛 = 𝑃𝑃𝑢𝑢

∅𝑓𝑓𝑦𝑦𝐴𝐴𝑔𝑔

∅ = 0.75 𝐾𝐾𝑛𝑛
∅=0.75 ≤ 𝐾𝐾𝑛𝑛

∅ = 0.75 + (𝐾𝐾𝑛𝑛
∅=0.65 − 𝐾𝐾𝑛𝑛) 𝜔𝜔 𝐾𝐾𝑛𝑛

∅=0.90 < 𝐾𝐾𝑛𝑛 < 𝐾𝐾𝑛𝑛
∅=0.75

∅ = 0.90 𝐾𝐾𝑛𝑛
∅=0.90 ≥ 𝐾𝐾𝑛𝑛

𝑓𝑓𝑐𝑐
′ 𝑓𝑓𝑦𝑦 𝛾𝛾 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑅𝑅2 𝐾𝐾𝑛𝑛

∅=0.65 𝐾𝐾𝑛𝑛
∅=0.90 𝜔𝜔

 

Table 8.  FbD method for Circular cross section and 8 total bars at cross section

Start

Choose options of
 the case and dimensions

01.0= %)1(

Calculate 
each bar area (Eq. (14))

 and distances 

Do for 200 c in the interval 

Calculate strains and 
stresses (Eq. (1) and (2))

Calculate forces and 
capacities (Eq. (3) to (9))

]10/,0[ 2h

Calculate dimensionless 
parameters 

(Eq. (10) to (12))

08.0 01.0+= 
Yes

Determine the bounds of

Fitting process

No

End

Formulation process

nK

)( nKf=

),( nKSf=

 

Figure 17 - Flowchart of overall process of deriving formulas 

 

Fig. 17. Flowchart of overall process of deriving formulas
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𝑅𝑅2

𝑅𝑅2

 

Table 9.  Assessment of method accuracy according to 2R  values

× ×
𝑆𝑆 𝐾𝐾𝑛𝑛  ∅ 𝜌𝜌 ∅ 𝜌𝜌

× ×  
× ×
× ×

Table 10. Results of Example

steps faster and easier by using provided formulas, but it 
is important to assess the accuracy of the method, and to 
validate the method. The validation is carried out through 
an example in which the results derived from FbD method 
are compared to the results of the other common method, i.e. 
using design interaction diagrams. 

8.1. Method Accuracy
The value of 2R  which is the main component of goodness 

of fitting parameters is used to evaluate the accuracy of 
method. Table 9 presented a brief assessment of three 
proposed tables according to 2R  values. It can be figured out 
from this table that the best results are achieved for Case 8 of 
Table 6 which corresponds to the rectangular cross section 
with 5 bars at each side. This case has the minimum error of 
1.19%, and the maximum error of 11.98% relates to the Case 
1 of Table 8 with 2 0.8802R = . Also, for specific ' cf  and  yf , the 
value of 2R  increases with increment of  γ .

Since the linear interpolation for formulation of ∅  
is performed based on the bounds of 0.90 0.75,n nK K∅= ∅=    or 

0.90 0.65,n nK K∅= ∅=   , depending on the type of reinforcement, the 
2R  value of this linear fitting is equal to 1 for all of the cases.

8.2. Example
A rectangular cross section with 5 bars at each side,

'  28 cf MPa=  (4 ksi),   420 yf MPa=  (60 ksi),  0.8γ =  which is 
subjected to 3200 uP = kN (719.3 kips) and 480 uM = kN.m 
(353.7 kips.ft) is assumed. Calculate the value of ρ  for 
common used dimensions of cross section.

8-2-1. Solution
First of all,  15 e cm= . Using Case 3 in Table 6 and 

mentioned steps, the solution continues in the Table 10. 
Also, the visual inspection results from the design interaction 
diagram in [24] are provided to make a comparison between 
two methods.

9- CONCLUSIONS
In this paper, a straightforward Formula-based Design 

method is proposed by which the values of ρ  and ∅  can 

be calculated. According to several assessments carried 
out through the research and the derived results, it can be 
concluded that:
- The FbD method is applicable for designing columns and 

uniformly reinforced shear walls.
- Derived values using this method are the exact required 

amounts in design procedure.
- This method permits a faster and direct design in hand 

calculations.
- Well-organized formulas are useful for direct modeling of 

standard shapes of column in different research fields, 
such as reliability and probabilistic studies.

- Considering the common strength and geometric options 
for each case is reasonable. 

- The idea of using fitting technique is responsive to the final 
goals of this paper, and can be used for generating more 
results for any required option.

- The effect of slenderness is not considered in this method, 
and may be taken into account in a future study.

NOMENCLATURE
a              height of stress block of concrete compression zone 

cA            area of concrete compression zone

gA            cross section gross area
b              width of cross section
c               distance from fiber of maximum compressive strain 
to neutral axis

cC             force in concrete compression zone

id             distance from the fiber of maximum compressive 
strain to centroid of i th row of bars
D              diameter of bar
e               eccentricity 

sE             elastic modulus of steel
'

cf             compressive strength of concrete 

sif            stress in i th row of bars

siF           force in i th row of bars

yf             yield strength of steel
h              height of cross section
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ch            diameter of circular cross section

nK    dimensionless parameter corresponding to axial 
capacity

0.65
nK∅=   bound of  0.65∅ =

0.75
nK∅=   bound of  0.75∅ =

0.90
nK∅=   bound of  0.90∅ =
uM          factored bending moment

nM          nominal flexural capacity
N.A 	 neutral axis

bn      total number of bars at cross section
P.A   principal axis

1 2 3. .p p p   numerator coefficients of numerator in 2Dfitting

uP     factored load

nP     nominal axial capacity

1 2 3. .q q q   denominator coefficients of numerator in 2Dfitting

nR     dimensionless parameter corresponding to flexural 
capacity
S       eccentricity to height of cross section

1 2 3 4 5. . . .u u u u u    coefficient of polynomial 3D fitting

cy      distance from centroid of concrete compression zone 
to principal axis
γ       dictance between first and last row of bars to height of 
cross section ratio
ρ       reinforcement area to cross section gross area ratio
∅      strength reduction factor
Ψ      net tensile strain
θ      angle in circular cross section which determine the 
compression zone

cuε   maximum compressive strain of concrete

siε   strain in i th row of bars
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