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ABSTRACT:  Probabilistic data structures are so popular in membership queries, network applications, 
and databases and so on. Bloom Filter and Cuckoo Filter are two popular space efficient models 
that incorporate in set membership checking part of many important protocols. They are compact 
representations of data that use hash functions to randomize a set of items. Being able to store more 
elements while keeping a reasonable false positive probability is a key factor of design. A new algorithm 
is proposed to improve some of the performance properties of Cuckoo Filter such as false positive rate 
and insertion performance and solve some drawbacks of the Cuckoo algorithm such as endless loop. 
Main characteristic of the Bloom Filter is used to improve Cuckoo Filter, so we have a smart Cuckoo 
Filter which is modified by Bloom Filter so called as SCFMBF. SCFMBF uses the same table of buckets 
as Cuckoo Filter but instead of storing constant Fingerprints, it stores Bloom Filters. Bloom Filters can 
be accumulated in the table’s buckets which leads to higher insertion feasibility. We also address the 
endless loop problem of Cuckoo Filter that means an inserted item is stuck in an iterative process of 
finding an empty bucket, so a smart algorithm is designed which not only solves endless loop problems 
but also prevents insertion failure. Hence our smart algorithm prevents double checking of a bucket 
and avoids making loops. Consequently, the capacity of SCFMBF is improved significantly.  Results of 
comparison with Cuckoo Filter shows that false positive probability of SCFMBF method is enhanced 
compared to Cuckoo Filter.
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1. INTRODUCTION
Bloom Filter is a space efficient probabilistic data structure 

which is used to represent a set and perform membership 
queries [1] to query whether an element is a member of a set 
or not.  Bloom Filter was first proposed by B. H. Bloom [2] as a 
membership query structure, and provided the framework for 
many other researchers. A Bloom Filter occupies a negligible 
space for representation of members compared to entire sets. 
Representation of sets with a limited data structure as the 
Bloom Filter, leads to false positives. False negatives are not 
possible in Bloom Filter, it means when Bloom Filter shows 
an item is not a member of the set, it is definitely not in the 
set. On the other hand, with a certain probability, Bloom 
Filter wrongly declares an item is a member of the set, this 
probability is an important factor in the filter design which 
is called False Positive Probability (FPP). The structure and 
properties of Bloom Filter is described in section 3.1. Bloom 
Filters are used in applications that need to search a member 
in large sets of items in a short time such as spell checking, 
network traffic routing and monitoring, data base search, 
differential file updating, distributed network caches, textual 

analysis, network security and iris biometrics. Some of the 
popular applications are described below:

· Spell checking: Determination of whether a word is a 
valid word in its language, is done by creating Bloom Filter for 
all possible words of a language and checking a word against 
the Bloom Filter [3].

· Routing: if the network is in the form of a rooted tree 
with nodes holding resources and a node receives a request 
for resource, it checks its unified list to ascertain if it has a 
way of routing that request to the resource [4]. False positives 
in this case may forward the routing request to an incorrect 
path. In order to solve this, each node in the network keeps an 
array of Bloom Filter for each adjacent edge.

· Network Traffic: Bloom filters are widely used to reduce 
network traffic and are used in caching proxy servers on the 
World Wide Web (WWW). Bloom Filters are used in web 
caches to efficiently determine the existence of an object in 
cache. Bloom Filters are also used as cache digest. A cache 
digest contains information of all cache keys with lookup 
capability. By checking a neighbor cache, a cache can 
determine with certainty if a neighboring cache does not hold 
a given object [5].
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A Bloom Filter is very much like a hash table in that it will 
use a hash function to map a key to a bucket. However, Bloom 
Filter does not store that key in the array (bucket), it simply 
sets some bits to 1, to mark the bucket as filled. So, many keys 
might map to same filled bucket, creating false positives. A 
Bloom Filter also includes a set of k hash functions with which 
we hash incoming values. These hash functions must all have a 
range of 0 to m - 1. If these hash functions match an incoming 
value with an index in the bit array, the Bloom Filter will make 
sure the bit at that position in the array is 1. In order to adapt 
Bloom Filter to the variety of applications, there is need to 
modify Bloom Filter to be more effective. Several papers have 
tried to reduce false positive probability [6], provide member 
deletion for Bloom Filter [7], handle large data sets [8], make 
scalable Bloom Filter for dynamic sets [9], find the similarity 
of two sets [10] and reduce the size of Bloom Filter [11]. We 
are going to introduce some famous modifications of Bloom 
Filter as examples in the Related Work section.

The Cuckoo Filter is a minimized hash table that 
uses Cuckoo hashing to resolve collisions. It minimizes its 
space complexity by only keeping a fingerprint of the value 
to be stored in the set. Much like the Bloom Filter that uses 
single bits to store data, the Cuckoo Filter uses a small f-bit 
fingerprint to represent the data. The value of f is decided on 
the ideal false positive probability the programmer wants. 
The Cuckoo Filter has an array of buckets. The number of 
fingerprints that a bucket can hold is referred to as b. They 
also have a load which describes the percent of the filter they 
are currently using. So, a Cuckoo Filter with a load of 75% 
has 75% of its buckets filled. This load is important when 
analyzing the Cuckoo Filter and deciding if and when it needs 
to be resized. 

In this article, we proposed a smart Cuckoo Filter to solve 
some of shortcomings of the previous methods described in 
the Related Work section. Being smart is about detecting and 
getting out of endless loops. Since Cuckoo Filter is a fixed data 
structure, if the load factor is exceeded from its predetermined 
value related to the tolerable error probability, the insertion 
fails. Load factor is the percentage that shows the Cuckoo 
table’s fullness. To avoid data loss caused by removals or new 
insertions, a modified Cuckoo Filter is created by our Cuckoo 
Support Algorithm (CSA). Our modification of Cuckoo Filter 
is inspired by the standard Bloom Filter. Standard Bloom 
Filter makes the final Bloom Filter array by calculating the 
union of Bloom Filters which is done by logical OR operation. 
Therefore our modified Cuckoo Filter has more capacity by 
allowing new insertions even when the Cuckoo table is full. 

Cuckoo Filter and Bloom Filter are both popular 
probabilistic data structures. Although they are built 
differently, each of them have special useful characteristics 
and we want to benefit from both to reach a more powerful 
membership query structure. Unlike the Standard Bloom 
Filter, Cuckoo Filter has removal capability and we build the 
protocol on Cuckoo Filter first. When Cuckoo table is close 
to fullness, there is hardly enough space for new insertions. 
We solve this space deficiency of Cuckoo Filter by making a 
change in Cuckoo Filter’s structure. Bloom Filter is used as 

the former fingerprint of data and a new phase is added to 
Cuckoo Filter algorithm, that leads to higher Cuckoo table 
capacity and also impressively lower false positive probability. 
Cuckoo Filter has the problem of endless loops, that means 
when it cannot find an empty bucket for the new insertion, 
it checks the same buckets again and again. We designed a 
new algorithm to make Cuckoo Filter smart not only to detect 
endless loops but also get out of them. Standard Bloom Filter, 
(as mentioned in Related Work section) has many extensions 
that makes it suitable for different applications. Standard 
Bloom Filter satisfied our design goals that is why we didn’t 
use any of the Bloom Filter extensions. Comparison results 
demonstrates our protocol’s being successful in lowering the 
key design factor of these filters, false positive probability, 
to a low negligible amount. By changing the filter elements 
further, FPP can even fall to lower amounts.

We will exclusively compare our proposed filter with the 
Cuckoo Filter. With the changes we have made to Cuckoo 
Filter, a new filter is made that we name it Smart Cuckoo Filter 
Modified  by Bloom Filter (SCFMBF).  We briefly explain 
standard Bloom Filter and Cuckoo Filter characteristics then 
relate it to our protocol SCFMBF.

In the following, the article outline is summarized. Section 
2 is dedicated to the related work that mainly introduces 
papers about different extensions of Bloom Filter and Cuckoo 
Filter. We are going to explain Bloom Filter and Cuckoo Filter 
concepts further in the section 3, because they are the base of 
our proposed method. In section 4, our protocol is introduced 
and the designed algorithms are explained. In sections 5 and 
6 the calculation results and the Fig.s of comparison are 
considered, we have compared our protocol with the Cuckoo 
Filter to check its efficiency. Section 7 is a summarized 
conclusion about our work.

2. RELATED WORK
Laufer et al. [6] introduces Generalized Bloom Filter, that 

employs two groups of hash functions {g1, …, gk0} , {h1, …, 
hk1}. When inserting an element into the bit vector, the g hash 
functions set the bits for the item and the h hash functions 
reset the bits. False positive happens when the g1(x),…, gk0(x) 
are all 0 and the bits h1(x), …, hk01(x) are all 1. Fan et al. [7] 
suggested Counting Bloom Filter (CBF) to add deletion 
possibility to the standard Bloom Filter. CBF puts counters 
instead of single bits in the Bloom Filter array and increments 
the counters when new set member is inserted.  Split Bloom 
Filter by Xiao et al. [8] employs a constant s × m bit matrix 
for set representation, where s is a pre-defined constant based 
on the estimation of maximum set cardinality and m denotes 
Bloom Filter array length. Guo et al. [9] suggested Dynamic 
Bloom Filter as an alternation to Bloom Filter that dynamically 
creates new filters when needed. When the false positive rate 
of a Bloom Filter is rising fast, it switches to a new Bloom Filter 
instead. Geravand et al. [10] proposed Matrix Bloom Filter 
that contains N rows of Bloom Filter with m bits used to find 
out the similarities between two documents. Matrix BF just 
executes the bitwise AND operations between the two rows. 
Thereby, the similarity is measured by counting the number 

https://brilliant.org/wiki/cuckoo-filter/#cuckoo-hashing
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of 1s in the resultant bit array.  Compressed Bloom Filter by 
Mitzenmacher [11] is for transmission size optimization of 
the Bloom Filter. The main idea of this protocol is based on 
changing the way bits are distributed in the filter. Counting 
Bloom Filter chooses the number of hash functions in a way 
that the Bloom Filter’s entries have a smaller probability than 
½.  d-left counting Bloom Filter proposed by Bonomi et al. 
[12] is equivalent to a Counting Bloom Filter by a factor of 
two or more space. d-left counting Bloom Filter divides a 
hash table into d sub-tables so d hash functions are needed.   
Hierarchical Bloom Filter proposed by Shanmugasundaram 
et al. [13] is a multi-level filter. When a string is inserted it 
is first broken into blocks which are inserted into the filter 
hierarchy starting from the lowest level. In that way, sub-string 
matching is supported. Cohen et al. suggested [14] Spectral 
Bloom Filter to support frequency queries by counters to 
store the frequency values.  Matsumoto et al. proposed [15] 
Adaptive Bloom Filter, a modification of counting Bloom 
Filters for the cases that large counters are needed.  Almeida 
proposed Scalable Bloom Filter [16] that adds slices of Bloom 
Filter as the set grows.  Weighted Bloom Filter is designed by 
Bruck et al. [17]. It is a Bloom Filter that changes the number 
of hash functions according to element query popularity, so 
it incorporates the information on the query frequencies and 
the membership likelihood of the elements. Quotient Filter 
is suggested by Bender et al. [18] that is a compact hash table 
in which the table entries contain only a portion of the key 
plus some additional meta data bits. In a quotient filter a hash 
function generates a fingerprint. Some of the least significant 
bits is called the remainder and the most significant bits are 
called the quotient. The remainder is stored in the quotient’s 
corresponding slot. We used the Standard Bloom Filter in our 
proposed method, because by combining Cuckoo and Bloom 
Filter we got a satisfying result.  

Cuckoo Filter was first introduced by Fan et al. [19], 
Cuckoo Filter is a minimized hash table that stores a 
summary of a set of inputs. Cuckoo Filter meets the purpose 
of set membership and we take a close look at it. Fan et al. 
[19] proposed Cuckoo Filter that is a compact variant of 
a Cuckoo hash table that stores only fingerprints that are 
driven by hash function from the input items for each item 
insertion.  A hash table is a particular implementation of a 
dictionary whose entries are called buckets. For inserting an 
item, a hash function is used to select which bucket to store 
the item. The structure and properties of Cuckoo Filter is 
described in section 3.2. Applications of Cuckoo Filter are a 
lot similar to applications of Bloom Filter but Cuckoo Filters 
are more suitable for applications that need to store many 
items and keep low false positive rate. One of the applications 
of Cuckoo Filter is represented by Grashofer et al. [20] that 
used Cuckoo Filter for network security monitoring for 
processing high band-width data streams. A common pattern 
is to use probabilistic data structures upstream, to filter out 
a vast number of irrelevant queries. There are also different 
modifications of Cuckoo Filter to make it more effective.

Mitzenmacher et al. [21] designed Adaptive Cuckoo 
Filter. It does not use partial-key Cuckoo hashing, the buckets 

an element can be placed in are determined by hash values 
of the element, and not solely on the fingerprint. The filter 
uses the same hash functions as the main Cuckoo hash 
table. The element and the fingerprint are always placed in 
corresponding locations. Sun et al. [22] proposed Smart 
Cuckoo Filter. The idea behind Smart Cuckoo is to represent 
the hashing relationship as a directed pseudoforest and use 
it to track item placements for accurately predetermining 
the occurrence of endless loop. The aforementioned method 
doesn’t not completely solve the endless loop problem it just 
detects it and prevents getting stuck in it.

Some of the existing schemes for endless loop problems 
are Cuckoo Hashing with a stash (CHS). Kirsch et al. [23] 
proposed CHS for solving the problem of endless loops by 
using an auxiliary data structure as a stash. The items that 
introduce hash collisions are moved into the stash. For a 
lookup request, CHS has to check both the original hash table 
and the stash, which increases the lookup latency. Erlingsson 
et al. [24] proposed Bucketized Cuckoo Hash Table (BCHT) 
that allocates two to eight slots into a bucket, in which each 
slot can store an item, to mitigate the chance of endless loops, 
which however results in poor lookup performance due to 
multiple probes.  Fan et al. [25] proposed MemC3 which 
uses a large kick-out threshold as its default kick-out upper 
bound, which possibly leads to excessive memory accesses 
and reduced performance.

In many applications, process of data storage with high 
accuracy can have significant impact on some strategy 
decisions. Some of existing storage solutions use BF that uses 
huge space. Singh et al. [26] proposed Fuzzy Folded BF that 
is an effective space-efficient strategy for massive data storage, 
fuzzy operations are used to accommodate the hashed data of 
one BF into another to reduce storage requirements. It uses 
only two hash functions to generate k hash functions. 

In peer to peer (P2P) distributed storage systems, 
maintaining the rule of structured overlay without imposing 
any additional overhead to reconfigure index between saved 
information and its stored node is important. It cannot be 
achieved by the traditional P2P techniques. Sasaki et al. [27] 
uses Distributed Bloom filter Table (DBFT), with physical 
change of node, node’s ID remains unchanged. DBFT is 
the two-layered structured which indexes by Bloom Filter-
based parameters. It reduces overhead, which is imposed by 
maintaining the function of P2P networks. Rothenberg et 
al. [28] introduced the Deletable Bloom Filter (DlBF) that 
is a kind of BF. The DlBF keeps record of the bit regions 
where collisions happen. This allows safe element removal. 
Reviriego et al. [29] talk about the application of Bloom Filter. 
It is shown that BFs can be used to detect and correct errors 
in their associated data set. This allows a synergetic reuse of 
existing BFs to also detect and correct errors, it is efficient 
solution to mitigate soft errors in applications which use 
CBFs. Lim et al. [30] designed Ternary Bloom Filter (TBF) as 
an alternative to Counting BF for performance improvement. 
TBF allocates the minimum number of bits to each counter 
and includes more number of counters instead to reduce 
false positive probability. TBF provides much lower false 
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positive rates than the CBF.  Ficara et al. [31] use Huffman 
code to improve standard CBFs in terms of fast access and 
limited memory consumption (up to 50% of memory saving). 
It allows an easy lookup since most processors provide an 
instruction that counts the number of bits set to 1 in a word.

There are also some other papers about application 
of Bloom Filter in network such as Space-Code Bloom 
Filter by Kumar et al.[32], and Fast Dynamic Multiple-Set 
Membership Testing by Hao et al. [33]. Duan et al. [29] 
proposed a distributed public cloud storage system that allows 
users to store files named as CSTORE. It is based on a three-
level mapping hash method. In order to avoid duplicated data 
storage, CSTORE adopts Bloom Filter algorithm to check 
whether a file block is in the meta data set. Geravand et al. 
[35] designed an MBF-based document detection system. 
They used Matrix Bloom Filter to prevent plagiarism on the 
internet. Matrix Bloom Filter consist of some rows of Standard 
Bloom Filters to support more insertions.

One of the simple and important techniques to control the 
integrity of data in a data set is check summing data in parallel 
or serial forms. A parallel data set check summing approach 
named as fsum is proposed by Xiong et al. [36]. They at first 
broke the files into chunks with reasonable sizes and then 
chunk-level based checksums are calculated in parallel form. 
In final step a single data set level checksum is obtained using 
a Bloom Filter. To improve the performance of Bloom Filters, 
fast Bloom Filters have been proposed by Qiao et al. [37] as 
named Bloom-1 which have a reduced query overhead with 
an acceptable higher false positive rate for a known memory 

size. Reviriego et al. [38] evaluated a correct analysis of 
Bloom-1 and corresponding exact formula about false positive 
probability is calculated by them.

Multidimensional Bloom Filter named Bloofi is 
introduced by Crainiceanu et al. [39] to reduce the search 
complexity of membership queries when the number 
of Bloom Filters increased. Big data management with 
widespread applications in IoT environment is unavoidable, 
therefore today, efficient storage media, high speed processing 
algorithms, and accessing of bulky data sets in short times are 
necessary. Recently, a variant of scalable Bloom Filter named 
as Accommodative Bloom Filter (ABF) is introduced by Singh 
et al. (2018a) to solve these requirements. The classic and 
standard Bloom Filter analysis using -transform confirmed 
the known results and new issues also are obtained by Singh et 
al. [40] Recently, an overview of Bloom Filter and its variants 
with optimization methods are deliberated by Grandi  [41] 
with performance and generalization review in more details.

3.	DEFINITION
At first, it is necessary to declare all the notations which 

are used in this article about the Bloom, Cuckoo Filters and 
our proposed method. Table 1 denotes these definitions.

3-1- Bloom Filter 
Bloom Filter is a compact approximate data structure 

which enables membership queries. For the set S={x1, x2 ,…, 
xn} with n elements, a Bloom Filter of size mb is constructed. 
All the mb bits in the vector are initialized to 0. A group of k 

 

Table 1. Parameter Definitions 

S={x1, x2, …, xn} 

n 

mb 

k 

h 

FPP 

f 

α 

b 

m 

c 

f = fingerprint(x) 

i1 = hash(x) 

i2 = i1 ⊕hash(f) 

fingerprint = h(xi) 

counter 

z 

r 

Input set 

number of items 

Bloom Filter array length 

number of hash functions 

hash function 

False Positive Probability 

fingerprint length in bits 

load factor (0≤α≤1) 

number of entries per bucket 

number of buckets 

average bits per item 

 

 

 

 

C = j1 || j2 

number of 1s in the finger print 

maximum number of OR operation 

 

Table 1. Parameter Definitions
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independent hash functions are employed to randomly map 
each set member into k positions. If any bit at the k hashed 
positions of the element equals 0, it means this element does 
not belong to the set. Otherwise, the Bloom Filter infers that 
the element is a member of the set with a probability of false 
positive. Bloom Filter has two main operations: Insertion 
and Look up. Insertion simply adds an element to the set. 
Removal is impossible without introducing false negative, but 
extensions to the Bloom Filter are possible that allow removal 
e.g. Counting Bloom Filters.

To add an element to the Bloom Filter, we simply hash it 
a few times and set bits in the bit vector at the index of those 
hashes to 1. To query for an element, feed it to each k hash 
functions to get k array positions, if any of the bits at these 
positions is 0, the element is definitely not in the set, if it were 
then all the bit would have been set to 1 when it was inserted. 
If all are 1 then either the element is in the set, or the bits have 
by chance been set to 1 during the insertion of other elements 
resulting in a false positive. In Bloom Filter there is no way 
to distinguish between the two cases. An example of Bloom 
Filter construction is given in Fig. 1 for mb=10, k=3. 

3-2- Cuckoo Filter
A hash table is a collection of items which are stored in 

such a way as to make it easy to find them later. Each positions 
of the hash table, often called a bucket, can hold an item and is 
named by an integer value starting at 0. The mapping between 
an item and the slot where that item belongs in the hash table 
is called the hash function. The hash function will take any 
item in the collection and return an integer in the range of 
bucket numbers between 0 and m-1. Once the hash values 
have been computed, we can insert each item into the hash 
table at the calculated positions. When we want to search for 
an item simply use the hash function to compute the bucket 
number for the item and then check the hash table to see if 
it is present. Standard Cuckoo hash tables have been used to 
provide set membership information. Cuckoo Filter has two 
hash function h1(x) and h2(x) that points to two different 
positions in the hash table. 

In Cuckoo hashing, each item is hashed by two different 
hash functions, so that the value can be assigned to one of two 
buckets. The first bucket is tried first. If there’s nothing there, 

then the value is placed in bucket 1. If there is something there, 
bucket 2 is tried. If bucket 2 if empty, then the value is placed 
there. If bucket 2 is occupied, then the occupant of bucket 2 is 
evicted and the value is placed there. In the process of Cuckoo 
Filter, we may encounter getting stuck in endless loops. 
Endless or infinite loop may happen because of the Cuckoo 
table’s being occupied more than a calculated threshold. Since 
the algorithm cannot find an empty bucket for the insertion, 
it keeps checking other buckets iteratively and may never be 
able to find an empty bucket so the insertion fails.

For item insertion there are two positions that the 
algorithm checks for emptiness. When two items hash to 
the same bucket, we must have a systematic method for 
placing the second item in the hash table. This process is 
called collision resolution. If the hash functions are perfect, 
collisions would never occur, however since this is not 
possible, collision resolution becomes a very important part 
of hashing. Cuckoo’s method for resolving collisions is looking 
into the hash table and trying to find another open bucket to 
hold an item that causes the collision. A simple way to do this 
is to start at the original hash value position and then move in 
a sequential manner through the buckets until we encounter 
the first bucket that is empty. If in this search we return to 
the first bucket we have begun with, we are trap in an endless 
loop. To make a space efficient Cuckoo Filter and reduce the 
hash table size, each item is first hashed into a constant sized 
fingerprint before it is inserted into hash table.

As shown in Fig. 2, we use an example to illustrate the 
insertion process in the conventional Cuckoo hashing. In 
the Cuckoo graph, the start point of an edge represents the 
actual storage position of an item and the end point is the 
backup position. For example, the bucket T2[1] storing Item b 
is the backup position of Item a. We intend to insert the item 
x, which has two candidate positions T1[0] and T2[5]. There 
exist three cases about inserting Item x [22]: 

· Two items (a and b) are initially located in the hash 
tables as shown in Fig. 2(a). When inserting Item x, one of x’s 
two candidate positions (i.e., T2[5]) is empty. Item x is then 
placed in T2[5] and an edge is added pointing to the backup 
position (T1[0]).

· Items c and d are inserted into hash tables before Item x, 
as shown in Fig. 2(b). Two candidate positions of Item x are 

 

Figure 1: Bloom Filter example 

  

Fig. 1. Bloom Filter example
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occupied by Items a and d respectively. We have to kick out 
one of occupied items (e.g., a) to accommodate Item x. The 
kicked-out item (a) is then inserted into its backup position 
(T2[1]). This procedure is performed iteratively until a vacant 
bucket (T2[3]) is found in the hash tables. The kick-out path 
is x→a→b→c. 

· Item e is inserted into the hash tables before Item x, 
as shown in Fig. 2(c). There is no vacant bucket available to 
store Item x even after substantial kick out operations, which 
results in an endless loop. The Cuckoo hashing has to carry 
out a rehashing operation.

4.	PROPOSED METHOD
SCFMBF is smart because it allows deletion and insertion 

of items while keeping the false positive probability at an 
acceptable rate. It is based on Cuckoo Filter because of its 
good performance and popularity. It uses of a new algorithm 
to make Cuckoo Filter smart to detect endless loops and get 
out of them. That will lead to a higher Cuckoo table capacity. 
SCFMBF uses a Cuckoo Support Algorithm (CSA) for solving 
kicking problem in Cuckoo Filter therefore it improves 
insertion performance.  SCFMBF is divided into three 
algorithms: a modified Cuckoo Filter algorithm, endless loop 
algorithm and Cuckoo Support Algorithm (CSA). 

We have briefly explained standard Bloom Filter and 
Cuckoo Filter characteristics and formulas and then relate 
it to our method SCFMBF. In contrary to the Bloom Filter 
that uses a bit array that is an array of single-bit buckets.  In 
SCFMBF we use extended buckets like Cuckoo Filters. Each 
bucket holds a fingerprint of the element, and a counter 
(Cuckoo counter j2 and Cuckoo sign j1) and the bucket’s index. 
Fig. 3, shows SCFMBF array structure.

We take the idea of Cuckoo Filter in which each item is 
hashed into a p-bit fingerprint that is divided into two parts: 

a bucket index and a value part (finger print) to be stored. In 
Cuckoo Filter if bucket i (called the primary) is full then the 
Cuckoo Filter attempts to store f in bucket i ⊕ h(f), (⊕ is the 
logical XOR operation), where h is a hash function. If both 
buckets are full, then the Cuckoo Filter kicks that item out of 
one of the two buckets, moving it to its alternate location. One 
of the drawbacks of Cuckoo Filter is falling into endless loops 
while looking for empty bucket for item insertion. There are 
some designed algorithms for preventing endless loops from 
happening. That’s the reason we need a modification for 
Cuckoo Filter. Solving the problem of endless loop is crucial 
because CSA is implemented right after facing that problem. 

In the counter there are two partitions: Cuckoo sign (j1) and 
Cuckoo counter (j2). Cuckoo counter is related to the Cuckoo 
Support Algorithm (CSA) which is going to be described. 
Since Cuckoo Filter’s size is fixed and predetermined, a 
load factor (α) that shows the fullness of the Cuckoo table is 
specified according to our acceptable false positive probability. 
Whenever load factor reaches its maximum value, insertion 
fails. In order to prevent data loss, we designed the Cuckoo 
support algorithm. In this case if we fall into endless loop, we 
need to realize it and stop it in a way.

4-1- Modified Cuckoo Filter
According to the endless loop problem of Cuckoo Filter, 

we decided to change Cuckoo Filter to solve this, using a new 
problem-solving algorithm, we name it the Modified Cuckoo 
Filter (MCF). Structure of the Modified Cuckoo Filter is 
demonstrated in Fig. 4.

In our protocol, the fingerprint of the input item is 
inserted to the table (like Cuckoo Filter) but this fingerprint is 
the calculated Bloom Filter of the input item.

Cuckoo sign: We use Cuckoo sign in Cuckoo Filter 
as a simple bit for endless loop problem solving by bucket 

 
Figure 2: The conventional Cuckoo hashing data structure [22] 

  

Fig. 2. The conventional Cuckoo hashing data structure [22]

 
Figure 3: bucket structure 
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checking. The Cuckoo sign is used to show whether a bucket 
is checked for emptiness. While our algorithm is looking for 
an empty bucket in the insertion, by passing and checking 
each bucket, its Cuckoo sign is set to 1. And after each item 
insertion, Cuckoo signs are reset. An endless loop is when we 
keep checking the same buckets over and over again, when 
a bucket is checked for the second time, the Cuckoo sign is 
already set, so the algorithm finds out it has been trapped in 
a loop. In this situation the current load factor is checked, if 
the load factor is less than our desirable value, the current 
insertion is canceled (because no empty bucket is found while 
the table is not full), but if it has reached that value, then the 
CSA algorithm is performed. 

Algorithm 1 shows the role of sign bit in the proposed 
protocol. When item x is inserted, i1 and i2 (the indexes of the 
buckets) are calculated by hash functions. The corresponding 
buckets are checked for emptiness and their Cuckoo sign bit 
is set to 1. x is put into i2’s bucket and the saved fingerprint is 
kicked to its other possible bucket iv1. If the sign bit of iv1 is 
0, it is set to 1, and if the bucket is full, the old fingerprint is 

kicked to its other possible bucket iv’. This process is repeated 
till whether an empty bucket is found (end of the algorithm) 
or we reach a bucket that has been checked before which 
means endless loop (its Cuckoo sign is 1). In this level there 
are two cases: we check the load factor of the table, if it is less 
than the desired value, the table is not full and the input is 
deleted (insertion failure just like the original Cuckoo Filter 
algorithm), but if the load factor has reached the desired 
value, the table is full and the Cuckoo support algorithm must 
be performed. 

Cuckoo support algorithm (CSA): When the Cuckoo 
table is filled up to the determined load factor, Cuckoo Filter 
algorithm is not followed. When a new item faces a full 
bucket, sum of the new item’s fingerprint and the bucket value 
is calculated (sum is done by OR operation) and is placed in 
the bucket and Cuckoo counter is incremented by 1. When 
the Cuckoo counter is non zero, it means CSA is performed 
and in SCFMBF look up algorithm we will return to the 
usefulness of this counter. Again, Algorithm 2 indicates the 
details of CSA method.

 
Figure 4: structure of modified Cuckoo Filter 

  

Fig. 4. structure of modified Cuckoo Filter

Algorithm 1: sign bit (SB) algorithm 

  While item x is inserted suppose i1’s and i2’s bucket is full do 
   Check i1’s corresponding bucket; 
   if i1’s Cuckoo sign is 0 then 
   set it to 1; 
   end 
   Check i2’s corresponding bucket; 
   if i2’s Cuckoo sign is 0 then 
   set it to 1; 
   end 
   Put x into i2’s bucket and kick the saved fingerprint to its iv1 bucket; 
   Check iv1’s cuckoo sign; 
   if iv1’s Cuckoo sign is 0 then 
     Set it to 1; 
   else 
      Check the load factor α; 
      if α is less than the desired value then 
           delete the input; 
     else 
           Perform CSA algorithm; 
      end 
   end 
   reset sign bits of the buckets; 

   end 

Algorithm 1. sign bit (SB) algorithm
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Algorithm 2 is the second part of insertion process. The 
Cuckoo table is already full and the i1 index is calculated for 
newly inserted item. The protocol refers to the bucket i1 and 
takes the already saved fingerprint, performs an OR operation 
between the two fingerprints and saves the result in the 
corresponding bucket then increments the Cuckoo counter.

SCFMBF Insertion: Main part of insertion is like the 
Cuckoo Filter unless we reach an endless loop that needs the 
endless loop algorithm to be implemented. That may lead us 
to CSA algorithm. Algorithm 3 shows the details of insertion 
method in SCFMBF scenario.

To insert a new item into the Cuckoo table, the fingerprint 
of it is calculated (the Bloom Filter). Then the two indexes of 

the buckets are derived by the hash functions. If the Cuckoo 
table is not full, the corresponding buckets are checked 
for emptiness, whenever an empty bucket is found, the 
fingerprint f is put in there, but when the buckets are full, the 
saved fingerprints are kicked to their possible buckets, their 
cuckoo sign is set to 1, this process is repeated till an empty 
bucket is found or an insertion failure happens (endless loop 
j1=1 is detected). If the Cuckoo table is full, the first possible 
bucket for the input is checked, the old finger print B(i1) is 
retrieved and an OR operation is performed on the two 
fingerprints. The result of the operation is saved in the current 
bucket. Cuckoo counter j2 is incremented as a symbol of CSA 
algorithm’s being performed. 

 

Algorithm 2: Cuckoo support algorithm (CSA)  

1 Want to insert fingerprint(x) to the table; 

2 Goto i1’s bucket and take the saved fingerprint; 

3 Sum up fingerprint(x) and the already saved fingerprint by OR operation; 

4 Put the OR result in the i1’s bucket; 

5 Increment the Cuckoo counter by 1; 

Algorithm 2. Cuckoo support algorithm (CSA)

Algorithm 3: Insertion algorithm 

  

Insert data block xi; 

Hash the block and calculate its fingerprint fi; 

Derive two indices from the hash and fingerprint: i1 and i2; 

 if the table is not full then 

     Check the derived indices; 

    *: if empty then 

         Insert the block’s fingerprint into the corresponding bucket 

        Reset j1; 

     else 

          set j1=1; 

         Check current item’s alternative indices; 

        if  j1 = 0 in the alternative buckets then 

           Goto * 

          else 

                a bucket with j1=1 is reached, endless loop detected; 

          delete fi; 

          end 

        end 

 else 

          CSA: substitute B(i1) + f(xi) in the Bi Bucket; 

          Increment j2; 

 End 

Algorithm 3. Insertion algorithm
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SCFMBF Look up: As shown in Algorithm 4, main part 
of the lookup procedure is like the Cuckoo Filter. We want to 
check whether x belongs to the set S or not. The fingerprint of 
x is calculated. Two indexes i1 and i2 are calculated. Then i1’s 
bucket is visited. If the Cuckoo counter is zero, it means the 
CSA algorithm has not been implemented for that set, and 
we look for the original form of fingerprint(x). If they match, 
with a false positive probability (Cuckoo FPP), x belongs to 
the set. If the Cuckoo counter j2 is not zero, we realize the CSA 
has been performed. We take the idea of the Bloom Filter: 
if the positions of 1s in the fingerprint(x) matches the saved 
array, it means with a probability, x belongs to the set. Because 
with the OR operation, positions of 1s don’t change and 
remain the same. The false positive probability of the lookup 
procedure (set membership verification) is the total FPP of 
this algorithm that is going to be described.

To check whether x belongs to the set (is in the Cuckoo 

table), first the fingerprint of x is calculated, and then the 
indices i1 and i2 are derived. i1’s Cuckoo counter is checked 
to see if CSA has been performed or not.  If j2 =0, original 
Cuckoo algorithm has been performed then bucket i1 and 
bucket i2 are checked. If the exact fingerprint of x is found, 
algorithm returns True, which means x belongs to the set, 
otherwise x is not in the set. If j2≥1, saved array in bucket i1 is 
retrieved, an OR operation is performed on fi and the saved 
array, if the number of 1s and the positions remain the same 
in the saved array, it means it contains that fingerprint, then 
the algorithm returns True, but if the OR operation adds new 
1 positions to the saved array, x doesn’t belong to the set.

SCFMBF Deletion: Delete algorithm is for removing an 
item from the table and is examined in Algorithm 5.

Sometimes there is need to remove an item from the set. 
The fingerprint and the indices of that item is calculated. The 
protocol calls the look up algorithm to make sure the item 

 

Algorithm 4: Look up algorithm  

f = fingerprint(x); 
 i1 = hash(x); 
 i2 = i1 ⊕hash(f); 
check i1’s Cuckoo counter; 
if j2 =0 then 

     Goto Cuckoo algorithm; 
else  

     Goto CSA algorithm; 
end 
Cuckoo algorithm: if bucket(i1) or bucket(i2) has f  then  
      return True;  
else 

return False; 
end 

CSA algorithm: Get the saved array; 
Do OR operation on the fingerprint and the saved array; 
if the result is the same as the saved array then 
       return True; 
else 
       return False; 
end 

Algorithm 4. Look up algorithm

Algorithm 5: Delete algorithm 

f = fingerprint(x);  
i1 = hash(x); 
i2 = i1 ⊕hash(f);  
if Lookup(f) then 
   if  j1 > 0 then 
      Get the saved array; 
         Decrement j2 by one; 
         return True; 
       end 

         if j1=0 then 
            Remove a copy of f from this bucket; 
            return True; 
   end 
else 
  return False; 
end 

Algorithm 5. Delete algorithm
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belongs to the set, if not it returns False. If j2=0, it means no 
OR operation has been performed and a copy of f is removed 
from the bucket. If j2≥1, it means there are more than 1 
fingerprints aggregated in that bucket. Since OR operation is 
not reversible, we can’t remove or change the saved content 
but we decrement j2 by one to show deletion. 

5.	  PROBABILITY OF INSERTION FAILURE
False positive error probability of the modified Cuckoo 

Filter is the same as the original Cuckoo Filter because the 
main structure is unchanged and we have only added a 
counter part to the main structure. 

5-1- False error probability of CSA algorithm
Let f denote the number of bits in the fingerprint. When 

inserting an element into a full bucket, the probability that a 
certain bit is not set to one is:

11
f

−         �         (1)

Now, suppose that we can insert up to r items into the 
same bucket, and the probability of any of them not having 
set a specific bit to one is given by:

11
r

f
 
− 

 
                                                                                        (2)       

And consequently, the probability that the bit is one is:

11 1
r

f
 

− − 
 

                                                                                                             (3)

Suppose the member which we want to check its 
membership has z number of 1’s in its fingerprint. For an 
element membership test, if all of the array positions in the 

filter same as that member, are set to one, the SCFMBF claims 
that the element belongs to the set. The probability of this 
happening when the element is not part of the set is given 
bellow which is the false positive probability of the CSA 
algorithm:

11 1
zr

CSAFPP
f

  
 = − −    

 � (4)

In contrary to the Bloom Filter that had k hash functions 
that constructs k number of 1’s in each element, in CSA 
algorithm, we have no information about the number of 
fingerprint’s set bits because it’s constructed by the Cuckoo 
hash function, so z is not constant and it can be a number 
from 1 to f. CSA executes the OR operation maximally for 
r times for each bucket. As shown in Fig. 5, it is clear that as 
r increases, capacity of the modified Cuckoo Filter increases 
but there would be a higher false positive probability unless 
we choose a longer fingerprint length from the beginning. 
Total false error probability of the SCFMBF algorithm is the 
multiplication of Cuckoo Filter FPP and CSA FPP.

6.	FALSE ERROR PROBABILITY OF PROPOSED 
METHOD

Let us first derive the probability that a given set of q items 
collide in the same two buckets. Assume the first item x has 
its first bucket i1 and a fingerprint xt  . If the other q−1 items 
have the same two buckets as this item x, they must have the 
same fingerprint xt  , which occurs with probability 1

2 f and 
have their first bucket either 1i  or 

1 ( )xi h t⊕  which occurs with 
probability 2

m . Therefore, the probability of such q items 
sharing the same two buckets is [16]: 

 
Figure 5. False Positive Probability of Cuckoo Support Algorithm 
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×                                                                                                                (5)

The upper bound of the total probability of a false 
fingerprint hit is [16]:

 2)1 1 1 2
22

( b
ff

b≈− −                                                                                              (6)

 Now consider a construction process that inserts n 
random items to an empty table of m cn=  buckets for a 
constant c and constant bucket size b. whenever there are 

2 1q b= +  items mapped into the same two buckets, the 
insertion fails. This probability provides a lower bound for 
failure (and, we believe, dominates the failure probability of 
this construction process, although we do not prove this and 
do not need to in order to obtain a lower bound). Since there 
are in total  2 1

n
b

 
 + 

  different possible sets of 2 1b +  items out of n 
items, the expected number of groups of 2 1b +  items colliding 
during the construction process is [16]:

22
2 1 2 .

b

cuckoo f

n
FPP

b m
  =   +   
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For table size=140 buckets (m=140/b) and total number 
of input items n=1000 and different values of n and b we have 
plotted the False Positive Probability values by equation 7 in 
Fig. 6.

Because of the great difference in FPP value when f is 
14, we represented the plots in logarithmic scale. For longer 
fingerprints we have lower FPP. So, as we said FPP of the 
SCFMBF algorithm is calculated by the multiplication of the 
FPP of Cuckoo and FPP of CSA algorithm.

SCFMBF cuckoo CSAFPP FPP FPP= × � (8)

22 11 1
2 1 2 .
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SCFMBF f

n
FPP

b fm

       = × − −      +      
� ( 9)

We see in Fig. 6, as the fingerprint length or the bucket size 
increases, there is a sharp decrease in FPP. As the r (number of 

OR operations in CSA algorithm) increases, more insertions 
are possible. To cut it short, CSA algorithm increases the 
capacity of Cuckoo Filter. SCFMBF’s capacity is the capacity 
of Cuckoo Filter multiplied by r. At the same time, FPP of 
our method is kept at a reasonable rate. The results show our 
method’s being successful. We derived the FPP of our method 
by getting the average of the values and plotted them in Fig. 
5. Fig. 5 shows that our method surprisingly outdistances the 
performance of Cuckoo Filter and maintains a lower false 
positive probability in every case of comparison. 

Beside theoretical results, adding a counter to each bucket 
of the Cuckoo Filter, allowed us to detect endless loops 
because each time a bucket is checked, the Cuckoo Sign bit is 
set. When the protocol reaches a bucket with j1=1, it realizes 
that a loop has happened and it cuts the search. Also, Cuckoo 
counter adds deletion capability to Bloom Filter by counting 
the number of added items and subtracting the removed 
items.

7.	CONCLUSION
In our method we tried to eliminate Cuckoo Filter’s 

limitations. Cuckoo Filter’s endless loop problem is solved 
by the endless loop algorithm, surprisingly there was no 
need for extra capacity because we benefit from using small 
counters and a single bit for every bucket and by our CSA 
algorithm Cuckoo Filter is able to handle more insertions, the 
idea of CSA was inspired from the Bloom Filter’s basic logical 
operation (OR). The false positive probability according to 
the derived mathematical equation, has been improved a lot. 
We have studied the relation between SCFMBF’s parameters 
(same as Cuckoo Filter) and false positive probability. In 
Fig. 5, CSA algorithm’s false positive probability is plotted 
with different f (fingerprint length) and r (number of 1’s 
in the fingerprint) values. As r decreases, FPP plot falls. As 
the fingerprint length increases, FPP decreases. For table 
size=140 buckets (m=140/b) and total number of input items 
n=1000 and different values of n and b the False Positive 
Probability of Cuckoo Filter is plotted in Fig. 6. For longer 
fingerprints FPP has lower values, but long fingerprint length 
needs more storage space. Fig. 7 shows the importance of 
parameter choice. Larger bucket size results in less FPP. We 
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finally compared SCFMBF with Cuckoo Filter for f=7, b=2,4 
and r=3,5 (Fig. 8). In every case of study, there is a lot of 
improvement. FPP of SCFMBF in the worst case is four times 
less than the FPP of Cuckoo Filter that means we have also 
improved the capacity Cuckoo Filter to a great extent. The aim 
of the protocol is fulfilled.

In the future works this algorithm can be used in some 
applications such as cloud storage integrity check, network 
and different set membership problems. 
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