
AUT Journal of Electrical Engineering

AUT J. Elec. Eng., 51(2) (2019) 187-200
DOI: ﻿ 10.22060/eej.2019.16370.5287

A Cuckoo Filter Modification Inspired by Bloom Filter

Ha. Sasaniyan Asl1,*, B. Mozaffari Tazehkand2, M.J. Museviniya2

1 MSc,Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
2 PhD,Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

ABSTRACT: Probabilistic data structures are so popular in membership queries, network applications,
and databases and so on. Bloom Filter and Cuckoo Filter are two popular space efficient models
that incorporate in set membership checking part of many important protocols. They are compact
representations of data that use hash functions to randomize a set of items. Being able to store more
elements while keeping a reasonable false positive probability is a key factor of design. A new algorithm
is proposed to improve some of the performance properties of Cuckoo Filter such as false positive rate
and insertion performance and solve some drawbacks of the Cuckoo algorithm such as endless loop.
Main characteristic of the Bloom Filter is used to improve Cuckoo Filter, so we have a smart Cuckoo
Filter which is modified by Bloom Filter so called as SCFMBF. SCFMBF uses the same table of buckets
as Cuckoo Filter but instead of storing constant Fingerprints, it stores Bloom Filters. Bloom Filters can
be accumulated in the table’s buckets which leads to higher insertion feasibility. We also address the
endless loop problem of Cuckoo Filter that means an inserted item is stuck in an iterative process of
finding an empty bucket, so a smart algorithm is designed which not only solves endless loop problems
but also prevents insertion failure. Hence our smart algorithm prevents double checking of a bucket
and avoids making loops. Consequently, the capacity of SCFMBF is improved significantly. Results of
comparison with Cuckoo Filter shows that false positive probability of SCFMBF method is enhanced
compared to Cuckoo Filter.

Review History:

Received: 2019-05-20
Revised: 2019-09-17
Accepted: 2019-09-17
Available Online: 2019-12-01

Keywords:

Bloom Filter

Cuckoo Filter

endless loop

Hash Function

set membership

187

*Corresponding author’s email: sasaniyan@tabrizu.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1. INTRODUCTION
Bloom Filter is a space efficient probabilistic data structure

which is used to represent a set and perform membership
queries [1] to query whether an element is a member of a set
or not. Bloom Filter was first proposed by B. H. Bloom [2] as a
membership query structure, and provided the framework for
many other researchers. A Bloom Filter occupies a negligible
space for representation of members compared to entire sets.
Representation of sets with a limited data structure as the
Bloom Filter, leads to false positives. False negatives are not
possible in Bloom Filter, it means when Bloom Filter shows
an item is not a member of the set, it is definitely not in the
set. On the other hand, with a certain probability, Bloom
Filter wrongly declares an item is a member of the set, this
probability is an important factor in the filter design which
is called False Positive Probability (FPP). The structure and
properties of Bloom Filter is described in section 3.1. Bloom
Filters are used in applications that need to search a member
in large sets of items in a short time such as spell checking,
network traffic routing and monitoring, data base search,
differential file updating, distributed network caches, textual

analysis, network security and iris biometrics. Some of the
popular applications are described below:

· Spell checking: Determination of whether a word is a
valid word in its language, is done by creating Bloom Filter for
all possible words of a language and checking a word against
the Bloom Filter [3].

· Routing: if the network is in the form of a rooted tree
with nodes holding resources and a node receives a request
for resource, it checks its unified list to ascertain if it has a
way of routing that request to the resource [4]. False positives
in this case may forward the routing request to an incorrect
path. In order to solve this, each node in the network keeps an
array of Bloom Filter for each adjacent edge.

· Network Traffic: Bloom filters are widely used to reduce
network traffic and are used in caching proxy servers on the
World Wide Web (WWW). Bloom Filters are used in web
caches to efficiently determine the existence of an object in
cache. Bloom Filters are also used as cache digest. A cache
digest contains information of all cache keys with lookup
capability. By checking a neighbor cache, a cache can
determine with certainty if a neighboring cache does not hold
a given object [5].

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

188

A Bloom Filter is very much like a hash table in that it will
use a hash function to map a key to a bucket. However, Bloom
Filter does not store that key in the array (bucket), it simply
sets some bits to 1, to mark the bucket as filled. So, many keys
might map to same filled bucket, creating false positives. A
Bloom Filter also includes a set of k hash functions with which
we hash incoming values. These hash functions must all have a
range of 0 to m - 1. If these hash functions match an incoming
value with an index in the bit array, the Bloom Filter will make
sure the bit at that position in the array is 1. In order to adapt
Bloom Filter to the variety of applications, there is need to
modify Bloom Filter to be more effective. Several papers have
tried to reduce false positive probability [6], provide member
deletion for Bloom Filter [7], handle large data sets [8], make
scalable Bloom Filter for dynamic sets [9], find the similarity
of two sets [10] and reduce the size of Bloom Filter [11]. We
are going to introduce some famous modifications of Bloom
Filter as examples in the Related Work section.

The Cuckoo Filter is a minimized hash table that
uses Cuckoo hashing to resolve collisions. It minimizes its
space complexity by only keeping a fingerprint of the value
to be stored in the set. Much like the Bloom Filter that uses
single bits to store data, the Cuckoo Filter uses a small f-bit
fingerprint to represent the data. The value of f is decided on
the ideal false positive probability the programmer wants.
The Cuckoo Filter has an array of buckets. The number of
fingerprints that a bucket can hold is referred to as b. They
also have a load which describes the percent of the filter they
are currently using. So, a Cuckoo Filter with a load of 75%
has 75% of its buckets filled. This load is important when
analyzing the Cuckoo Filter and deciding if and when it needs
to be resized.

In this article, we proposed a smart Cuckoo Filter to solve
some of shortcomings of the previous methods described in
the Related Work section. Being smart is about detecting and
getting out of endless loops. Since Cuckoo Filter is a fixed data
structure, if the load factor is exceeded from its predetermined
value related to the tolerable error probability, the insertion
fails. Load factor is the percentage that shows the Cuckoo
table’s fullness. To avoid data loss caused by removals or new
insertions, a modified Cuckoo Filter is created by our Cuckoo
Support Algorithm (CSA). Our modification of Cuckoo Filter
is inspired by the standard Bloom Filter. Standard Bloom
Filter makes the final Bloom Filter array by calculating the
union of Bloom Filters which is done by logical OR operation.
Therefore our modified Cuckoo Filter has more capacity by
allowing new insertions even when the Cuckoo table is full.

Cuckoo Filter and Bloom Filter are both popular
probabilistic data structures. Although they are built
differently, each of them have special useful characteristics
and we want to benefit from both to reach a more powerful
membership query structure. Unlike the Standard Bloom
Filter, Cuckoo Filter has removal capability and we build the
protocol on Cuckoo Filter first. When Cuckoo table is close
to fullness, there is hardly enough space for new insertions.
We solve this space deficiency of Cuckoo Filter by making a
change in Cuckoo Filter’s structure. Bloom Filter is used as

the former fingerprint of data and a new phase is added to
Cuckoo Filter algorithm, that leads to higher Cuckoo table
capacity and also impressively lower false positive probability.
Cuckoo Filter has the problem of endless loops, that means
when it cannot find an empty bucket for the new insertion,
it checks the same buckets again and again. We designed a
new algorithm to make Cuckoo Filter smart not only to detect
endless loops but also get out of them. Standard Bloom Filter,
(as mentioned in Related Work section) has many extensions
that makes it suitable for different applications. Standard
Bloom Filter satisfied our design goals that is why we didn’t
use any of the Bloom Filter extensions. Comparison results
demonstrates our protocol’s being successful in lowering the
key design factor of these filters, false positive probability,
to a low negligible amount. By changing the filter elements
further, FPP can even fall to lower amounts.

We will exclusively compare our proposed filter with the
Cuckoo Filter. With the changes we have made to Cuckoo
Filter, a new filter is made that we name it Smart Cuckoo Filter
Modified by Bloom Filter (SCFMBF). We briefly explain
standard Bloom Filter and Cuckoo Filter characteristics then
relate it to our protocol SCFMBF.

In the following, the article outline is summarized. Section
2 is dedicated to the related work that mainly introduces
papers about different extensions of Bloom Filter and Cuckoo
Filter. We are going to explain Bloom Filter and Cuckoo Filter
concepts further in the section 3, because they are the base of
our proposed method. In section 4, our protocol is introduced
and the designed algorithms are explained. In sections 5 and
6 the calculation results and the Fig.s of comparison are
considered, we have compared our protocol with the Cuckoo
Filter to check its efficiency. Section 7 is a summarized
conclusion about our work.

2. RELATED WORK
Laufer et al. [6] introduces Generalized Bloom Filter, that

employs two groups of hash functions {g1, …, gk0} , {h1, …,
hk1}. When inserting an element into the bit vector, the g hash
functions set the bits for the item and the h hash functions
reset the bits. False positive happens when the g1(x),…, gk0(x)
are all 0 and the bits h1(x), …, hk01(x) are all 1. Fan et al. [7]
suggested Counting Bloom Filter (CBF) to add deletion
possibility to the standard Bloom Filter. CBF puts counters
instead of single bits in the Bloom Filter array and increments
the counters when new set member is inserted. Split Bloom
Filter by Xiao et al. [8] employs a constant s × m bit matrix
for set representation, where s is a pre-defined constant based
on the estimation of maximum set cardinality and m denotes
Bloom Filter array length. Guo et al. [9] suggested Dynamic
Bloom Filter as an alternation to Bloom Filter that dynamically
creates new filters when needed. When the false positive rate
of a Bloom Filter is rising fast, it switches to a new Bloom Filter
instead. Geravand et al. [10] proposed Matrix Bloom Filter
that contains N rows of Bloom Filter with m bits used to find
out the similarities between two documents. Matrix BF just
executes the bitwise AND operations between the two rows.
Thereby, the similarity is measured by counting the number

https://brilliant.org/wiki/cuckoo-filter/#cuckoo-hashing

189

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

of 1s in the resultant bit array. Compressed Bloom Filter by
Mitzenmacher [11] is for transmission size optimization of
the Bloom Filter. The main idea of this protocol is based on
changing the way bits are distributed in the filter. Counting
Bloom Filter chooses the number of hash functions in a way
that the Bloom Filter’s entries have a smaller probability than
½. d-left counting Bloom Filter proposed by Bonomi et al.
[12] is equivalent to a Counting Bloom Filter by a factor of
two or more space. d-left counting Bloom Filter divides a
hash table into d sub-tables so d hash functions are needed.
Hierarchical Bloom Filter proposed by Shanmugasundaram
et al. [13] is a multi-level filter. When a string is inserted it
is first broken into blocks which are inserted into the filter
hierarchy starting from the lowest level. In that way, sub-string
matching is supported. Cohen et al. suggested [14] Spectral
Bloom Filter to support frequency queries by counters to
store the frequency values. Matsumoto et al. proposed [15]
Adaptive Bloom Filter, a modification of counting Bloom
Filters for the cases that large counters are needed. Almeida
proposed Scalable Bloom Filter [16] that adds slices of Bloom
Filter as the set grows. Weighted Bloom Filter is designed by
Bruck et al. [17]. It is a Bloom Filter that changes the number
of hash functions according to element query popularity, so
it incorporates the information on the query frequencies and
the membership likelihood of the elements. Quotient Filter
is suggested by Bender et al. [18] that is a compact hash table
in which the table entries contain only a portion of the key
plus some additional meta data bits. In a quotient filter a hash
function generates a fingerprint. Some of the least significant
bits is called the remainder and the most significant bits are
called the quotient. The remainder is stored in the quotient’s
corresponding slot. We used the Standard Bloom Filter in our
proposed method, because by combining Cuckoo and Bloom
Filter we got a satisfying result.

Cuckoo Filter was first introduced by Fan et al. [19],
Cuckoo Filter is a minimized hash table that stores a
summary of a set of inputs. Cuckoo Filter meets the purpose
of set membership and we take a close look at it. Fan et al.
[19] proposed Cuckoo Filter that is a compact variant of
a Cuckoo hash table that stores only fingerprints that are
driven by hash function from the input items for each item
insertion. A hash table is a particular implementation of a
dictionary whose entries are called buckets. For inserting an
item, a hash function is used to select which bucket to store
the item. The structure and properties of Cuckoo Filter is
described in section 3.2. Applications of Cuckoo Filter are a
lot similar to applications of Bloom Filter but Cuckoo Filters
are more suitable for applications that need to store many
items and keep low false positive rate. One of the applications
of Cuckoo Filter is represented by Grashofer et al. [20] that
used Cuckoo Filter for network security monitoring for
processing high band-width data streams. A common pattern
is to use probabilistic data structures upstream, to filter out
a vast number of irrelevant queries. There are also different
modifications of Cuckoo Filter to make it more effective.

Mitzenmacher et al. [21] designed Adaptive Cuckoo
Filter. It does not use partial-key Cuckoo hashing, the buckets

an element can be placed in are determined by hash values
of the element, and not solely on the fingerprint. The filter
uses the same hash functions as the main Cuckoo hash
table. The element and the fingerprint are always placed in
corresponding locations. Sun et al. [22] proposed Smart
Cuckoo Filter. The idea behind Smart Cuckoo is to represent
the hashing relationship as a directed pseudoforest and use
it to track item placements for accurately predetermining
the occurrence of endless loop. The aforementioned method
doesn’t not completely solve the endless loop problem it just
detects it and prevents getting stuck in it.

Some of the existing schemes for endless loop problems
are Cuckoo Hashing with a stash (CHS). Kirsch et al. [23]
proposed CHS for solving the problem of endless loops by
using an auxiliary data structure as a stash. The items that
introduce hash collisions are moved into the stash. For a
lookup request, CHS has to check both the original hash table
and the stash, which increases the lookup latency. Erlingsson
et al. [24] proposed Bucketized Cuckoo Hash Table (BCHT)
that allocates two to eight slots into a bucket, in which each
slot can store an item, to mitigate the chance of endless loops,
which however results in poor lookup performance due to
multiple probes. Fan et al. [25] proposed MemC3 which
uses a large kick-out threshold as its default kick-out upper
bound, which possibly leads to excessive memory accesses
and reduced performance.

In many applications, process of data storage with high
accuracy can have significant impact on some strategy
decisions. Some of existing storage solutions use BF that uses
huge space. Singh et al. [26] proposed Fuzzy Folded BF that
is an effective space-efficient strategy for massive data storage,
fuzzy operations are used to accommodate the hashed data of
one BF into another to reduce storage requirements. It uses
only two hash functions to generate k hash functions.

In peer to peer (P2P) distributed storage systems,
maintaining the rule of structured overlay without imposing
any additional overhead to reconfigure index between saved
information and its stored node is important. It cannot be
achieved by the traditional P2P techniques. Sasaki et al. [27]
uses Distributed Bloom filter Table (DBFT), with physical
change of node, node’s ID remains unchanged. DBFT is
the two-layered structured which indexes by Bloom Filter-
based parameters. It reduces overhead, which is imposed by
maintaining the function of P2P networks. Rothenberg et
al. [28] introduced the Deletable Bloom Filter (DlBF) that
is a kind of BF. The DlBF keeps record of the bit regions
where collisions happen. This allows safe element removal.
Reviriego et al. [29] talk about the application of Bloom Filter.
It is shown that BFs can be used to detect and correct errors
in their associated data set. This allows a synergetic reuse of
existing BFs to also detect and correct errors, it is efficient
solution to mitigate soft errors in applications which use
CBFs. Lim et al. [30] designed Ternary Bloom Filter (TBF) as
an alternative to Counting BF for performance improvement.
TBF allocates the minimum number of bits to each counter
and includes more number of counters instead to reduce
false positive probability. TBF provides much lower false

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

190

positive rates than the CBF. Ficara et al. [31] use Huffman
code to improve standard CBFs in terms of fast access and
limited memory consumption (up to 50% of memory saving).
It allows an easy lookup since most processors provide an
instruction that counts the number of bits set to 1 in a word.

There are also some other papers about application
of Bloom Filter in network such as Space-Code Bloom
Filter by Kumar et al.[32], and Fast Dynamic Multiple-Set
Membership Testing by Hao et al. [33]. Duan et al. [29]
proposed a distributed public cloud storage system that allows
users to store files named as CSTORE. It is based on a three-
level mapping hash method. In order to avoid duplicated data
storage, CSTORE adopts Bloom Filter algorithm to check
whether a file block is in the meta data set. Geravand et al.
[35] designed an MBF-based document detection system.
They used Matrix Bloom Filter to prevent plagiarism on the
internet. Matrix Bloom Filter consist of some rows of Standard
Bloom Filters to support more insertions.

One of the simple and important techniques to control the
integrity of data in a data set is check summing data in parallel
or serial forms. A parallel data set check summing approach
named as fsum is proposed by Xiong et al. [36]. They at first
broke the files into chunks with reasonable sizes and then
chunk-level based checksums are calculated in parallel form.
In final step a single data set level checksum is obtained using
a Bloom Filter. To improve the performance of Bloom Filters,
fast Bloom Filters have been proposed by Qiao et al. [37] as
named Bloom-1 which have a reduced query overhead with
an acceptable higher false positive rate for a known memory

size. Reviriego et al. [38] evaluated a correct analysis of
Bloom-1 and corresponding exact formula about false positive
probability is calculated by them.

Multidimensional Bloom Filter named Bloofi is
introduced by Crainiceanu et al. [39] to reduce the search
complexity of membership queries when the number
of Bloom Filters increased. Big data management with
widespread applications in IoT environment is unavoidable,
therefore today, efficient storage media, high speed processing
algorithms, and accessing of bulky data sets in short times are
necessary. Recently, a variant of scalable Bloom Filter named
as Accommodative Bloom Filter (ABF) is introduced by Singh
et al. (2018a) to solve these requirements. The classic and
standard Bloom Filter analysis using -transform confirmed
the known results and new issues also are obtained by Singh et
al. [40] Recently, an overview of Bloom Filter and its variants
with optimization methods are deliberated by Grandi [41]
with performance and generalization review in more details.

3.	DEFINITION
At first, it is necessary to declare all the notations which

are used in this article about the Bloom, Cuckoo Filters and
our proposed method. Table 1 denotes these definitions.

3-1- Bloom Filter
Bloom Filter is a compact approximate data structure

which enables membership queries. For the set S={x1, x2 ,…,
xn} with n elements, a Bloom Filter of size mb is constructed.
All the mb bits in the vector are initialized to 0. A group of k

Table 1. Parameter Definitions

S={x1, x2, …, xn}

n

mb

k

h

FPP

f

α

b

m

c

f = fingerprint(x)

i1 = hash(x)

i2 = i1 ⊕hash(f)

fingerprint = h(xi)

counter

z

r

Input set

number of items

Bloom Filter array length

number of hash functions

hash function

False Positive Probability

fingerprint length in bits

load factor (0≤α≤1)

number of entries per bucket

number of buckets

average bits per item

C = j1 || j2

number of 1s in the finger print

maximum number of OR operation

Table 1. Parameter Definitions

191

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

independent hash functions are employed to randomly map
each set member into k positions. If any bit at the k hashed
positions of the element equals 0, it means this element does
not belong to the set. Otherwise, the Bloom Filter infers that
the element is a member of the set with a probability of false
positive. Bloom Filter has two main operations: Insertion
and Look up. Insertion simply adds an element to the set.
Removal is impossible without introducing false negative, but
extensions to the Bloom Filter are possible that allow removal
e.g. Counting Bloom Filters.

To add an element to the Bloom Filter, we simply hash it
a few times and set bits in the bit vector at the index of those
hashes to 1. To query for an element, feed it to each k hash
functions to get k array positions, if any of the bits at these
positions is 0, the element is definitely not in the set, if it were
then all the bit would have been set to 1 when it was inserted.
If all are 1 then either the element is in the set, or the bits have
by chance been set to 1 during the insertion of other elements
resulting in a false positive. In Bloom Filter there is no way
to distinguish between the two cases. An example of Bloom
Filter construction is given in Fig. 1 for mb=10, k=3.

3-2- Cuckoo Filter
A hash table is a collection of items which are stored in

such a way as to make it easy to find them later. Each positions
of the hash table, often called a bucket, can hold an item and is
named by an integer value starting at 0. The mapping between
an item and the slot where that item belongs in the hash table
is called the hash function. The hash function will take any
item in the collection and return an integer in the range of
bucket numbers between 0 and m-1. Once the hash values
have been computed, we can insert each item into the hash
table at the calculated positions. When we want to search for
an item simply use the hash function to compute the bucket
number for the item and then check the hash table to see if
it is present. Standard Cuckoo hash tables have been used to
provide set membership information. Cuckoo Filter has two
hash function h1(x) and h2(x) that points to two different
positions in the hash table.

In Cuckoo hashing, each item is hashed by two different
hash functions, so that the value can be assigned to one of two
buckets. The first bucket is tried first. If there’s nothing there,

then the value is placed in bucket 1. If there is something there,
bucket 2 is tried. If bucket 2 if empty, then the value is placed
there. If bucket 2 is occupied, then the occupant of bucket 2 is
evicted and the value is placed there. In the process of Cuckoo
Filter, we may encounter getting stuck in endless loops.
Endless or infinite loop may happen because of the Cuckoo
table’s being occupied more than a calculated threshold. Since
the algorithm cannot find an empty bucket for the insertion,
it keeps checking other buckets iteratively and may never be
able to find an empty bucket so the insertion fails.

For item insertion there are two positions that the
algorithm checks for emptiness. When two items hash to
the same bucket, we must have a systematic method for
placing the second item in the hash table. This process is
called collision resolution. If the hash functions are perfect,
collisions would never occur, however since this is not
possible, collision resolution becomes a very important part
of hashing. Cuckoo’s method for resolving collisions is looking
into the hash table and trying to find another open bucket to
hold an item that causes the collision. A simple way to do this
is to start at the original hash value position and then move in
a sequential manner through the buckets until we encounter
the first bucket that is empty. If in this search we return to
the first bucket we have begun with, we are trap in an endless
loop. To make a space efficient Cuckoo Filter and reduce the
hash table size, each item is first hashed into a constant sized
fingerprint before it is inserted into hash table.

As shown in Fig. 2, we use an example to illustrate the
insertion process in the conventional Cuckoo hashing. In
the Cuckoo graph, the start point of an edge represents the
actual storage position of an item and the end point is the
backup position. For example, the bucket T2[1] storing Item b
is the backup position of Item a. We intend to insert the item
x, which has two candidate positions T1[0] and T2[5]. There
exist three cases about inserting Item x [22]:

· Two items (a and b) are initially located in the hash
tables as shown in Fig. 2(a). When inserting Item x, one of x’s
two candidate positions (i.e., T2[5]) is empty. Item x is then
placed in T2[5] and an edge is added pointing to the backup
position (T1[0]).

· Items c and d are inserted into hash tables before Item x,
as shown in Fig. 2(b). Two candidate positions of Item x are

Figure 1: Bloom Filter example

Fig. 1. Bloom Filter example

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

192

occupied by Items a and d respectively. We have to kick out
one of occupied items (e.g., a) to accommodate Item x. The
kicked-out item (a) is then inserted into its backup position
(T2[1]). This procedure is performed iteratively until a vacant
bucket (T2[3]) is found in the hash tables. The kick-out path
is x→a→b→c.

· Item e is inserted into the hash tables before Item x,
as shown in Fig. 2(c). There is no vacant bucket available to
store Item x even after substantial kick out operations, which
results in an endless loop. The Cuckoo hashing has to carry
out a rehashing operation.

4.	PROPOSED METHOD
SCFMBF is smart because it allows deletion and insertion

of items while keeping the false positive probability at an
acceptable rate. It is based on Cuckoo Filter because of its
good performance and popularity. It uses of a new algorithm
to make Cuckoo Filter smart to detect endless loops and get
out of them. That will lead to a higher Cuckoo table capacity.
SCFMBF uses a Cuckoo Support Algorithm (CSA) for solving
kicking problem in Cuckoo Filter therefore it improves
insertion performance. SCFMBF is divided into three
algorithms: a modified Cuckoo Filter algorithm, endless loop
algorithm and Cuckoo Support Algorithm (CSA).

We have briefly explained standard Bloom Filter and
Cuckoo Filter characteristics and formulas and then relate
it to our method SCFMBF. In contrary to the Bloom Filter
that uses a bit array that is an array of single-bit buckets. In
SCFMBF we use extended buckets like Cuckoo Filters. Each
bucket holds a fingerprint of the element, and a counter
(Cuckoo counter j2 and Cuckoo sign j1) and the bucket’s index.
Fig. 3, shows SCFMBF array structure.

We take the idea of Cuckoo Filter in which each item is
hashed into a p-bit fingerprint that is divided into two parts:

a bucket index and a value part (finger print) to be stored. In
Cuckoo Filter if bucket i (called the primary) is full then the
Cuckoo Filter attempts to store f in bucket i ⊕ h(f), (⊕ is the
logical XOR operation), where h is a hash function. If both
buckets are full, then the Cuckoo Filter kicks that item out of
one of the two buckets, moving it to its alternate location. One
of the drawbacks of Cuckoo Filter is falling into endless loops
while looking for empty bucket for item insertion. There are
some designed algorithms for preventing endless loops from
happening. That’s the reason we need a modification for
Cuckoo Filter. Solving the problem of endless loop is crucial
because CSA is implemented right after facing that problem.

In the counter there are two partitions: Cuckoo sign (j1) and
Cuckoo counter (j2). Cuckoo counter is related to the Cuckoo
Support Algorithm (CSA) which is going to be described.
Since Cuckoo Filter’s size is fixed and predetermined, a
load factor (α) that shows the fullness of the Cuckoo table is
specified according to our acceptable false positive probability.
Whenever load factor reaches its maximum value, insertion
fails. In order to prevent data loss, we designed the Cuckoo
support algorithm. In this case if we fall into endless loop, we
need to realize it and stop it in a way.

4-1- Modified Cuckoo Filter
According to the endless loop problem of Cuckoo Filter,

we decided to change Cuckoo Filter to solve this, using a new
problem-solving algorithm, we name it the Modified Cuckoo
Filter (MCF). Structure of the Modified Cuckoo Filter is
demonstrated in Fig. 4.

In our protocol, the fingerprint of the input item is
inserted to the table (like Cuckoo Filter) but this fingerprint is
the calculated Bloom Filter of the input item.

Cuckoo sign: We use Cuckoo sign in Cuckoo Filter
as a simple bit for endless loop problem solving by bucket

Figure 2: The conventional Cuckoo hashing data structure [22]

Fig. 2. The conventional Cuckoo hashing data structure [22]

Figure 3: bucket structure

bucket index counter fingerprint

bucket


Fig. 3. bucket structure

193

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

checking. The Cuckoo sign is used to show whether a bucket
is checked for emptiness. While our algorithm is looking for
an empty bucket in the insertion, by passing and checking
each bucket, its Cuckoo sign is set to 1. And after each item
insertion, Cuckoo signs are reset. An endless loop is when we
keep checking the same buckets over and over again, when
a bucket is checked for the second time, the Cuckoo sign is
already set, so the algorithm finds out it has been trapped in
a loop. In this situation the current load factor is checked, if
the load factor is less than our desirable value, the current
insertion is canceled (because no empty bucket is found while
the table is not full), but if it has reached that value, then the
CSA algorithm is performed.

Algorithm 1 shows the role of sign bit in the proposed
protocol. When item x is inserted, i1 and i2 (the indexes of the
buckets) are calculated by hash functions. The corresponding
buckets are checked for emptiness and their Cuckoo sign bit
is set to 1. x is put into i2’s bucket and the saved fingerprint is
kicked to its other possible bucket iv1. If the sign bit of iv1 is
0, it is set to 1, and if the bucket is full, the old fingerprint is

kicked to its other possible bucket iv’. This process is repeated
till whether an empty bucket is found (end of the algorithm)
or we reach a bucket that has been checked before which
means endless loop (its Cuckoo sign is 1). In this level there
are two cases: we check the load factor of the table, if it is less
than the desired value, the table is not full and the input is
deleted (insertion failure just like the original Cuckoo Filter
algorithm), but if the load factor has reached the desired
value, the table is full and the Cuckoo support algorithm must
be performed.

Cuckoo support algorithm (CSA): When the Cuckoo
table is filled up to the determined load factor, Cuckoo Filter
algorithm is not followed. When a new item faces a full
bucket, sum of the new item’s fingerprint and the bucket value
is calculated (sum is done by OR operation) and is placed in
the bucket and Cuckoo counter is incremented by 1. When
the Cuckoo counter is non zero, it means CSA is performed
and in SCFMBF look up algorithm we will return to the
usefulness of this counter. Again, Algorithm 2 indicates the
details of CSA method.

Figure 4: structure of modified Cuckoo Filter

Fig. 4. structure of modified Cuckoo Filter

Algorithm 1: sign bit (SB) algorithm

 While item x is inserted suppose i1’s and i2’s bucket is full do
 Check i1’s corresponding bucket;
 if i1’s Cuckoo sign is 0 then
 set it to 1;
 end
 Check i2’s corresponding bucket;
 if i2’s Cuckoo sign is 0 then
 set it to 1;
 end
 Put x into i2’s bucket and kick the saved fingerprint to its iv1 bucket;
 Check iv1’s cuckoo sign;
 if iv1’s Cuckoo sign is 0 then
 Set it to 1;
 else
 Check the load factor α;
 if α is less than the desired value then
 delete the input;
 else
 Perform CSA algorithm;
 end
 end
 reset sign bits of the buckets;

 end

Algorithm 1. sign bit (SB) algorithm

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

194

Algorithm 2 is the second part of insertion process. The
Cuckoo table is already full and the i1 index is calculated for
newly inserted item. The protocol refers to the bucket i1 and
takes the already saved fingerprint, performs an OR operation
between the two fingerprints and saves the result in the
corresponding bucket then increments the Cuckoo counter.

SCFMBF Insertion: Main part of insertion is like the
Cuckoo Filter unless we reach an endless loop that needs the
endless loop algorithm to be implemented. That may lead us
to CSA algorithm. Algorithm 3 shows the details of insertion
method in SCFMBF scenario.

To insert a new item into the Cuckoo table, the fingerprint
of it is calculated (the Bloom Filter). Then the two indexes of

the buckets are derived by the hash functions. If the Cuckoo
table is not full, the corresponding buckets are checked
for emptiness, whenever an empty bucket is found, the
fingerprint f is put in there, but when the buckets are full, the
saved fingerprints are kicked to their possible buckets, their
cuckoo sign is set to 1, this process is repeated till an empty
bucket is found or an insertion failure happens (endless loop
j1=1 is detected). If the Cuckoo table is full, the first possible
bucket for the input is checked, the old finger print B(i1) is
retrieved and an OR operation is performed on the two
fingerprints. The result of the operation is saved in the current
bucket. Cuckoo counter j2 is incremented as a symbol of CSA
algorithm’s being performed.

Algorithm 2: Cuckoo support algorithm (CSA)

1 Want to insert fingerprint(x) to the table;

2 Goto i1’s bucket and take the saved fingerprint;

3 Sum up fingerprint(x) and the already saved fingerprint by OR operation;

4 Put the OR result in the i1’s bucket;

5 Increment the Cuckoo counter by 1;

Algorithm 2. Cuckoo support algorithm (CSA)

Algorithm 3: Insertion algorithm

Insert data block xi;

Hash the block and calculate its fingerprint fi;

Derive two indices from the hash and fingerprint: i1 and i2;

 if the table is not full then

 Check the derived indices;

 *: if empty then

 Insert the block’s fingerprint into the corresponding bucket

 Reset j1;

 else

 set j1=1;

 Check current item’s alternative indices;

 if j1 = 0 in the alternative buckets then

 Goto *

 else

 a bucket with j1=1 is reached, endless loop detected;

 delete fi;

 end

 end

 else

 CSA: substitute B(i1) + f(xi) in the Bi Bucket;

 Increment j2;

 End

Algorithm 3. Insertion algorithm

195

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

SCFMBF Look up: As shown in Algorithm 4, main part
of the lookup procedure is like the Cuckoo Filter. We want to
check whether x belongs to the set S or not. The fingerprint of
x is calculated. Two indexes i1 and i2 are calculated. Then i1’s
bucket is visited. If the Cuckoo counter is zero, it means the
CSA algorithm has not been implemented for that set, and
we look for the original form of fingerprint(x). If they match,
with a false positive probability (Cuckoo FPP), x belongs to
the set. If the Cuckoo counter j2 is not zero, we realize the CSA
has been performed. We take the idea of the Bloom Filter:
if the positions of 1s in the fingerprint(x) matches the saved
array, it means with a probability, x belongs to the set. Because
with the OR operation, positions of 1s don’t change and
remain the same. The false positive probability of the lookup
procedure (set membership verification) is the total FPP of
this algorithm that is going to be described.

To check whether x belongs to the set (is in the Cuckoo

table), first the fingerprint of x is calculated, and then the
indices i1 and i2 are derived. i1’s Cuckoo counter is checked
to see if CSA has been performed or not. If j2 =0, original
Cuckoo algorithm has been performed then bucket i1 and
bucket i2 are checked. If the exact fingerprint of x is found,
algorithm returns True, which means x belongs to the set,
otherwise x is not in the set. If j2≥1, saved array in bucket i1 is
retrieved, an OR operation is performed on fi and the saved
array, if the number of 1s and the positions remain the same
in the saved array, it means it contains that fingerprint, then
the algorithm returns True, but if the OR operation adds new
1 positions to the saved array, x doesn’t belong to the set.

SCFMBF Deletion: Delete algorithm is for removing an
item from the table and is examined in Algorithm 5.

Sometimes there is need to remove an item from the set.
The fingerprint and the indices of that item is calculated. The
protocol calls the look up algorithm to make sure the item

Algorithm 4: Look up algorithm

f = fingerprint(x);
 i1 = hash(x);
 i2 = i1 ⊕hash(f);
check i1’s Cuckoo counter;
if j2 =0 then

 Goto Cuckoo algorithm;
else

 Goto CSA algorithm;
end
Cuckoo algorithm: if bucket(i1) or bucket(i2) has f then
 return True;
else

return False;
end

CSA algorithm: Get the saved array;
Do OR operation on the fingerprint and the saved array;
if the result is the same as the saved array then
 return True;
else
 return False;
end

Algorithm 4. Look up algorithm

Algorithm 5: Delete algorithm

f = fingerprint(x);
i1 = hash(x);
i2 = i1 ⊕hash(f);
if Lookup(f) then
 if j1 > 0 then
 Get the saved array;
 Decrement j2 by one;
 return True;
 end

 if j1=0 then
 Remove a copy of f from this bucket;
 return True;
 end
else
 return False;
end

Algorithm 5. Delete algorithm

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

196

belongs to the set, if not it returns False. If j2=0, it means no
OR operation has been performed and a copy of f is removed
from the bucket. If j2≥1, it means there are more than 1
fingerprints aggregated in that bucket. Since OR operation is
not reversible, we can’t remove or change the saved content
but we decrement j2 by one to show deletion.

5.	 PROBABILITY OF INSERTION FAILURE
False positive error probability of the modified Cuckoo

Filter is the same as the original Cuckoo Filter because the
main structure is unchanged and we have only added a
counter part to the main structure.

5-1- False error probability of CSA algorithm
Let f denote the number of bits in the fingerprint. When

inserting an element into a full bucket, the probability that a
certain bit is not set to one is:

11
f

− � (1)

Now, suppose that we can insert up to r items into the
same bucket, and the probability of any of them not having
set a specific bit to one is given by:

11
r

f
 
− 

 
 (2)

And consequently, the probability that the bit is one is:

11 1
r

f
 

− − 
 

 (3)

Suppose the member which we want to check its
membership has z number of 1’s in its fingerprint. For an
element membership test, if all of the array positions in the

filter same as that member, are set to one, the SCFMBF claims
that the element belongs to the set. The probability of this
happening when the element is not part of the set is given
bellow which is the false positive probability of the CSA
algorithm:

11 1
zr

CSAFPP
f

  
 = − −    

 � (4)

In contrary to the Bloom Filter that had k hash functions
that constructs k number of 1’s in each element, in CSA
algorithm, we have no information about the number of
fingerprint’s set bits because it’s constructed by the Cuckoo
hash function, so z is not constant and it can be a number
from 1 to f. CSA executes the OR operation maximally for
r times for each bucket. As shown in Fig. 5, it is clear that as
r increases, capacity of the modified Cuckoo Filter increases
but there would be a higher false positive probability unless
we choose a longer fingerprint length from the beginning.
Total false error probability of the SCFMBF algorithm is the
multiplication of Cuckoo Filter FPP and CSA FPP.

6.	FALSE ERROR PROBABILITY OF PROPOSED
METHOD

Let us first derive the probability that a given set of q items
collide in the same two buckets. Assume the first item x has
its first bucket i1 and a fingerprint xt . If the other q−1 items
have the same two buckets as this item x, they must have the
same fingerprint xt , which occurs with probability 1

2 f and
have their first bucket either 1i or

1 ()xi h t⊕ which occurs with
probability 2

m . Therefore, the probability of such q items
sharing the same two buckets is [16]:

Figure 5. False Positive Probability of Cuckoo Support Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7

Fa
lse

 p
os

iti
ve

 p
ro

ba
bi

lit
y

z

FPP (r,z,f)

FPP (f=7, r=5) FPP (f=7, r=3)

FPP (f=14, r=5) FPP (f=14, r=3)

Fig. 5. False Positive Probability of Cuckoo Support Algorithm

197

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

() 1
2 1

q

m f
−

× (5)

The upper bound of the total probability of a false
fingerprint hit is [16]:

 2)1 1 1 2
22

(b
ff

b≈− − (6)

 Now consider a construction process that inserts n
random items to an empty table of m cn= buckets for a
constant c and constant bucket size b. whenever there are

2 1q b= + items mapped into the same two buckets, the
insertion fails. This probability provides a lower bound for
failure (and, we believe, dominates the failure probability of
this construction process, although we do not prove this and
do not need to in order to obtain a lower bound). Since there
are in total 2 1

n
b

 
 + 

 different possible sets of 2 1b + items out of n
items, the expected number of groups of 2 1b + items colliding
during the construction process is [16]:

22
2 1 2 .

b

cuckoo f

n
FPP

b m
  =   +   

 � (7)

For table size=140 buckets (m=140/b) and total number
of input items n=1000 and different values of n and b we have
plotted the False Positive Probability values by equation 7 in
Fig. 6.

Because of the great difference in FPP value when f is
14, we represented the plots in logarithmic scale. For longer
fingerprints we have lower FPP. So, as we said FPP of the
SCFMBF algorithm is calculated by the multiplication of the
FPP of Cuckoo and FPP of CSA algorithm.

SCFMBF cuckoo CSAFPP FPP FPP= × � (8)

22 11 1
2 1 2 .

zrb

SCFMBF f

n
FPP

b fm

       = × − −      +      
� (9)

We see in Fig. 6, as the fingerprint length or the bucket size
increases, there is a sharp decrease in FPP. As the r (number of

OR operations in CSA algorithm) increases, more insertions
are possible. To cut it short, CSA algorithm increases the
capacity of Cuckoo Filter. SCFMBF’s capacity is the capacity
of Cuckoo Filter multiplied by r. At the same time, FPP of
our method is kept at a reasonable rate. The results show our
method’s being successful. We derived the FPP of our method
by getting the average of the values and plotted them in Fig.
5. Fig. 5 shows that our method surprisingly outdistances the
performance of Cuckoo Filter and maintains a lower false
positive probability in every case of comparison.

Beside theoretical results, adding a counter to each bucket
of the Cuckoo Filter, allowed us to detect endless loops
because each time a bucket is checked, the Cuckoo Sign bit is
set. When the protocol reaches a bucket with j1=1, it realizes
that a loop has happened and it cuts the search. Also, Cuckoo
counter adds deletion capability to Bloom Filter by counting
the number of added items and subtracting the removed
items.

7.	CONCLUSION
In our method we tried to eliminate Cuckoo Filter’s

limitations. Cuckoo Filter’s endless loop problem is solved
by the endless loop algorithm, surprisingly there was no
need for extra capacity because we benefit from using small
counters and a single bit for every bucket and by our CSA
algorithm Cuckoo Filter is able to handle more insertions, the
idea of CSA was inspired from the Bloom Filter’s basic logical
operation (OR). The false positive probability according to
the derived mathematical equation, has been improved a lot.
We have studied the relation between SCFMBF’s parameters
(same as Cuckoo Filter) and false positive probability. In
Fig. 5, CSA algorithm’s false positive probability is plotted
with different f (fingerprint length) and r (number of 1’s
in the fingerprint) values. As r decreases, FPP plot falls. As
the fingerprint length increases, FPP decreases. For table
size=140 buckets (m=140/b) and total number of input items
n=1000 and different values of n and b the False Positive
Probability of Cuckoo Filter is plotted in Fig. 6. For longer
fingerprints FPP has lower values, but long fingerprint length
needs more storage space. Fig. 7 shows the importance of
parameter choice. Larger bucket size results in less FPP. We

Figure 6: False Positive Probability of Cuckoo Filter

-2.50E+01

-2.00E+01

-1.50E+01

-1.00E+01

-5.00E+00

0.00E+00
2.00 4.00

lo
g(

FP
P)

b

n (f=14) n (f=7) n(f=10)

Fig. 6. False Positive Probability of Cuckoo Filter

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

198

finally compared SCFMBF with Cuckoo Filter for f=7, b=2,4
and r=3,5 (Fig. 8). In every case of study, there is a lot of
improvement. FPP of SCFMBF in the worst case is four times
less than the FPP of Cuckoo Filter that means we have also
improved the capacity Cuckoo Filter to a great extent. The aim
of the protocol is fulfilled.

In the future works this algorithm can be used in some
applications such as cloud storage integrity check, network
and different set membership problems.

REFERENCES
[1]	 P. Brass, Advanced Data Structures, Cambridge University Press, (2008)

402–405.
[2]	 B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,

Communications of the ACM, 13(7) (1970) 422–426.
[3]	 J.K. Mullin, D.J. Margoliash, A tale of three spelling checkers, Software,

Practice and Experience, (1990) 625–630.
[4]	 S. Czerwinski, B.Y. Zhao, T. Hodes, A.D. Joseph, R. Katz, An Architecture

for a Secure Service Discovery Service, Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile Computing and
Networking, ACM Press, (1999) 24–35.

[5]	 J. Wang, A survey of web caching schemes for the internet, ACM
SIGCOMM Computer Communication Review, (1999).

[6]	 R.P. Laufer, P.B. Velloso, D.d.O. Cunha, I.M. Moraes, M.D.D. Bicudo,
M.D.D. Moreira, O.C.M.B. Duarte, Towards stateless singlepacket IP
traceback, Proceedings of the 32nd IEEE Conference on Local Computer
Networks, (2007) 548–555.

[7]	 L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a scalable
wide-area web cache sharing protocol, IEEE/ACM Transactions on
Networking, 28(4) (1998) 254–265.

[8]	 M. Xiao, Y. dai, X. Luo, A Split Bloom Filter for Better Performance,
Journal of Applied Security Research, 15(2) (2019)1–14.

[9]	 D. Guo, J. Wu, H. Chen, Y. Yuan, X. Luo, The dynamic Bloom filters,
IEEE Transactions on knowledge and data engineering, 22(1) (2010)

Figure 7: False Positive Probability of SCFMBF

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 3 4 5 6 7

Fa
lse

 P
os

iti
ve

 P
ro

ba
bi

lit
y

z (maximum number of OR operations)

(f=7, r=5, b=4)

(f=7, r=3, b=4)

(f=7, r=5, b=2)

(f=7, r=3, b=2)

Figure 8: FPP Percentage Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b=2,f=7,r=3) (b=4, f=7, r=3) (b=2,f=7,r=5) (b=4,f=7,r=5)

Pe
rc

en
ta

ge
 o

f F
PP

FPP Percentage Comparison

FPP of Cuckoo FPP of SCFMBF

Fig. 7. False Positive Probability of SCFMBF

Fig. 8. FPP Percentage Comparison

199

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

HOW TO CITE THIS ARTICLE
Ha. Sasaniyan Asl, B. Mozaffari Tazehkand, M.J. Museviniya, A Cuckoo Filter Modification
Inspired by Bloom Filter, AUT J. Elec. Eng., 51(2) (2019) 187-200.

DOI: 10.22060/eej.2019.16370.5287

120–133.
[10]	S. Geravand, M. Ahmadi, A novel adjustable matrix Bloom filterbased

copy detection system for digital libraries, Proceedings of IEEE
International Conference on Computer and Information Technology,
(2011).

[11]	M. Mitzenmacher, Compressed Bloom filters, Proceedings of the
twentieth annual ACM symposium on Principles of distributed
computing, (2001) 144–150.

[12]	F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, G. Varghese, Bloom
filters via d-left hashing and dynamic bit reassignment, 44th Allerton
Conference, (2006).

[13]	K. Shanmugasundaram, H. Bronnimann, N. Memon, Payload attribution
via hierarchical Bloom Filter, Proceedings of the 11th ACM conference on
Computer and communicationsecurity (CCS 04), (2004) 31–41.

[14]	S. Cohen, Y. Matias, Spectral Bloom filters, SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of
data. New York, NY, USA, ACM, (2003) 241–252.

[15]	Y. Matsumoto, H. Hazeyama, Y. Kadobayashi, Adaptive Bloom filter:
A space-efficient counting algorithm for unpredictable network traffic,
IEICE Trans. Inf. Syst., E91-D(5) (2008)1292–1299.

[16]	P.S. Almeida, C. Baquero, N. Preguic, D. Hutchison, Scalable Bloom
filters, Inf. Process. Lett., 101(6) (2007) 255–261.

[17]	J. Bruck, J. Gao, A. Jiang, Weighted Bloom filter, IEEE International
Symposium on Information Theory (ISIT’06), (2006).

[18]	M. A. Bender, M. F. Colton, R. Johnson, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillanne, E. Zadoc, Don’t Thrash: How to
Chache you Hash on Flash, Proceedings of the 3rd USENIX conference
on Hot topics in storage and file systems (HOTStorage11), (2012).

[19]	B. Fan, D. Andersen, M. Kaminsky, M. Mitzenmacher, Cuckoo
filter: practically better than Bloom, Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and
Technologies (CoNEXT 14), (2014) 75–88.

[20]	J. Grashofer, F. Jacob, H. Hartenstein, Towards Application of Cuckoo
Filters in Network Security Monitoring, 14th international conference
on network and service management (CNSM), (2018).

[21]	M. Mitzenmacher, S. Pontarelli, P. Reviriego, Adaptive Cuckoo filters,
arXiv preprint, (2017).

[22]	Y. Sun, Y. Hua, S. Jiang, Q. Li, S. Cao, P. Zue, SmartCuckoo: A Fastand
Cost-Efficient Hashing Index Scheme for Cloud Storage Systems,
USENIX Annual Technical Conference, (2017) 553–565.

[23]	Kirsch, A. Mitzenmacher, U. Wieder, More Robust Hashing: Cuckoo
Hashing with a Stash, SIAM Journal on Computing, 39(4), (2009) 1543–
1561.

[24]	U. Erlingsson, F. Mcsherry, M. Manasse, A cool and practical alternative
to traditional hash tables, Proceedings of the Seventh Workshop on
Distributed Data and Structures (WDAS), (2006).

[25]	B. Fan, D.G. Andersen, M. Kaminsky, MemC3: Compact and Concurrent
MemCache with Dumber Caching and Smarter Hashing, Proceedings

of the 10th USENIX conference on Networked Systems Design and
Implementation, (2013).

[26]	A. Singh, S. Garg, K. Kaur, K. KwangRaymond Cool, Fuzzy-folded Bloom
Filter-as-a-Service for Big Data Storage in the Cloud, IEEE Transactions
on Industrial Informatics, (2018) 1–10.

[27]	K. Sasaki, S. Sugiura, S. Makido, N. Suzuki, Bloom-Filter Aided Two-
Layered Structured Overlay for Highly-Dynamic Wireless Distributed
Storage, IEEE Communications Letters, 17(4) (2013) 629–632.

[28]	C.E. Rothenberg, C.A.B. Macapuna, F.L. Verdi, M.F. Magalhaes, The
Deletable Bloom Filter: A New Member of the Bloom Family, IEEE
Communications Letters, 14(6) (2010) 557–559.

[29]	P. Reviriego, S. Pontarelli, J. A. Maestro, M. Ottavi, A Synergetic Use of
Bloom Filters for Error Detection and Correction, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 23(3) (2015) 584–587.

[30]	H. Lim, J. Lee, H. Byun, C. Yim, Ternary Bloom Filter Replacing
Counting Bloom Filter, Communications Letters, 21(2) (2016), 278-281.

[31]	D. Ficara, A.D. Pietro, S. Giordano,G. Procissi, F. Vitucci, Enhancing
Counting Bloom Filters Through Huffman-Coded Multilayer, IEEE/ ACM

Transactions on Networking, 18(6) (2010), 1977-1987.
[32]	Kumar, J. Xu, J. Wang, Space-Code Bloom Filter for Efficient
Per-Flow Traffic Measurement, IEEE Journal on Selected Areas in

Communications, 24(12) (2006) 2327-2339.
[33]	F. Hao, M. Kodialam, T. V. Lakshman, H. Song, Fast Dynamic Multiple-

Set Membership Testing Using Combinatorial Bloom Filters, IEEE/ACM
Transactions on Networking, 20(1) (2012) 295–304.

[34]	H. Duan, S. Yu, M. Mei, W. Zhan, L. Li, Cstore: a desktop-oriented
distributed public cloud storage system, Computers & Electrical Engineering,

42 (2015) 60–73.
[35]	S. Geravand, M. Ahmadi, A novel adjustable matrix bloom filter-based

copy detection system for digital libraries, IEEE 11th International
Conference on Computer and Information Technology(CIT), (2011)
518–525.

[36]	S. Xiong, F. Wang, Q. Cao, A bloom filter based scalable data integrity
check tool for large-scale dataset, First Joint International Workshop
on Parallel Data Storage and data Intensive Scalable Computing
Systems(PDSW-DISCS), (2016) 55–60.

[37]	Y. Qiao, T. Li, S. Chen, Fast bloom filters and their generalization, IEEE
Transactions on Parallel and Distributed Systems, 25 (2013), 93–103.

[38]	P. Reviriego, K. Christensen, J. A. Maestro, A comment on “fast Bloom
Filters and their generalization”, IEEE Transactions on Parallel and
Distributed Systems, 27 (2015) 303–304.

[39]	A. Crainiceanu, D. Lemire, Bloofi: Multidimensional Bloom Filters,
Information Systems, 54 (2015), 311–324.

[40]	A. Singh, S. Garg, S. Batra, N. Kuma, J.J. Rodrigues, Bloom Filter based
optimization scheme for massive data handling in IoT environment,
Future Generation Computer Systems, 82 (2018) 440–449.

[41]	F. Grandi, On the analysis of Bloom Filters, Information Processing
Letters, 129 (2018) 35–39.

Ha. Sasaniyan Asl et al. , AUT J. Elec. Eng., 51(2) (2019) 187-200, DOI: ﻿ 10.22060/eej.2019.16370.5287

200

