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ABSTRACT:  Transmit waveform design is one of the most important problems in active sensing 
and communication systems. This problem, due to the complexity and non-convexity, has been always 
the main topic of many papers for the decades. However, still an optimal solution which guarantees a 
global minimum for this multi-variable optimization problem is not found. In this paper, we propose 
an attracting methodology to design transmit waveform of active sensing and communication systems 
with good auto-correlation properties. To this end, we tackle the non-convex optimization problem of 
Integrated Sidelobe Level (ISL) minimization with the unimodular constraint. Using the epigraph and 
Second Order Cone Programming (SOCP) approach, the in-hand non-convex optimization will resort to 
a Semi-Definite Programming (SDP). Then, we use Majorization- Minimization to deal with constraints 
and convert the obtained problem to a convex optimization problem. Finally, the obtained optimization 
problem is tackled using CVX toolbox. To obtain the code vectors from the extracted optimal code 
matrix, we use rank-one decomposition. The simulation and results indicate the powerfulness of the 
proposed algorithm in designing radar transmit sequences with unimodular constraint. We show the 
proposed algorithm can design long length sequences with a very small ISL values. The proposed 
framework further can be investigated for the future optimization problems, like Peak Side lobe Level 
(PSL) minimization. 
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1. Introduction
Next generation intelligent active sensing systems, e. g., 

radars, further to the adaption in the receive side, should have 
the capability of adaptively designing transmit waveform. 
Waveform design was always a challenging problem in active 
sensing and radar systems. The well-known waveforms with 
good auto-correlation properties, including m-sequences, 
Gold, Barker codes, etc., mostly have limitation in length [1]. 
The goal of waveform design for every active sensing (radar, 
sonar, lidar) is to acquire (or preserve) the maximum amount 
of information from the desirable sources in the environment, 
where in fact, the transmit signal can be viewed as a medium 
that collects information [1]. Thanks to the known speed of 
an electromagnetic wave, the radar system can estimate the 
location of the target simply by measuring the time difference 
between the radar signal transmission and the reception of 
the reflected signal [2].

The target detection and estimation performance of the 
active sensing systems are shown to be considerably improved 
by a judicious design of the probing signals and processing 
schemes [3]. Waveform design and processing for radar has 
a crucial role particularly in fulfilling the above promises of 
adaptivity, agility and reliability: the waveform design usually 
deals with various measures of quality (including detection/

estimation and information-theoretic criteria), and moreover, 
the practical condition that the employed signals must belong 
to a limited signal set. Such diversity of design metrics and 
signal constraints lays the groundwork for many interesting 
research projects in waveform optimization. Indeed, efficient 
waveform design algorithms are instrumental in realizing the 
next-generation of radar systems.

2. Background and Related Works
Research in the area of waveform design for radar systems 

is focused on the design and optimization of probing signals in 
order to improve target detection performance, as well as the 
target location and speed estimation. To this end, the waveform 
design problems are often formulated as an optimization 
problem with a certain metric that represents the quality 
objective, along with the constraint set of the transmit signals. 
Among others, the most widely used signal quality objectives 
include auto and cross correlation sidelobe metrics (see e.g. 
[4]– [12]), Mean-Square Error (MSE) of estimation (see e.g. 
[13], [14]), Signal to Noise Ratio (SNR) of the processed 
signals (see e.g. [13], [15]–[29]), beampattern synthesis (see 
e. g. [30]–[34]), information-theoretic criteria (see e.g. [35]–
[37]), and excitation metrics (see e.g. [38]). The proposed 
methods use different optimization frameworks including, 
quadratic programming (QP) [39], semidefinite quadratic 
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program (SQP) [40], alternative optimization [4], Gradient 
Descent (GD) [41] [42], Majorization Minimization (MM) 
[5], [8], [43]–[46], and Coordinate Descent (CD) [7], [9], [11], 
[12]. Moreover, due to implementation and technological 
considerations, the transmit signals should also comply with 
certain constraints. Other than reliability requirements, such 
constraints typically include (finite) energy, unimodularity 
(or being constant-modulus) [47], Peak-to-Average Power 
Ratio (PAR) (abbreviated as PAPR or PAR), and finite or 
discrete-alphabet (e.g. being integer, binary, or from m-ary 
constellation, also known as roots-of- unity [3], [11], [48], 
[49]). Among the different sets of constraints, considering 
constant modulus in the design stage is rather important. This 
constraint is considerable since the radar transmitters operate 
more efficiently when using a high power amplifier in the 
saturation region [1], [50]. Further, the emergent applications 
tend to be power constrained necessitating power efficient 
operation of the sensing modules. This constraint means 
that the only degree of freedom is the waveform phase; this 
makes the optimization problem non-convex and non-linear 
resulting in a significantly more complex problem than the 
unconstrained version [50]. In this paper, we focus on the 
Integrated Sidelobe Level (ISL)

optimization problem, with the non-convex constant 
modulus constraint at the design stage. As to the background 
of this paper, the new family of Cyclic Algorithm New (CAN) 
algorithms were recently developed to handle the design of 
such sequence even with relatively large sequence lengths; see 
[3], [21]. However, since CAN algorithms are merely intended 
for local optimization, the radar system can have difficulty 
in producing high quality sequences as the optimization 
landscape becomes highly multi modal (i.e. possessing many 
local optima)—a typical phenomenon when signal constraints 
are enforced or problem dimensions grow large. In [21], a 
computationally attractive algorithm for designing radar 
transmit sequence from linear combination of the different 
orthogonal waveforms. In [7], a CD framework is proposed to 
sequentially optimize code entries of a unimodular sequence 
to have good Peak Sidelobe Level (PSL) and/or ISL for Single 
Input Single Output (SISO) radar systems. In [27], a novel 
algorithm for designing set of Multiple Input Multiple Output 
(MIMO) radar sequences under PSL constraint is proposed. 
Finally, in [11], [51] using the Block Coordinate Descent 
(BCD), designing set of sequences with good correlation 
properties is considered. In this paper, we propose Second 
Order Cone Programming (SOCP) framework to design 
unimodular (continuous phase) transmit sequence with good 
ISL values, which was not addressed previously. Precisely, 
we introduce an optimization framework based on SOCP to 
minimize the ISL. We resort to the Semidefinite Programming 
(SDP) optimization problem and with the aim of MM we 
tackle the non-convex multi-variable optimization problem. 
Note that, the optimization technique that will be introduced 
in this paper to minimize the ISL is different from that of 
previously addressed in the literature [7]. Further, since the 
ISL possessing many local optima, the obtained solutions 
would be different as well.

3. Organization and Notation
The rest of this paper continues as follows. Problem 

formulation is written in Section II, where we introduce the 
optimization problem, as well as the non-convex constraint 
of constant modulus. In Section III, we introduce the SOCP 
optimization framework. Section IV is dedicated to the MM 
algorithm to deal with the obtained non-convex constraints. 
Finally, Section V shows some interesting results and Section 
VI concludes the paper. Notation: Bold uppercase letters 
denote matrices, bold lowercase letters are used for vectors 
and italics for scalars. Vector/matrix transpose denotes by  

, and the Hermitian transpose by .  is the trace of 
a square matrix argument. The notations  indicate the 
principal eigenvector of a Hermitian matrix.  denotes 
the vector formed by collecting the diagonal entries of the 
matrix argument, whereas   denotes a matrix with 
diagonal elements of the an input vector, i. e., a matrix formed 
by inserting the entries of an input vector to the diagonal 
elements of it, keeping zero the other entries. We write A ≽ 0 
iff A is positive semi-definite. Finally, the Frobenius norm of 
a matrix X (denoted by ) with entries  is equal to  

eigenvector of a Hermitian matrix. 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(∙) denotes the vector formed by collecting the diagonal entries of 

the matrix argument, whereas 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(∙)  denotes a matrix with diagonal elements of the an input vector, i. 

e., a matrix formed by inserting the entries of an input vector to the diagonal elements of it, keeping zero 

the other entries. We write A ≽ 0 iff A is positive semi-definite. Finally, the Frobenius norm of a matrix X 

(denoted by ‖𝑿𝑿‖2) with entries {𝑋𝑋𝑘𝑘.𝑙𝑙} is equal to  (∑ |𝑋𝑋𝑘𝑘.𝑙𝑙|2
𝑘𝑘.𝑙𝑙 )1 2⁄ . 

4. PROBLEM FORMULATION  

Typically in active sensing and radar systems, the good autocorrelation property means that the waveform 

has small PSL and ISL. 

Detection performance in every active sensing and radar system is highly depended on the received Signal 

to Interference plus Noise Ratio (SINR) [52]. Assume a monostatic radar system which transmits a 

sequence 

𝒙𝒙 = [𝑥𝑥1. 𝑥𝑥2 … . 𝑥𝑥𝑁𝑁]𝑇𝑇  ∈ ℂ𝑁𝑁,      (1) 

where 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1. … . 𝑁𝑁, indicates the code entries. Reflected signal from a target contaminated with noise 

and clutter can be written as, 

                                                   𝒚̃𝒚 = 𝛼𝛼𝒙𝒙 + 𝒄𝒄 + 𝒏𝒏,                 (2) 

with 𝒄𝒄 ∈ ℂ𝑁𝑁, 𝒏𝒏 ∈ ℂ𝑁𝑁. The received vector 𝑦̃𝑦 is filtered with the weight vector 𝜔𝜔, i. e., 𝝎𝝎𝐻𝐻𝒚𝒚, and then the 

output SINR can be expressed as,  

                                                𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = |𝝎𝝎𝐻𝐻𝒙𝒙|2

𝝎𝝎𝐻𝐻𝑹𝑹𝑐𝑐(𝒙𝒙)𝝎𝝎+𝝎𝝎𝐻𝐻𝑹𝑹𝑛𝑛𝝎𝝎             (3) 

where 𝑹𝑹𝑐𝑐 and 𝑹𝑹𝑛𝑛 indicate covariance matrices of clutter and noise, respectively. If there is no clutter and 

noise is zeromean white (i. e., 𝑹𝑹𝑛𝑛 = 𝑰𝑰𝑁𝑁), the matched filter 𝝎𝝎 = 𝒙𝒙 will give the largest SNR. In [3], [53], 

it has been shown that incase of clutter existence, when the clutter and target have the same Doppler 

 .

4. PROBLEM FORMULATION 
Typically in active sensing and radar systems, the good 

autocorrelation property means that the waveform has small 
PSL and ISL.

Detection performance in every active sensing and 
radar system is highly depended on the received Signal 
to Interference plus Noise Ratio (SINR) [52]. Assume a 
monostatic radar system which transmits a sequence

� (1)

where , ?, indicates the code entries. Reflected signal 
from a target contaminated with noise and clutter can be 
written as,

� (2)

with ?. The received vector  is filtered with the weight 
vector , i. e., , and then the output SINR can be 
expressed as,

� (3)

where  and  indicate covariance matrices of clutter 
and noise, respectively. If there is no clutter and noise is 
zeromean white (i. e., ?), the matched filter  will give 
the largest SNR. In [3], [53], it has been shown that incase 
of clutter existence, when the clutter and target have the 
same Doppler frequency, which is of course typical in radar 
systems, the output SINR is inversely related with the ISL of 
the transmit sequence, such that the lower ISL of the sequence 

eigenvector of a Hermitian matrix. 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(∙) denotes the vector formed by collecting the diagonal entries of 

the matrix argument, whereas 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(∙)  denotes a matrix with diagonal elements of the an input vector, i. 

e., a matrix formed by inserting the entries of an input vector to the diagonal elements of it, keeping zero 

the other entries. We write A ≽ 0 iff A is positive semi-definite. Finally, the Frobenius norm of a matrix X 

(denoted by ‖𝑿𝑿‖2) with entries {𝑋𝑋𝑘𝑘.𝑙𝑙} is equal to  (∑ |𝑋𝑋𝑘𝑘.𝑙𝑙|2
𝑘𝑘.𝑙𝑙 )1 2⁄ . 

4. PROBLEM FORMULATION  

Typically in active sensing and radar systems, the good autocorrelation property means that the waveform 

has small PSL and ISL. 

Detection performance in every active sensing and radar system is highly depended on the received Signal 

to Interference plus Noise Ratio (SINR) [52]. Assume a monostatic radar system which transmits a 

sequence 

𝒙𝒙 = [𝑥𝑥1. 𝑥𝑥2 … . 𝑥𝑥𝑁𝑁]𝑇𝑇  ∈ ℂ𝑁𝑁,      (1) 

where 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1. … . 𝑁𝑁, indicates the code entries. Reflected signal from a target contaminated with noise 

and clutter can be written as, 

                                                   𝒚̃𝒚 = 𝛼𝛼𝒙𝒙 + 𝒄𝒄 + 𝒏𝒏,                 (2) 

with 𝒄𝒄 ∈ ℂ𝑁𝑁, 𝒏𝒏 ∈ ℂ𝑁𝑁. The received vector 𝑦̃𝑦 is filtered with the weight vector 𝜔𝜔, i. e., 𝝎𝝎𝐻𝐻𝒚𝒚, and then the 

output SINR can be expressed as,  

                                                𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = |𝝎𝝎𝐻𝐻𝒙𝒙|2

𝝎𝝎𝐻𝐻𝑹𝑹𝑐𝑐(𝒙𝒙)𝝎𝝎+𝝎𝝎𝐻𝐻𝑹𝑹𝑛𝑛𝝎𝝎             (3) 

where 𝑹𝑹𝑐𝑐 and 𝑹𝑹𝑛𝑛 indicate covariance matrices of clutter and noise, respectively. If there is no clutter and 

noise is zeromean white (i. e., 𝑹𝑹𝑛𝑛 = 𝑰𝑰𝑁𝑁), the matched filter 𝝎𝝎 = 𝒙𝒙 will give the largest SNR. In [3], [53], 

it has been shown that incase of clutter existence, when the clutter and target have the same Doppler 

eigenvector of a Hermitian matrix. 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(∙) denotes the vector formed by collecting the diagonal entries of 

the matrix argument, whereas 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(∙)  denotes a matrix with diagonal elements of the an input vector, i. 

e., a matrix formed by inserting the entries of an input vector to the diagonal elements of it, keeping zero 

the other entries. We write A ≽ 0 iff A is positive semi-definite. Finally, the Frobenius norm of a matrix X 

(denoted by ‖𝑿𝑿‖2) with entries {𝑋𝑋𝑘𝑘.𝑙𝑙} is equal to  (∑ |𝑋𝑋𝑘𝑘.𝑙𝑙|2
𝑘𝑘.𝑙𝑙 )1 2⁄ . 

4. PROBLEM FORMULATION  

Typically in active sensing and radar systems, the good autocorrelation property means that the waveform 

has small PSL and ISL. 

Detection performance in every active sensing and radar system is highly depended on the received Signal 

to Interference plus Noise Ratio (SINR) [52]. Assume a monostatic radar system which transmits a 

sequence 

𝒙𝒙 = [𝑥𝑥1. 𝑥𝑥2 … . 𝑥𝑥𝑁𝑁]𝑇𝑇  ∈ ℂ𝑁𝑁,      (1) 

where 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1. … . 𝑁𝑁, indicates the code entries. Reflected signal from a target contaminated with noise 

and clutter can be written as, 

                                                   𝒚̃𝒚 = 𝛼𝛼𝒙𝒙 + 𝒄𝒄 + 𝒏𝒏,                 (2) 

with 𝒄𝒄 ∈ ℂ𝑁𝑁, 𝒏𝒏 ∈ ℂ𝑁𝑁. The received vector 𝑦̃𝑦 is filtered with the weight vector 𝜔𝜔, i. e., 𝝎𝝎𝐻𝐻𝒚𝒚, and then the 

output SINR can be expressed as,  

                                                𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = |𝝎𝝎𝐻𝐻𝒙𝒙|2

𝝎𝝎𝐻𝐻𝑹𝑹𝑐𝑐(𝒙𝒙)𝝎𝝎+𝝎𝝎𝐻𝐻𝑹𝑹𝑛𝑛𝝎𝝎             (3) 

where 𝑹𝑹𝑐𝑐 and 𝑹𝑹𝑛𝑛 indicate covariance matrices of clutter and noise, respectively. If there is no clutter and 

noise is zeromean white (i. e., 𝑹𝑹𝑛𝑛 = 𝑰𝑰𝑁𝑁), the matched filter 𝝎𝝎 = 𝒙𝒙 will give the largest SNR. In [3], [53], 

it has been shown that incase of clutter existence, when the clutter and target have the same Doppler 

eigenvector of a Hermitian matrix. 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(∙) denotes the vector formed by collecting the diagonal entries of 

the matrix argument, whereas 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(∙)  denotes a matrix with diagonal elements of the an input vector, i. 

e., a matrix formed by inserting the entries of an input vector to the diagonal elements of it, keeping zero 

the other entries. We write A ≽ 0 iff A is positive semi-definite. Finally, the Frobenius norm of a matrix X 

(denoted by ‖𝑿𝑿‖2) with entries {𝑋𝑋𝑘𝑘.𝑙𝑙} is equal to  (∑ |𝑋𝑋𝑘𝑘.𝑙𝑙|2
𝑘𝑘.𝑙𝑙 )1 2⁄ . 

4. PROBLEM FORMULATION  

Typically in active sensing and radar systems, the good autocorrelation property means that the waveform 

has small PSL and ISL. 

Detection performance in every active sensing and radar system is highly depended on the received Signal 

to Interference plus Noise Ratio (SINR) [52]. Assume a monostatic radar system which transmits a 

sequence 

𝒙𝒙 = [𝑥𝑥1. 𝑥𝑥2 … . 𝑥𝑥𝑁𝑁]𝑇𝑇  ∈ ℂ𝑁𝑁,      (1) 

where 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1. … . 𝑁𝑁, indicates the code entries. Reflected signal from a target contaminated with noise 

and clutter can be written as, 

                                                   𝒚̃𝒚 = 𝛼𝛼𝒙𝒙 + 𝒄𝒄 + 𝒏𝒏,                 (2) 

with 𝒄𝒄 ∈ ℂ𝑁𝑁, 𝒏𝒏 ∈ ℂ𝑁𝑁. The received vector 𝑦̃𝑦 is filtered with the weight vector 𝜔𝜔, i. e., 𝝎𝝎𝐻𝐻𝒚𝒚, and then the 

output SINR can be expressed as,  

                                                𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = |𝝎𝝎𝐻𝐻𝒙𝒙|2

𝝎𝝎𝐻𝐻𝑹𝑹𝑐𝑐(𝒙𝒙)𝝎𝝎+𝝎𝝎𝐻𝐻𝑹𝑹𝑛𝑛𝝎𝝎             (3) 

where 𝑹𝑹𝑐𝑐 and 𝑹𝑹𝑛𝑛 indicate covariance matrices of clutter and noise, respectively. If there is no clutter and 

noise is zeromean white (i. e., 𝑹𝑹𝑛𝑛 = 𝑰𝑰𝑁𝑁), the matched filter 𝝎𝝎 = 𝒙𝒙 will give the largest SNR. In [3], [53], 

it has been shown that incase of clutter existence, when the clutter and target have the same Doppler 



203

M.B. Alaie and S.A. Olamaei, AUT J. Elec. Eng., 51(2) (2019) 201-210, DOI: ﻿ 10.22060/eej.2019.15824.5270

the higher the SINR at the matched filter output (see [53] for 
more details).

The aperiodic auto-correlation function of the complex 
unimodular sequence  is

� (4)

where  is the length of the sequence. The integrated 
sidelobe level is defined as, 

� (5)

We are interested to tackle the following optimization 
problem,

� (6)

with 

frequency, which is of course typical in radar systems, the output SINR is inversely related with the ISL of 

the transmit sequence, such that the lower ISL of the sequence the higher the SINR at the matched filter 

output (see [53] for more details). 

The aperiodic auto-correlation function of the complex unimodular sequence {𝑥𝑥𝑛𝑛}𝑛𝑛=1𝑁𝑁  is 

                                        𝑟𝑟𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛∗𝑥𝑥𝑛𝑛+𝑘𝑘𝑁𝑁−𝑘𝑘
𝑛𝑛=1 .   𝑘𝑘 = 0.… .𝑁𝑁 − 1                                                      (4) 

where 𝑁𝑁 is the length of the sequence. The integrated sidelobe level is defined as,  

                                              ISL = ∑ |𝑟𝑟𝑘𝑘|2𝑁𝑁−1
𝑘𝑘=1               (5) 

We are interested to tackle the following optimization problem, 

𝒫𝒫𝒙𝒙 = {
minimize 

𝒙𝒙
                  ISL                

subject to               |𝑥𝑥𝑛𝑛| = 1         
                                              (6) 

with = 1,… ,𝑁𝑁 . Notice that  𝒫𝒫𝒙𝒙 is non-convex multi-variable optimization problem. Recently, many papers 

focused on the problem of PSL/ISL minimization (see [4], [7], [54], [55] and references therein). The 

pioneers to this problem are [4], [54], [55], where several approaches are introduced for minimizing an 

equivalent metric of the ISL. 

5. SOCP AND ISL MINIMIZATION 

In this section, we propose using SOCP to tackle Problem 𝒫𝒫𝒙𝒙. First, notice that with the aim of epigraph 

form to the optimization Problem 𝒫𝒫𝒙𝒙 [56], equivalently the ISL minimization problem can be written as 

𝒫̃𝒫𝒙𝒙 =

{ 
 
  
minimize 

𝒙𝒙,t
                  𝑡𝑡                      

subject to          |𝑥𝑥𝑛𝑛| = 1         
                                ∑ |𝑟𝑟𝑘𝑘|2𝑁𝑁−1

𝑘𝑘=1 ≤ 𝑡𝑡
                           𝑛𝑛 = 1.… .𝑁𝑁

                (7) 

 . Notice that   is non-convex multi-
variable optimization problem. Recently, many papers focused 
on the problem of PSL/ISL minimization (see [4], [7], [54], 
[55] and references therein). The pioneers to this problem are 
[4], [54], [55], where several approaches are introduced for 
minimizing an equivalent metric of the ISL.

5. SOCP AND ISL MINIMIZATION
In this section, we propose using SOCP to tackle 

Problem . First, notice that with the aim of epigraph form 
to the optimization Problem  [56], equivalently the ISL 
minimization problem can be written as

� (7)

Defining , as the Toeplitz 
matrices with the  -th diagonal elements being 1 and 0 
elsewhere, it is easy to show

�  (8)

Using trace properties [57], we can write,

� (9)

where  is the rank-one code matrix. 
Therefore, the equivalent problem to  can be written as,

� (10)
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Defining 𝑼𝑼𝑘𝑘 ∈ ℝ𝑁𝑁×𝑁𝑁, 𝑘𝑘 = 0. … . 𝑁𝑁 − 1, as the Toeplitz matrices with the 𝑘𝑘 -th diagonal elements being 1 

and 0 elsewhere, it is easy to show 

                                                   𝑟𝑟𝑘𝑘 = 𝑡𝑡𝑡𝑡{𝒙𝒙𝐻𝐻𝑼𝑼𝑘𝑘𝒙𝒙}          (8) 

Using trace properties [57], we can write, 

                                            𝑡𝑡𝑡𝑡{𝒙𝒙𝐻𝐻𝑼𝑼𝑘𝑘𝒙𝒙} = 𝑡𝑡𝑡𝑡{𝑼𝑼𝑘𝑘𝒙𝒙𝒙𝒙𝐻𝐻} = 𝑡𝑡𝑡𝑡{𝑼𝑼𝑘𝑘𝑿𝑿}      (9) 

where 𝑋𝑋 = 𝑥𝑥𝑥𝑥𝐻𝐻 ∈ ℂ𝑁𝑁×𝑁𝑁  is the rank-one code matrix. Therefore, the equivalent problem to 𝒫̃𝒫𝒙𝒙  can be 

written as, 

                                               

minimize 𝑡𝑡                                    
𝑿𝑿. 𝑡𝑡

subject to  
∑ |𝑡𝑡𝑡𝑡(𝑼𝑼𝑘𝑘𝑿𝑿)|2𝑁𝑁−1

𝑘𝑘=1 ≤ 𝑡𝑡
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 1             
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 𝟏𝟏             
𝑿𝑿 ≽ 0                           

                                                    (10) 

which is still non-convex. Note that the constraint 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 (𝑿𝑿)  = 𝟏𝟏  is added for designing unimodular 

waveforms, i. e., instead of |𝑥𝑥𝑛𝑛|  =  1 . Now, using the SDP, we can replace the constraint  

∑ |𝑡𝑡𝑡𝑡(𝑼𝑼𝑘𝑘𝑿𝑿)|2𝑁𝑁−1
𝑘𝑘=1 ≤ 𝑡𝑡 with its SDP equivalent constraint (10) [58], 

minimize 𝑡𝑡                        
𝑿𝑿, 𝑡𝑡

subject to  
[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 1 
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 1 
𝑿𝑿 ≽ 0              

                                                     (11) 

Where 

                                                𝒚𝒚 = [𝑡𝑡𝑡𝑡{𝑼𝑼1𝑿𝑿}, 𝑡𝑡𝑡𝑡{𝑼𝑼2𝑿𝑿}, … , 𝑡𝑡𝑡𝑡{𝑼𝑼𝑁𝑁−1𝑿𝑿}  ]𝑇𝑇     (12) 

and 𝑰𝑰𝑁𝑁−1 is identity matrix with dimension of 𝑁𝑁 − 1 × 𝑁𝑁 − 1. However, the rank-one constraint is non-

convex and consequently the optimization problem (11) is still non-convex and cannot be solved using the 
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waveforms, i. e., instead of |𝑥𝑥𝑛𝑛|  =  1 . Now, using the SDP, we can replace the constraint  

∑ |𝑡𝑡𝑡𝑡(𝑼𝑼𝑘𝑘𝑿𝑿)|2𝑁𝑁−1
𝑘𝑘=1 ≤ 𝑡𝑡 with its SDP equivalent constraint (10) [58], 

minimize 𝑡𝑡                        
𝑿𝑿, 𝑡𝑡

subject to  
[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 1 
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 1 
𝑿𝑿 ≽ 0              

                                                     (11) 

Where 

                                                𝒚𝒚 = [𝑡𝑡𝑡𝑡{𝑼𝑼1𝑿𝑿}, 𝑡𝑡𝑡𝑡{𝑼𝑼2𝑿𝑿}, … , 𝑡𝑡𝑡𝑡{𝑼𝑼𝑁𝑁−1𝑿𝑿}  ]𝑇𝑇     (12) 

and 𝑰𝑰𝑁𝑁−1 is identity matrix with dimension of 𝑁𝑁 − 1 × 𝑁𝑁 − 1. However, the rank-one constraint is non-

convex and consequently the optimization problem (11) is still non-convex and cannot be solved using the 

Defining 𝑼𝑼𝑘𝑘 ∈ ℝ𝑁𝑁×𝑁𝑁, 𝑘𝑘 = 0. … . 𝑁𝑁 − 1, as the Toeplitz matrices with the 𝑘𝑘 -th diagonal elements being 1 

and 0 elsewhere, it is easy to show 

                                                   𝑟𝑟𝑘𝑘 = 𝑡𝑡𝑡𝑡{𝒙𝒙𝐻𝐻𝑼𝑼𝑘𝑘𝒙𝒙}          (8) 

Using trace properties [57], we can write, 

                                            𝑡𝑡𝑡𝑡{𝒙𝒙𝐻𝐻𝑼𝑼𝑘𝑘𝒙𝒙} = 𝑡𝑡𝑡𝑡{𝑼𝑼𝑘𝑘𝒙𝒙𝒙𝒙𝐻𝐻} = 𝑡𝑡𝑡𝑡{𝑼𝑼𝑘𝑘𝑿𝑿}      (9) 

where 𝑋𝑋 = 𝑥𝑥𝑥𝑥𝐻𝐻 ∈ ℂ𝑁𝑁×𝑁𝑁  is the rank-one code matrix. Therefore, the equivalent problem to 𝒫̃𝒫𝒙𝒙  can be 

written as, 

                                               

minimize 𝑡𝑡                                    
𝑿𝑿. 𝑡𝑡

subject to  
∑ |𝑡𝑡𝑡𝑡(𝑼𝑼𝑘𝑘𝑿𝑿)|2𝑁𝑁−1

𝑘𝑘=1 ≤ 𝑡𝑡
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 1             
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 𝟏𝟏             
𝑿𝑿 ≽ 0                           

                                                    (10) 

which is still non-convex. Note that the constraint 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 (𝑿𝑿)  = 𝟏𝟏  is added for designing unimodular 

waveforms, i. e., instead of |𝑥𝑥𝑛𝑛|  =  1 . Now, using the SDP, we can replace the constraint  

∑ |𝑡𝑡𝑡𝑡(𝑼𝑼𝑘𝑘𝑿𝑿)|2𝑁𝑁−1
𝑘𝑘=1 ≤ 𝑡𝑡 with its SDP equivalent constraint (10) [58], 

minimize 𝑡𝑡                        
𝑿𝑿, 𝑡𝑡

subject to  
[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 1 
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 1 
𝑿𝑿 ≽ 0              

                                                     (11) 

Where 

                                                𝒚𝒚 = [𝑡𝑡𝑡𝑡{𝑼𝑼1𝑿𝑿}, 𝑡𝑡𝑡𝑡{𝑼𝑼2𝑿𝑿}, … , 𝑡𝑡𝑡𝑡{𝑼𝑼𝑁𝑁−1𝑿𝑿}  ]𝑇𝑇     (12) 

and 𝑰𝑰𝑁𝑁−1 is identity matrix with dimension of 𝑁𝑁 − 1 × 𝑁𝑁 − 1. However, the rank-one constraint is non-

convex and consequently the optimization problem (11) is still non-convex and cannot be solved using the 

convex optimization toolboxes. The idea to tackle the problem (11), is to use relaxation by neglecting the 

non-convex rank-one constraint, and imposing two new constraints to keep the rank-one property of the 

code matrix 𝑿𝑿 in the same time. Precisely, we resort to the following optimization problem, 

minimize 𝑡𝑡                                   
𝑋𝑋. 𝑡𝑡

subject to  

[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0        

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑁𝑁 − 𝜖𝜖1

  

‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2         

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 1           
𝑿𝑿 ≽ 0                         

                                                    (11) 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) is the maximum eigen value of 𝑿𝑿 and 𝜖𝜖1 and 𝜖𝜖2 are arbitrary small values greater than zero 

and lower than one. The idea behind imposing the two constraints 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑁𝑁 − 𝜖𝜖1 and ‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2 

is described in following. In this paper, we are supposed to design a code vector 𝑥𝑥∗ under the non-convex 

constant modulus constraint. This problem is difficult to address as we propose to use SDP to tackle the 

problem. Using the SDP means that instead of dealing with the quadratic objective function, we deal with 

a linear objective function, namely 𝑿𝑿 = 𝒙𝒙𝒙𝒙𝐻𝐻. However, since the matrix 𝑿𝑿 is originally made by a vector 

𝒙𝒙, it would have rank-one. The rank-one constraint is non-convex, thus we relax it in the optimization 

procedure, to be able to obtain the optimal code matrix 𝑿𝑿. If we do not consider any additional constraint 

on the code matrix 𝑿𝑿, then we may obtain a full rank solution, where we cannot extract a code vector 𝒙𝒙∗ 

from that, and there is no feasible solution to extract a code vector from a full-rank code matrix. Imposing 

the two introduced constraints help the code matrix 𝑿𝑿 to preserve its rank-one property while obtaining an 

optimal solution. This means that the optimal code matrix 𝑿𝑿∗ would not be necessarily rank one, but it 

would have small rank, if we impose the proposed two constraints. The reason can be inventively interpret 

as follows: 
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not be necessarily rank one, but it would have small rank, if 
we impose the proposed two constraints. The reason can be 
inventively interpret as follows:

· The constraint   means that we would 
like to obtain an optimal code matrix with a maximum Eigen 
value greater than a threshold. This forces the code matrix 

 to have small Eigen values separate from the largest one, 
which means the rank-one property.

· The constraint has a similar 
interpretation like the first one, but on the energy of the code 
matrix. This again help to preserve the rank-one property of 
the optimal code matrix .

Even-though the highlighted two constraints try to 
preserve the rank-one property of the optimal solution , 
there is no guarantee to obtain it after performing CVX. Thus, 
the randomization procedure would be beneficial to obtain 
the good solution, i. e., optimal code vector .

Since the feasible set of (13) contains the set of rank-one 
solutions, imposing two constraints of  
and  helps  not to lose its rank-one property 
in the relaxation. On the other hand, problem (13) is still 
nonconvex due to the nonlinearity of the imposed constraints. 
In the next section, we use MM1 algorithm to tackle this 
problem and replace the mentioned constraints with the 
majorizers.

6. MM ALGORITHM TO TACKLE WAVEFORM DESIGN 
OPTIMIZATION PROBLEM

In this part, using the MM algorithm we are replacing 
the two non-convex constraints of Problem (13), with their 
equivalent majorizers.

a) constraint of  Using the MM algorithm, we are 
trying to find a majorizer function for the maximum Eigen 
vector of . For SDP matrices we can write [58],

� (14)

Considering the problem of finding a supporting 
hyperplane for , for an arbitrary vector of  with 

we have,

� (15)

Therefore, if we add and subtract the term  then

� (16)

1-The MM algorithm consists of iteratively minimizing a surrogate that 
upper-bounds the objective, thus monotonically driving the objective 
function value downhill. One of the virtues of the MM algorithm is that it 
does double duty [59].

So, the matrix  is a supporting hyperplane for 
.

b)	 constraint of  Using a similar approach, we can 
find  as a supporting hyperplane for . Therefore we 
can write,

� (17)

Using the above majorizers, the optimal solution for 
problem (13) can be obtained by iteratively solving of the 
following SDP optimization problem.

� (18)

which is convex and can be efficiently tackled using CVX  
matlab toolbox [58]. Notice that, in the above optimization 
problem, the two parameters of 1ò  and 2ò  are small enough 
to ensure the rank-one property of X . Let *X  be an optimal 
solution of (18). We remark that if rank of *X  happens to 
be one, then the radar code design problem (18) is optimally 
solved and the SDP relaxation is tight. If it was not rank-one, 
depending on the rank of *X , there are some suboptimal 
solution for the problem (see [39] for more details). Finally, to 
obtain the optimal code vector *x , we resort to the rank-one 
randomization, as described in the next sub-section.

6-1- Rank-One Randomization Technique
The randomization procedure is the factorization of a 

matrix *X  into optimal vector *x . This procedure requires 
the definition of a suitable “ad-hoc” covariance matrix of the 
Gaussian distribution to be adopted in the randomization 
step. The basic criterion for selecting such a covariance 
matrix is that the entire randomization procedure has to lead 
to a feasible solution of the original problem with probability 
one and it has also to provide mathematical tractability in 
assessing the quality of the resulting solution. According to 
this guideline, denote by

� (19)

And by −d

� (20)

Where 1.2. . i N= … , indicates entries of the code vector 
−d . Additionally let,

• The constraint 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑁𝑁 − 𝜖𝜖1  means that we would like to obtain an optimal code matrix with 

a maximum Eigen value greater than a threshold. This forces the code matrix 𝑿𝑿∗ to have small 

Eigen values separate from the largest one, which means the rank-one property. 

• The constraint ‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2 has a similar interpretation like the first one, but on the energy of 

the code matrix. This again help to preserve the rank-one property of the optimal code matrix 𝑿𝑿∗. 

Even-though the highlighted two constraints try to preserve the rank-one property of the optimal solution 

𝑿𝑿∗, there is no guarantee to obtain it after performing CVX. Thus, the randomization procedure would be 

beneficial to obtain the good solution, i. e., optimal code vector 𝒙𝒙∗. 

Since the feasible set of (13) contains the set of rank-one solutions, imposing two constraints of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥

𝑁𝑁 − 𝜖𝜖1 and ‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2 helps 𝑿𝑿 not to lose its rank-one property in the relaxation. On the other hand, 

problem (13) is still nonconvex due to the nonlinearity of the imposed constraints. In the next section, we 

use MM1 algorithm to tackle this problem and replace the mentioned constraints with the majorizers. 

6. MM ALGORITHM TO TACKLE WAVEFORM DESIGN OPTIMIZATION PROBLEM 

In this part, using the MM algorithm we are replacing the two non-convex constraints of Problem (13), with 

their equivalent majorizers. 

a) constraint of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) Using the MM algorithm, we are trying to find a majorizer function for the 

maximum Eigen vector of 𝑿𝑿. For SDP matrices we can write [58], 

    𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑸𝑸) = maximize
𝒀𝒀 ≽ 0. 𝑡𝑡𝑡𝑡(𝒀𝒀) = 1       𝑡𝑡𝑡𝑡(𝒀𝒀𝒀𝒀)     .                                        (14) 

Considering the problem of finding a supporting hyperplane for 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿), for an arbitrary vector of 𝒛𝒛 with 

‖𝒛𝒛‖2 = 1 we have, 

 
1  The MM algorithm consists of iteratively minimizing a surrogate that upper-bounds the objective, thus 
monotonically driving the objective function value downhill. One of the virtues of the MM algorithm is that it does 
double duty [59]. 

• The constraint 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑁𝑁 − 𝜖𝜖1  means that we would like to obtain an optimal code matrix with 

a maximum Eigen value greater than a threshold. This forces the code matrix 𝑿𝑿∗ to have small 

Eigen values separate from the largest one, which means the rank-one property. 

• The constraint ‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2 has a similar interpretation like the first one, but on the energy of 

the code matrix. This again help to preserve the rank-one property of the optimal code matrix 𝑿𝑿∗. 

Even-though the highlighted two constraints try to preserve the rank-one property of the optimal solution 

𝑿𝑿∗, there is no guarantee to obtain it after performing CVX. Thus, the randomization procedure would be 

beneficial to obtain the good solution, i. e., optimal code vector 𝒙𝒙∗. 

Since the feasible set of (13) contains the set of rank-one solutions, imposing two constraints of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥

𝑁𝑁 − 𝜖𝜖1 and ‖𝑿𝑿‖2
2 ≥ 𝑁𝑁 − 𝜖𝜖2 helps 𝑿𝑿 not to lose its rank-one property in the relaxation. On the other hand, 

problem (13) is still nonconvex due to the nonlinearity of the imposed constraints. In the next section, we 

use MM1 algorithm to tackle this problem and replace the mentioned constraints with the majorizers. 

6. MM ALGORITHM TO TACKLE WAVEFORM DESIGN OPTIMIZATION PROBLEM 

In this part, using the MM algorithm we are replacing the two non-convex constraints of Problem (13), with 

their equivalent majorizers. 

a) constraint of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) Using the MM algorithm, we are trying to find a majorizer function for the 

maximum Eigen vector of 𝑿𝑿. For SDP matrices we can write [58], 

    𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑸𝑸) = maximize
𝒀𝒀 ≽ 0. 𝑡𝑡𝑡𝑡(𝒀𝒀) = 1       𝑡𝑡𝑡𝑡(𝒀𝒀𝒀𝒀)     .                                        (14) 

Considering the problem of finding a supporting hyperplane for 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿), for an arbitrary vector of 𝒛𝒛 with 

‖𝒛𝒛‖2 = 1 we have, 

 
1  The MM algorithm consists of iteratively minimizing a surrogate that upper-bounds the objective, thus 
monotonically driving the objective function value downhill. One of the virtues of the MM algorithm is that it does 
double duty [59]. 

                          𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)             (15) 

Therefore, if we add and subtract the term 𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇 then 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿)           ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) − 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)

                             = 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡((𝑿𝑿 − 𝑿𝑿𝑖𝑖)𝒛𝒛𝒛𝒛𝑇𝑇) 

                               = 𝑡𝑡𝑡𝑡(𝒁𝒁𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))                                                  (16)

               = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))  

So, the matrix 𝒁𝒁 =  𝒛𝒛𝒛𝒛𝑇𝑇 is a supporting hyperplane for 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿). 

b) constraint of ‖𝑿𝑿‖2
2 Using a similar approach, we can find 2𝑿𝑿 as a supporting hyperplane for‖𝑿𝑿‖2

2. 

Therefore we can write, 

                                                           ‖𝑿𝑿‖2
2 ≥ ‖𝑿𝑿0‖2

2 + 𝑡𝑡𝑡𝑡(2𝑿𝑿0(𝑿𝑿 − 𝑿𝑿0))                (17) 

Using the above majorizers, the optimal solution for problem (13) can be obtained by iteratively solving of 

the following SDP optimization problem. 

minimize 𝑡𝑡                                                                 
𝑿𝑿, 𝑡𝑡

subject to  

[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0                                          

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖)) ≥ 𝑁𝑁 − 𝜖𝜖1
‖𝑿𝑿𝑖𝑖‖2

2 + 𝑡𝑡𝑡𝑡(2𝑿𝑿𝑖𝑖(𝑿𝑿 − 𝑿𝑿𝑖𝑖)) ≥ 𝑁𝑁 − 𝜖𝜖2
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 𝟏𝟏                                          
𝑿𝑿 ≽ 0                                                       

                                                    (18) 

which is convex and can be efficiently tackled using CVX  matlab toolbox [58]. Notice that, in the above 

optimization problem, the two parameters of 𝜖𝜖1 and 𝜖𝜖2 are small enough to ensure the rank-one property of 

𝑿𝑿. Let 𝑿𝑿∗ be an optimal solution of (18). We remark that if rank of 𝑿𝑿∗ happens to be one, then the radar 

code design problem (18) is optimally solved and the SDP relaxation is tight. If it was not rank-one, 

 
2 CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into a modeling language, 
allowing constraints and objectives to be specified using standard Matlab expression syntax. 

                          𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)             (15) 

Therefore, if we add and subtract the term 𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇 then 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿)           ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) − 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)

                             = 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡((𝑿𝑿 − 𝑿𝑿𝑖𝑖)𝒛𝒛𝒛𝒛𝑇𝑇) 

                               = 𝑡𝑡𝑡𝑡(𝒁𝒁𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))                                                  (16)

               = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))  

So, the matrix 𝒁𝒁 =  𝒛𝒛𝒛𝒛𝑇𝑇 is a supporting hyperplane for 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿). 

b) constraint of ‖𝑿𝑿‖2
2 Using a similar approach, we can find 2𝑿𝑿 as a supporting hyperplane for‖𝑿𝑿‖2

2. 

Therefore we can write, 

                                                           ‖𝑿𝑿‖2
2 ≥ ‖𝑿𝑿0‖2

2 + 𝑡𝑡𝑡𝑡(2𝑿𝑿0(𝑿𝑿 − 𝑿𝑿0))                (17) 

Using the above majorizers, the optimal solution for problem (13) can be obtained by iteratively solving of 

the following SDP optimization problem. 

minimize 𝑡𝑡                                                                 
𝑿𝑿, 𝑡𝑡

subject to  

[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0                                          
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𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 𝟏𝟏                                          
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                                                    (18) 

which is convex and can be efficiently tackled using CVX  matlab toolbox [58]. Notice that, in the above 

optimization problem, the two parameters of 𝜖𝜖1 and 𝜖𝜖2 are small enough to ensure the rank-one property of 

𝑿𝑿. Let 𝑿𝑿∗ be an optimal solution of (18). We remark that if rank of 𝑿𝑿∗ happens to be one, then the radar 

code design problem (18) is optimally solved and the SDP relaxation is tight. If it was not rank-one, 

 
2 CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into a modeling language, 
allowing constraints and objectives to be specified using standard Matlab expression syntax. 

                          𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿) ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)             (15) 

Therefore, if we add and subtract the term 𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇 then 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿)           ≥ 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) − 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡(𝑿𝑿𝑿𝑿𝒛𝒛𝑇𝑇)

                             = 𝑡𝑡𝑡𝑡(𝑿𝑿𝑖𝑖𝒛𝒛𝒛𝒛𝑇𝑇) + 𝑡𝑡𝑡𝑡((𝑿𝑿 − 𝑿𝑿𝑖𝑖)𝒛𝒛𝒛𝒛𝑇𝑇) 

                               = 𝑡𝑡𝑡𝑡(𝒁𝒁𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))                                                  (16)

               = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖))  

So, the matrix 𝒁𝒁 =  𝒛𝒛𝒛𝒛𝑇𝑇 is a supporting hyperplane for 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿). 

b) constraint of ‖𝑿𝑿‖2
2 Using a similar approach, we can find 2𝑿𝑿 as a supporting hyperplane for‖𝑿𝑿‖2

2. 

Therefore we can write, 

                                                           ‖𝑿𝑿‖2
2 ≥ ‖𝑿𝑿0‖2

2 + 𝑡𝑡𝑡𝑡(2𝑿𝑿0(𝑿𝑿 − 𝑿𝑿0))                (17) 

Using the above majorizers, the optimal solution for problem (13) can be obtained by iteratively solving of 

the following SDP optimization problem. 

minimize 𝑡𝑡                                                                 
𝑿𝑿, 𝑡𝑡

subject to  

[𝑡𝑡 𝒚𝒚𝐻𝐻

𝒚𝒚 𝑰𝑰𝑁𝑁−1
] ≽ 0                                          

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝑡𝑡𝑡𝑡(𝒁𝒁(𝑿𝑿 − 𝑿𝑿𝑖𝑖)) ≥ 𝑁𝑁 − 𝜖𝜖1
‖𝑿𝑿𝑖𝑖‖2

2 + 𝑡𝑡𝑡𝑡(2𝑿𝑿𝑖𝑖(𝑿𝑿 − 𝑿𝑿𝑖𝑖)) ≥ 𝑁𝑁 − 𝜖𝜖2
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑿𝑿) = 𝟏𝟏                                          
𝑿𝑿 ≽ 0                                                       

                                                    (18) 

which is convex and can be efficiently tackled using CVX  matlab toolbox [58]. Notice that, in the above 

optimization problem, the two parameters of 𝜖𝜖1 and 𝜖𝜖2 are small enough to ensure the rank-one property of 

𝑿𝑿. Let 𝑿𝑿∗ be an optimal solution of (18). We remark that if rank of 𝑿𝑿∗ happens to be one, then the radar 

code design problem (18) is optimally solved and the SDP relaxation is tight. If it was not rank-one, 

 
2 CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into a modeling language, 
allowing constraints and objectives to be specified using standard Matlab expression syntax. 

depending on the rank of 𝑿𝑿∗, there are some suboptimal solution for the problem (see [39] for more details). 

Finally, to obtain the optimal code vector 𝒙𝒙∗, we resort to the rank-one randomization, as described in the 

next sub-section. 
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� (21)

� (22)

Hence, by the construction of 

� (23)

a feasible solution to the optimization problem can be 
obtained by using arg* * ij

i ii e
ξ=x X  with iξ  indicating the 

entries of the random vector [ ]1 2. . .  T N
Nξ ξ ξ= … ∈î   from the 

complex normal distribution
( )*0. ,   1,  2,  ,  i N− − = … D X D . This forms the optimal solution 

* * *
1 . .  

T

Nx x = … x . The Gaussian randomization procedure 
for radar code design problem is written in Algorithm 1. 
Notice that î  is a random vector from the complex normal 
distribution ( )*0. − −

 D X D   which helps to obtain an optimal 
solution using power-method like procedures (see [60] for 
more details.) So, using the Gaussian rank-one randomization, 
optimal code vector *x  can be efficiently obtained.

6-1- Optimization Algorithm and Computational Complexity
Finally, the whole proposed optimization framework is 

written in Algorithm 2. Notice that, at the final step, Eigen 
decomposition can be performed to obtain an optimal 
solution from the rank-one optimal *X . However, we 
numerically observed that the obtained solution at the final 
stage using the randomization is almost equivalent with that 
of obtained by Eigen decomposition.

The computational complexity of the proposed algorithm 

can be calculated according to the two main steps:
1)	 Solving and SDP problem with the complexity of 

( )3.5N .
2)	  Performing rank-one decomposition with the 

complexity of the ( )3N .
Indeed, the highest computational complexity per 

iteration would be ( )3.5N .

7. NUMERICAL RESULTS
In this section, we focus on the performance of the 

proposed algorithm in designing radar waveforms with good 
ISL values. We assume 510η −= , and 

1 2 0.1 = =ò ò in Algorithm 2. 
To proceed further, we first obtain the theoretical minimum 
and maximum values that can be considered for ISL as the 
limit values.

7-1- Bounds on the achievable ISL
Bound on achievable ISL is known and addressed in the 

literature, but for designing set of sequences [61]–[63]. The 
aperiodic ISL lower bound for a sequence set under the total 
energy constraint with M  as the number of set size and N  
as the code length can be written as [63],

( )2 1L N M M= − � (24)

When  1 M =  (the case we considered in this paper), 
according to (24) this bound is equal to 0. However, we 
show that for the case of designing unimodular sequences, 
this bound is at least greater than 1. Note that in [63], when 

 2M ≥  an analytical formula for generating set of sequences 

*X
*x

*, , , ,  − −d d D D X
Nξ ( )*0. − −D X D

arg* * ij
i ii e

=x X

 

Algorithm 1 Gaussian Randomization Procedure for Radar Code Design Problem

Algorithm 2 Proposed algorithm for ISL minimization
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– under the energy rather than the considered constant 
modulus constraint of any size that attain the ISL lower 
bound is derived. Also, most of the available literature that 
focused on ISL-oriented design problems; almost meet the 
lower bound, but only when designing set of sequences (not a 
single sequence) (see e. g., [4], [5], [9], [44], [55], [63], [64]). 
Looking at (5), we observe that ISL can be written as,

2
2 2

1
1

ISL
N

k N
k

r r
−

−
=

= +∑
�

(25)

In case of designing unimodular sequences, we obtain:

( )11*
1 1 1,NN jjj

N Nr x x e e e φ φφφ −−
− = = = = � (26)

Where 1
1  jx e φ= and Nj

Nx e φ=  . Thus, for case of designing 
unimodular sequences we obtain 1L ≥  (Notice that the 
available lower bound in (24) shows that 0L ≥ , but here 
we have shown that this bound is greater than 1 for case of 
designing unimodular sequences).

The upper bound for the ISL happens when all the 
correlation lags are equal to the energy of the signal (i. e., N, 

in case of unimodular sequences). This upper bound for the 
constant modulus sequences can be obtained by,

( )2 1U N N= − � (27)

In the following, we assess the performance of the 
proposed algorithm. Considering the introduced lower and 
upper bounds, it is easy to intuitively observe the enhancement 
suggested by this paper.

7-2- Performance Assessment
In this part we assess the performance of the proposed 

algorithm when it is initialized with different sequences. In 
Fig. 1a, we set  1 6N =  and initialize the proposed algorithm 
with a random sequence, the depict the correlation levels of 
the obtained sequence, as well as its initial sequence. From Fig. 
1a, observe that all the sidelobes are interestingly minimized, 
in comparison with the initial sequence. This Figure gives an 
intuitive understanding of the performance of the proposed 
algorithm. In Fig. 1b we show the convergence behavior of the 
proposed algorithm when obtaining the sequence illustrated 
in Fig. 1a. An improvement around 5 times is observable in 
the ISL values achieved by the proposed algorithm.

Next, we investigate the performance of the proposed 

 

(a) Auto-correlation level of initial and obtained sequences. 

 

(b) ISL values of obtained sequence per iteration. 

Figure 1  Performance of the proposed algorithm in ISL minimization at length 𝑵𝑵 =  𝟏𝟏𝟏𝟏 

  

Fig. 1:  Performance of the proposed algorithm in ISL minimization at length 
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algorithm in improving the ISL of a sequence which is well 
known in the literature, due to the interesting properties in 
its autocorrelation function. Notice that, typically random 
sequences does not have good ISL values. Further, the 
proposed algorithm can also improve the ISL value, even if 
we initialize it from a sequence which itself has a good ISL. In 
Fig. 2, we initialize the algorithm with Frank, which is known 
as a polyphase sequence that has a very small ISL value. Since, 
Frank sequences are only available when the code length is 
a perfect square, we   25N = . In Fig. 2a, the auto-correlation 

levels of the initial Frank and obtained optimal sequence is 
depicted. Here, the visual goodness of the obtained sequence, 
may not be clearly observed. However, looking at Fig. 2b, we

observe that the obtained sequence has the ISL of 12, 
whereas the initial sequence has the ISL value around 22
. This means that, about dB  improvement happens, when 
initializing the algorithm by Frank sequence in length   25N = . 
This example clearly shows the powerfulness of the proposed 
algorithm in ISL minimization. In Fig. 3, we change the code 
length N  from 2  200to , and assess the obtained ISL values 

 

 

(a) Auto-correlation level of Frank and obtained sequences. 

 

(b) ISL values of obtained sequence per iteration. 

Figure 2 Performance of the proposed algorithm in ISL minimization at length N = 25 initialized by Frank sequence. 

  

Fig. 2:  Performance of the proposed algorithm in ISL minimization at length N = 25 initialized by Frank sequence. 

 

Figure 3 The initial and obtained ISL values for the code length  𝑁𝑁 =  2, 3, … , 200. 

  

Fig. 3 : The initial and obtained ISL values for the code length.
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comparing with random initial sequences. We observer that by 
increasing the code length, the gap between the ISL values of 
the initial sequence and the obtained optimal codes increases. 
Indeed, the longer the sequence the higher the gain can be 
obtained by the proposed ISL minimization framework.

7-3- Comparing the Performance with the Counterpart based 
on a Normalized Measure

In this part we compare the performance of the proposed 
method, with the method proposed in [7], which is the 
most recent counterpart in ISL minimization. Note that the 
performance of the algorithm in [7] is reported as the best 
among the most recent literature. So, we adopt this method 
to compare the performance of the proposed method. In Fig. 
4, we start both the proposed algorithm and the algorithm 
proposed in [7]

from similar initial sequences of length N = 25. Precisely, in 
Fig. 4a, we start both the algorithms form Golomb sequence, 
while in Fig. 4b we initial both the methods with a random 
polyphase sequence. Further, as a normalized measure, we 
plot correlation level (dB) that is

( ) 10Correlation Level dB 10log kr
N

=

where kr  is the aperiodic auto-correlation function of 
the complex unimodular sequence { } 1

N
n n

x
=

 defined by (4) 
with N  as the code length. The Fig. 4 intuitively depicts the 
performance of the proposed algorithm in comparison with 
[7]. Some enhancements in different lengths are observable 
in this Figure.

In order to evaluate the performance of the proposed 
algorithm quantitatively and via a normalized metric, in the 
following we use the definition

( ) 10 2ISLR dB 10log ISL
N

=

which is the ratio of integrated energy of the sidelobes 
to the peak energy of the mainlobe. For the comparison, we 
start from 5 independent random sequences at different code 
lengths   2, 3, 4, , 75N = … , and report the averaged ISLR(dB) 
values of the obtained sequences for all the initial, proposed, 
and method in [7]. A slightly enhancement at different lengths 
can be observed from this Figure. Precisely, in length 16 to 
18, an improvement around 2dB is obtained by the proposed 
method in comparison with the counterpart.

 

(a) Correlation level of initial Golomb sequence, method in [7], and the proposed method. 

 

(b) Correlation level of initial random sequence, method in [7], and the proposed method. 

Figure 4 Comparison between performance of the proposed method and method in [7], when both are starting from similar sequences of 

length N = 25. 

  

Fig. 4:  Comparison between performance of the proposed method and method in [7], when both are starting from similar sequences of length 
N = 25.
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8. CONCLUSION
In this paper, we proposed an optimization framework 

to design radar transmit waveform with good aperiodic 
autocorrelation properties. We precisely used the SOCP and 
SDP and with the aim of MM we converted the non-convex 
optimization problem to a convex version. Finally using the 
CVX toolbox we tackled the problem. A possible future track 
is to tackle the PSL minimization problem.
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