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ABSTRACT: This paper is concerned with fuzzy tracking control optimized via multi-objective 
particle swarm optimization for stable walking of biped robots. To present an optimal control approach, 
multi-objective particle swarm optimization is used to design the parameters of the control method 
in comparison to three effectual multi-objective optimization algorithms in the literature. In particle 
swarm optimization, a dynamic elimination technique is utilized as a novel approach to prune the 
archive effectively. Moreover, a turbulence operator is used to skip the local optima and the personal 
best position of each particle is determined by making use of the Sigma method. Normalized summation 
of angles errors and normalized summation of control efforts are two conflicting objective functions 
addressed by dint of multi-objective optimization algorithms in the present investigation. By contrasting 
the Pareto front of multi-objective particle swarm optimization with the Pareto fronts of other methods, it 
is illustrated that multi-objective particle swarm optimization performs with high accuracy, convergence 
and diversity of solutions in the design of fuzzy tracking control for nonlinear dynamics of biped robots. 
Finally, the proper performance of the proposed controller is demonstrated by the results presenting 
an appropriate tracking system and optimal control inputs. Indeed, the appropriate tracking system 
and optimal control inputs prove the efficiency of optimal fuzzy tracking control in dealing with the 
nonlinear dynamics of biped robots. 
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1. Introduction
1.1 Definition and importance of subject

Of particular interest are biped robots which are the most 
similar robot to humans and are capable of doing formidable 
and difficult tasks. Due to their heavy nonlinear dynamic 
equations, implementing an appropriate controller capable 
of providing the stability of biped robots is a challenging 
subject and has attracted a great deal of researchers’ interest. 
Population-based paradigms to solve constrained optimization 
problems are of considerable interest to researchers owing 
to their simple structure, easy implementation and fast 
computation. Swarm-based and genetic-based paradigms 
are two prominent population-based heuristic algorithms 
to address constrained optimization problems [1]. Particle 
Swarm Optimization (PSO) is a swarm intelligence method 
emulating the behavior of social species such as flocking 
birds, swimming wasps, schooling fish, etc. On the other hand, 
genetic algorithm optimization is a traditional optimization 
technique inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover. Fuzzy control, which is 
straightforward conceptually, can be regarded as an effective 
control approach in dealing with complex nonlinear systems. 
Due its unique advantages, it has been utilized extensively in 

a broad range of subjects, to name but a few, aviation industry 
[2-4], robotics [5-7], vehicles [8-10], and turbines [11-13]. 

1.2 Explanation of references
Particularly, Li et al. [14] proposed two efficient fuzzy 

control methods, i.e. a fuzzy feedback control method and an 
adaptive fuzzy control method to suppress the state variables 
of the Lorenz-Stenflo chaotic system to its equilibrium 
point. Yeh et al. [15] introduced a scheme of neural-network 
fuzzy control for a time-delay chaotic building system 
by dint of the Tagaki-Sugeno fuzzy model and parallel 
distributed compensation scheme in the controller design. 
Chen[16] developed an easy-to-use fuzzy control approach 
for interconnected structural systems and guaranteed the 
stability of the control approach by using the fuzzy Lyapunov 
functions. Li et al. [17] presented the adaptive fuzzy robust 
control problem for a class of Single-Input and Single-Output 
(SISO) stochastic nonlinear systems in a strict-feedback form 
and guaranteed that the closed-loop system is input-state-
practically stable and the output of the system converges to 
a small neighborhood of the origin by appropriately tuning 
several design parameters. Wang et al. [18] proposed a novel 
adaptive fuzzy controller to implement non-overshoot control 
in power plants where the Lyapunov-based adaptive law 
was utilized to guarantee the stability of the controller and *Corresponding author’s email: mahmoodabadi@guilan.ac.ir
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a modified adaptive binary harmony search algorithm was 
used to search the optimal control parameters of the control 
approach. 

Effective control approaches have been successfully 
proposed and implemented in the literature regarding biped 
robots as follows, to name but a few, fuzzy motion control 
based on reinforcement learning and Lagrange polynomial 
interpolation [19], a dynamic balance control involving 
Kalman filter and the fuzzy motion controller [20], a 
feedback-control law obtained via feedback-linearization 
techniques [21], a structure of robust adaptive control 
involving balancing and posture control for regulating the 
center-of-mass position and trunk orientation of biped robots 
[22], adaptive walking control inspired by the biological 
concept of central pattern generators [23], a robust adaptive 
sliding-mode control scheme based on the fuzzy wavelet 
neural network for a class of condenser-cleaning mobile 
manipulator regarding parametric uncertainties and external 
disturbances [24], and a time-sequence-based fuzzy Support 
Vector Machine (SVM) learning control system considering 
time properties of biped walking samples [25].

In this paper, particle swarm optimization in comparison 
to genetic algorithm optimization is used to ascertain the 
optimal parameters of the fuzzy control approach. Since these 
optimization algorithms benefit from unique advantages, they 
have been widely employed to ascertain optimal solutions 
in the research domain of control, specifically, predictive 
model control [26-29], sliding mode control [30-32], robust 
control [33-36] and fuzzy control [37-40]. Soltanpour and 
Khooban[41] utilized particle swarm optimization to find the 
existing membership functions of fuzzy sliding mode control 
for the position of a robot manipulator. Wonohadidjojo et 
al. [42] used a fuzzy logic controller based upon particle 
swarm optimization for the position control of an electro-
hydraulic actuator system and reduced the chattering problem 
significantly. Niknam et al. [43] introduced an optimal type-2 
fuzzy sliding mode controller by means of a novel heuristic 
algorithm, i.e. particle swarm optimization with random 
inertia weight and applied it to an inverted pendulum system. 
Schacher [44] constructed an optimal feedback controller 
for robots concerning stochastic uncertainties in the initial 
conditions with expected cost functions evaluating the 
primary control expenses and the tracking error. Bui et al. [45] 
designed three controllers involving optimal fuzzy control 
using hedge algebras, fuzzy control using hedge algebras and 
conventional fuzzy control in order to provide the stability 
in the vertical position of a damped-elastic-jointed inverted 
pendulum subjected to a time-periodic follower force. 
Chaouch et al. [46] proposed a self-tuning fuzzy inference 
sliding mode control approach optimized online based upon 
the Takagi-Sygeno type of rules and a back-propagation 
algorithm to minimize a cost function for single inverted 
pendulum position tracking control.

1.3 Illustration of the new work compared with previous 
works

This study is in advance of authors’ previous studies on 

optimal control approaches as follows. While sliding mode 
tracking control applied to a biped robot [47] and decoupled 
sliding mode control implemented in an inverted pendulum 
system [48] were studied in the literature, fuzzy tracking 
control with appropriate membership functions and error 
indexes is presented and studied in this paper as an effectual 
and straightforward controller not involving the intricacies 
and disadvantages of sliding mode control, e.g. the chattering 
problem of control inputs. To this end, the rest of this paper 
is organized as follows. Section 2 provides the dynamic 
equations and modeling of the biped robot in the lateral plane. 
The architecture and formulation of fuzzy tracking control for 
the biped robot is presented in Section 3. Section 4 involves 
the details of multi-objective particle swarm optimization and 
a dynamic elimination technique used to prune the archive 
effectively. Section 5 includes the results and analysis of 
proposed optimal fuzzy tracking control for the biped robot. 
Conclusions are provided in Section 6.

2. The Dynamics and Modeling of the Biped Robot
The biped robot walking in the lateral plane is modeled by 

means of a three-link model according Fig. 1 [47]. The first 
link is the stance leg on the ground, the second link represents 
the head, arms, and trunk, and the third link is the swing leg. 
More precisely, these links move freely in the lateral plane. 
The parameters of the biped robot are acquired from the 
anthropometric table for a humanoid robot having 171 cm 
height and 74 kg weight and are presented in Table 1 [47]. 
The distance between two legs of the model ( 2d2) equals 32.7 
cm.

In order to gain the dynamic equations of the biped robot, 
the Newton-Euler approach is used to derive the dynamic 
equations of the model [47]. Moreover, θ1,θ2 and θ3 are 
the angles between the first, second and third links and the 
assumed vertical line of these links, respectively. Thus, the 
dynamic equations of the model for  θ1,θ2 and θ3 are: 

Fig. 1. The parameters of the robot based upon the anthropometric 
table.

 
 

 

 

 

Fig. 1. The parameters of the robot based upon the anthropometric table. 

 

 
Fig. 2. The membership function for fuzzy control of the biped robot. 
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where, θp
d (p=1,2,3) are the desired values of joint angles 

θp (p=1,2,3). Moreover, θp
d (q=1,2,3) are the derivative of 

the desired values of joint angular velocities θp (p=1,2,3). 
Further, Ep and Eq  illustrate the related errors to the joint 
angles and angular velocities, respectively.  In order to have 
the normalized errors, new error indexes parameters are 
introduced as follows.

Then, a membership function is constructed by Fig. 2 and 
it is illustrated in Table 2. In Fig. 2, the reference result   of 
the consequent variable   should be calculated by the product-
sum gravity method [49,50]. Finally, the control efforts are 
obtained by Eq. (6).

where, θ1,θ2 and θ3 are the joint angles,  u1,u2 and u3  are 
the control inputs,  m1,m2 and m3  are the masses of the links,   
l1, l2and l3 are the lengths of the links, and 2d2  is the distance 
between two legs.

3. Fuzzy Tracking Control of the Biped Robot
The proposed fuzzy tracking control is based upon a 

closed-loop fuzzy system. The stages of the control method 
are designed and constructed step by step as follows. To 
control the system, the state variable vector is chosen as  .  
Moreover, the errors could be defined as Eq. (4):

Table 1. The Anthropometric parameters of the model of the biped robot.

 
 

 

           Table 1. The Anthropometric parameters of the model of the biped robot. 
The characteristics of the robot First link Second link Third link 

Mass 𝑚𝑚1 = 13.75  𝑚𝑚2 = 46.5  𝑚𝑚3 = 13.75  
Inertia 𝐼𝐼1 = 1.4  𝐼𝐼2 = 3.25  𝐼𝐼3 = 1.4  
Length 𝑙𝑙1 = 0.91  𝑙𝑙2 = 0.8  𝑙𝑙3 = 0.91  

The center of gravity ℎ1 = 0.50 ℎ2 = 0.27  ℎ3 = 0.50  
 

 

Table 2. The rule modules for each input item. 
𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1,2,3,4,5,6) 

Antecedent Variables 
𝑓𝑓𝑖𝑖(𝑖𝑖 = 1,2,3,4,5,6) 

Consequent Variables 
Negative Big −1.0 

Zero 0.0 
Positive Big 1.0 

 

Table 3. The objective functions and design variables corresponding to the optimum design points A, B, and C. 
Optimum design points A B C 

Normalized summation of angles errors 2.340 ×  10−1  3.159 × 10−1  6.269 × 10−1  
Normalized summation of control efforts 4.762 × 10−1  1.727 × 10−1  8.012 × 10−2  

Design variable 𝑤𝑤1 1.998 × 103  1.999 × 103  1.984 × 103  
Design variable 𝑤𝑤2 4.990 × 102  4.991 × 102  4.967 × 102  
Design variable 𝑤𝑤3 9.964 × 102  5.450 × 102  2.166 × 102  
Design variable 𝑤𝑤4 9.981 × 101  9.972 × 101  8.715 × 101  
Design variable 𝑤𝑤5 1.997 × 103  1.995 × 103  1.039 × 103  
Design variable 𝑤𝑤6 4.987 × 102  1.429 × 102  1.817 × 102  
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Fig. 2. The membership function for fuzzy control of the biped robot. 
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In Eq. (6), w1, w2, w3, w4, w5  and  w6 are weight constants 
and these parameters are usually identified by a trial-and-
error process. One proper approach to choose these factors 
is to use multi-objective optimization algorithms such as 
particle swarm optimization, genetic algorithm optimization, 
etc. In this paper, multi-objective particle swarm optimization 
is utilized to eliminate the boring and repetitive trial-and-
error process and find parameters wi (i=1,2,3,4,5,6) of fuzzy 
control.

4. Multi-Objective Particle Swarm Optimization
Particle swarm optimization is a swarm intelligence 

method emulating the behavior of social species such as 
flocking birds, swimming wasps, schooling fish, etc. It 
is a population-based paradigm to address constrained 
optimization problems. In PSO, each candidate solution is 
associated with a velocity. The candidate solutions are named 
particles and the position of each particle changes according 
to its own experience and that of its neighbors (velocity). It 
is expected that the particles will move toward better solution 
areas. The particles are manipulated as follows.

where, )(txi

→

 is the position of particle i and )(tvi

→

 

represents the velocity of particle   at time step t. ]1,0[, 21 ∈rr  
are random values. C1 is the cognitive learning factor and C2   
is the social learning factor. W is the inertia weight which 
is employed to balance the global and local search ability. 
C1 , C2 and W are obtained by the formulas presented in 
reference [47]. The personal best position of the particle i is 

ipbestx
→

 and gbestx
→

 is the position of the best particle of the entire 
swarm. By regarding a large value of  C1 and a small value 
of C2, particles are allowed to move around their personal 

best position ( gbestx
→

). However, by regarding a small value 
of C1 and a large value of  C2, particles converge to the best 

particle of the entire swarm ( gbestx
→

). A large inertia weight 
makes a global search straightforward while a small inertia 
weight makes a local search easy. The strategies to choose 
the global best position and the personal best position, i.e. 

gbestx
→

 and ipbestx
→

 are presented in reference [47]. Moreover, 
the turbulence operator is utilized to escape a local minimum 
and have the opportunity to ascertain superior positions [47].

In the multi-objective optimization problems, an archive is 
used to store the set of non-dominated solutions. If all the non-
dominated solutions are stored in the archive, the size of the 

archive enhances very quickly. The archive must be updated 
at the each iteration. If the size of the archive expands too 
much, this update may become computationally expensive. 
To address this issue, a criterion is needed to diminish the 
growth of the archive [51-54]. We previously proposed 
adaptive εelimination to retain more leaders in the archive in the 
initial iterations and this increases the convergence of the 
PSO algorithm [47]. Here, a dynamic elimination technique 
is used to prune the archive. In this approach, each particle 

in the archive has an elimination radius equaling Dynamicε  and 
if the Euclidean distance (in the objective function space) 
between two particles is fewer than Dynamicε  , then one of them 
will be omitted. Fig. 3 illustrates this technique as an example 
in a two-objective function space. 

In this study, the following equation is employed to 
determine the value of Dynamicε :

where, t is the current iteration number. The maximum 
iteration is the maximum number of allowable iterations, and  
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  to the nearest integer in 

the direction of zero.

Using Eq. (9) for Dynamicε  leads to retain more non-
dominated solutions in the archive at the initial iterations (the 
elimination radius is small) and this enhances the convergence 
of the algorithm. When the current iteration grows, the 
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Fig. 3. The particles located in the radius of other particles will be 

removed using the Dynamicε
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elimination radius would be large and more similar solutions 
will be removed. This increases the speed of the algorithm 
and uniform diversity of non-dominated solutions. Fig. 4 

shows the changes of Dynamicε   over iterations.

5. Pareto Design of the Proposed Fuzzy Tracking Control
In fuzzy tracking control, the heuristic fuzzy parameters 

wi (i=1,2,3,4,5,6) must be ascertained by means of an 
approach providing appropriate control performance. In this 
respect, multi-objective particle swarm optimization is used 
to determine the proper parameters and eliminate the tedious 
and repetitive trial-and-error process. The performance of 
a controlled closed loop system is usually evaluated by a 
variety of goals. In this paper, the normalized summation of 
angles errors and normalized summation of control efforts are 
regarded as the objective functions. These objective functions 
have to be minimized simultaneously. The vector [w1 w2 
w3 w4 w5 w6] is the vector of selective parameters of fuzzy 
mode control and all the elements of the vector are positive 
constants. The normalized summation of angles errors and 
normalized summation of control efforts are functions of this 
vector’s components. This means that by selecting various 
values for the selective parameters, we can make changes in 
the normalized summation of angles errors and normalized 
summation of control efforts. The regions of the selective 
parameters are:
1000<w1<2000, 100<w2<500, 100<w3<1000,
 10<w4<100, 1000<w5<2000, 100<w6<500                              

When solving the multi-objective problem, the population 
size is set at 30 and also, the maximum iteration is set at 
150. The parameters of the multi-objective algorithm are 
chosen as follows. The inertia weight W1=0.9 and W2=0.4; 
C1 is linearly decreased with C1i=2.5 and C1f=0.5; and 
C2 is linearly increased with C2i=0.5 and C2f=2.5, over 
iteration. The neighborhood radius of the leader selection 
is Rneighborhood=0.02. The Pareto front of this multi-objective 
problem is shown in Fig. 5. Furthermore, the feasibility and 
efficiency of multi-objective particle swarm optimization is 

assessed in comparison with Sigma method by Mostaghim 
and Teich [52], modified NSGAII by Atashkari et al. [55] and 
MATLAB Toolbox MOGA.

While the performances of these algorithms are 
appropriate for this problem, multi-objective particle swarm 
optimization has more uniformity and diversity in comparison 
to other algorithms. Points A and C in Fig. 5 denote the best 
normalized summation of angles errors and normalized 
summation of control efforts, correspondingly. All the points 
of the Pareto front are non-dominated and can be selected by 
designers based upon the design criteria. Point C in Fig. 5 is 
the trade-off optimum choice when considering the minimum 
values of both of the normalized summation of angles errors 
and normalized summation of control efforts. Objective 
functions and design variables corresponding to the optimum 
design points A, B, and C are shown in Table 3. The real  
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tracking trajectories of the optimum design points A, B, and 
C are shown in Figs. 6 to 8. As it is illustrated in Figs. 9 to 11, 
the design point C has the minimum control effort among the 

optimum design points and point A has the maximum effort. 
Moreover, the phase plane diagrams of fuzzy tracking control 
are presented in Figs. 12 to 14.

 
 

 

           Table 1. The Anthropometric parameters of the model of the biped robot. 
The characteristics of the robot First link Second link Third link 

Mass 𝑚𝑚1 = 13.75  𝑚𝑚2 = 46.5  𝑚𝑚3 = 13.75  
Inertia 𝐼𝐼1 = 1.4  𝐼𝐼2 = 3.25  𝐼𝐼3 = 1.4  
Length 𝑙𝑙1 = 0.91  𝑙𝑙2 = 0.8  𝑙𝑙3 = 0.91  

The center of gravity ℎ1 = 0.50 ℎ2 = 0.27  ℎ3 = 0.50  
 

 

Table 2. The rule modules for each input item. 
𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1,2,3,4,5,6) 

Antecedent Variables 
𝑓𝑓𝑖𝑖(𝑖𝑖 = 1,2,3,4,5,6) 

Consequent Variables 
Negative Big −1.0 

Zero 0.0 
Positive Big 1.0 

 

Table 3. The objective functions and design variables corresponding to the optimum design points A, B, and C. 
Optimum design points A B C 

Normalized summation of angles errors 2.340 ×  10−1  3.159 × 10−1  6.269 × 10−1  
Normalized summation of control efforts 4.762 × 10−1  1.727 × 10−1  8.012 × 10−2  

Design variable 𝑤𝑤1 1.998 × 103  1.999 × 103  1.984 × 103  
Design variable 𝑤𝑤2 4.990 × 102  4.991 × 102  4.967 × 102  
Design variable 𝑤𝑤3 9.964 × 102  5.450 × 102  2.166 × 102  
Design variable 𝑤𝑤4 9.981 × 101  9.972 × 101  8.715 × 101  
Design variable 𝑤𝑤5 1.997 × 103  1.995 × 103  1.039 × 103  
Design variable 𝑤𝑤6 4.987 × 102  1.429 × 102  1.817 × 102  

 

Table 3. The objective functions and design variables corresponding to the optimum design points A, B, and C.

Fig. 6. Trajectory tracking θ1 of the optimum design points A, B, and C shown in the Pareto front.
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Fig. 7. Trajectory tracking θ2 of the optimum design points A, B, and C shown in the Pareto front.
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Fig. 9. Control effort u1 for the optimum design points A, B, and 
C shown in the Pareto front.
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Fig. 8. Trajectory tracking θ3 of the optimum design points A, B, 
and C shown in the Pareto front.
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Fig. 11. Control effort u3 for the optimum design points A, B, 
and C shown in the Pareto front.
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Fig. 10. Control effort u2 for the optimum design points A, B, 
and C shown in the Pareto front.
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Fig. 12. Phase plane x1=θ1 and x2=θ1 of the optimum design 
points A, B, and C shown in the Pareto front.
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Fig. 13. Phase plane x3=θ3 and x4=θ 3 of the optimum design 
points A, B, and C shown in the Pareto front.
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6. Conclusions
This paper presented fuzzy tracking control as an effective 

control approach to deal with the nonlinearity of the dynamic 
equations and tracking system of a biped robot stepping 
purely in the lateral plane on the slope. To determine the 
heuristic fuzzy parameters properly, multi-objective particle 
swarm optimization was used to obtain the Pareto front of the 
non-commensurable objective functions in the design of the 
fuzzy tracking controller. To augment the uniform diversity 
of the Pareto front, the leader selection method in this 
optimization algorithm is based upon the density measures. 
Furthermore, the Sigma method was employed to ascertain 
the personal best position of each particle. The dynamic 
elimination technique was proposed to prune the archive, 
and the turbulence operator was utilized to skip the local 
optimum. Two conflicting objective functions, the normalized 
summation of angles errors and normalized summation of 
control efforts were regarded in the optimal control design. 
The Pareto front of particle swarm optimization was compared 
with the Pareto front of three efficient multi-objective 
optimization algorithms, i.e. MATLAB Toolbox MOGA, 
modified NSGAII and the Sigma method. The Pareto front of 
multi-objective particle swarm optimization was much more 
scattered than the Pareto front of other algorithms, and the 
points spread near to both axes of Pareto front. Consequently, 
the designer has ample opportunity to select the finest point. 
To this end, three points of multi-objective particle swarm 
optimization were selected to compute the six parameters of 
the fuzzy control. The proper tracking system and optimal 
control inputs prove the efficiency of optimal fuzzy tracking 
control in dealing with the nonlinear dynamics of biped 
robots.
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