
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 52(12) (2021) 873-876
DOI:   10.22060/mej.2019.16292.6321

Optimal Adaptive Super-Twisting Sliding Mode Control of an Lower Limb Exoskeleton 
M. Mokhtari, M. Taghizadeh*, M. Mazare

School of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran

ABSTRACT: Disturbance and bounded uncertainty are the most important factors which can be 
degrade efficient performance of the lower limb exoskeleton. While sliding mode control is a robust 
control approach against such disturbances, however, by applying the boundary layer in spite of 
chattering phenomenon, robust performance becomes feeble. In order to overcome this drawback, high 
order sliding mode algorithms like supper twisting has been proposed in which, chattering phenomenon 
is mitigated by eliminating the boundary layer. In this paper, an adaptive supper twisting sliding mode 
control is proposed for a lower limb exoskeleton robot in which the sliding variable and its derivative 
tend to zero continuously in presence of the disturbance and bounded uncertainty. In addition, the desired 
trajectory of the upper limb is determined so that in each moment the stability of the robot is guaranteed 
based on zero momentum point criterion. To achieve maximum stability and minimum error in tracking 
of the desired trajectories, the controller parameters and the upper limb desired trajectory parameters are 
optimized using the Harmony Search algorithm. Robot is modeled in ADAMS and then control inputs 
are applied to the Adams model. Finally, Performance of two controllers is compared. Simulation results 
reveal the effectiveness of the proposed controller rather than the optimal sliding mode controller.  
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1- Introduction
Wearable robotic systems (Exoskeletons) are devices that

are generally similar to the human body or part of the human 
body and have harmonious behavior with the movements of 
the human body. Exoskeletons are applied to enhance the 
performance, ability and potency of healthy human or as a 
rehabilitation device. Conformity with the human body and 
also control strategies which are used in exoskeletons, has 
immense impacts on the performance of these means [1]. 

In this paper, first of all, the desired trajectories are 
designed based on reference [2]. Next, dynamic model of the 
robot is extracted using Lagrange method. In order to control 
the position of the robot joints and reduce the interacting 
force between the robot and the user, Sliding Mode Control 
(SMC) and adaptive robust nonlinear model predictive 
control are carried out. To guard against disturbances in result 
of interacting force between human body and robot, the value 
of the force is calculated in each time and applied to the robot 
as a compensatory torque [3]. The desired trajectory of upper 
limb joint is determined in such a way as to ensure robust 
stability based on the zero moment point.

2- Methodology
The understudied model in this paper is a lower limb

exoskeleton robot containing seven links and five active 
joints for the hip, knee and ankle of the left and right legs. 

By extracting the kinematic equations and using the 

Lagrange method, the dynamic model of the robot is as 
follows [4]:

1

(1)( ) ( , ) ( ) dM C G          

where  is the torque vector of the actuators, ( )M θ is 
the inertia moment matrix, ( , )C θ θ ′ is the centrifugal and 
gyroscopic effects matrix, ( )G θ is the vector of gravitational 
forces and dτ is the disturbance torque.

The design of the path is carried out in two stages: one and 
two supports. Schematic of the method is presented in Fig. 1.  

where sθ , eθ  are the start and termination angles of 
double support phase, D  is the one step length,  1D is the 
longitudinal distance of hip joint at the beginning of the single 
support phase, 2D is the longitudinal distance of hip joint at 
the end of the single support phase, and 3D is the longitudinal 
distance of hip joint at the end of the double support phase. 

3- Controller Design
In this section, an adaptive-gain super-twisting sliding

mode control is designed. By defining sliding surface and 
some mathematic simplifications, the sliding mode control 
law is as follows 
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To eliminate the chattering without reducing the robustness 
characteristics of the controller, the control command is 
modified as  adaptive-gain super-twisting sliding mode 
control law [5].
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In Eq. (3), 2 Aβ ε= and also:
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where 1W , 1γ ,ε , µ  andη are constant. Stability analysis
can be addressed through Lyapanouv theory. Moreover, Zero 
Momentum Point (ZMP) is a point on the ground which 
sum of all the active forces moments is equal to zero. If the 
ZMP perch into the support polygon between the foot and 
the ground, stability of the biped robot is guaranteed [6]. 

Therefore, instability of the robot can be illustrated through 
monitoring the ZMP location. The ZMP in x-axis direction 
can be calculated as follows:

5

1 1 1

1

1 1 1

1

( )

( )

( )

( )

n n n

i i i i i i iy iy
i i i

ZMP n

i i
i

n n n

i i i i i i ix ix
i i i

ZMP n

i i
i

m z g x m x z I
x

m z g

m z g y m y z I
y

m z g





  



  



    




    




  



  



(5)

In order to optimized controller parameters, an objective 
function considered as: 
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where desirdZMP  is the ZMP in SSP1 and DSP2 which is 

1 Single Support Phase
2 Double Support Phase

Fig. 2. Control signal of the proposed controller 

Fig. 3. Location of the ZMP 

Fig. 4. RMS of tracking error in presence of different 
disturbances
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defined based on maximum stability value in each phase and 
is trajectory tracking error. 

4- Simulation Results
In this section, simulations are performed. Fig. 1 presents

the control signal for the controllers which is in the applicable 
range. 

Additionally, the location of ZMP is depicted in Fig. 3, 
in which both controllers generate a stable motion for the 
robot using upper limb-angle. The ZMP trajectory produced 
by the Adaptive Super Twisting Sliding Mode Controller 
(ASTWSM) controller providing a wider stability margin. 

Fig. 4 divulges the superiority of the proposed controller 
rather than conventional SMC in the presence of exogenous 
disturbance. Moreover, for 30 percent disturbance, both of the 
designed controllers have constant and similar performance.

5- Conclusion
This paper addressed a robust control of a lower limb

exoskeleton. Effectiveness of the controller was observed 
against exogenous disturbances and uncertainties. Moreover, 
stability of the robot through ZMP and its location had less 
divergent with the optimal ZMP trajectory. 
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Fig. 1. Schematic of the 7-DOF lower limb exoskeleton
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Fig. 2. Design parameters of the lower limb trajectory
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Fig. 11. Trajectories of fifth and sixth joints in ADAMSFig. 12. Phase-plan diagram of the first joint
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Table 2. Lower limb exoskeleton robot parameters
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Fig. 14. Phase-plan diagram of the third joint

Table 3. optimal control parameters and upper limb trajectory parameters
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Fig. 13. Phase-plan diagram of the second jointFig. 15. Phase-plan diagram of the fourth joint

Fig. 16. Phase-plan diagram of the fifth joint
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Fig. 20. Tracking error of the second joint Fig. 18. Phase-plan diagram of the seventh joint

Fig. 19. Tracking error of the first joint Fig. 17. Phase-plan diagram of the sixth joint
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Fig. 21. Tracking error of the third joint

Fig. 24. Tracking error of the sixth joint Fig. 22. Tracking error of the fourth joint

Fig. 23. Tracking error of the fifth joint
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