تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,748 |
شبیهسازی رشد عضله دوسررانی بر اثر کشش با بکارگیری یک مدل چندمقیاسه | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 15، دوره 52، شماره 12، اسفند 1399، صفحه 3549-3566 اصل مقاله (3.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2019.15643.6175 | ||
نویسندگان | ||
سعید جوادی1؛ عبدالرحمن جامی الاحمدی* 2؛ علیرضا دانش مهر3؛ محدثه آزادواری4؛ سعید نکونام4 | ||
1گروه مکانیک- دانشکده مهندسی- دانشگاه فردوسی مشهد | ||
2گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد | ||
3دانشگاه تهران*مهندسی مکانیک | ||
4دانشگاه علوم پزشکی تهران | ||
چکیده | ||
شناخت روند رشد ماهیچه و تعیین نواحی بحرانی تحت آسیب و یا پارگی ابزاری برای تشخیص روش صحیح درمان برای متخصصان طب فیزیکی و توان بخشی و ارتوپدی میباشند. هدف این مقاله، بررسی نحوه رشد سلول عضلانی-اسکلتی و همچنین تعیین نواحی آسیب عضله دوسررانی تحت کششهای غیر فعال وارده بر آن است. با تجزیه تانسور گرادیان تغییر شکل به دو بخش الاستیک و رشد، روابط رشد محدود برای ماهیچه با رفتار ماده هایپرالاستیک تعیین شدهاند. روابط مکانیک محیط پیوسته با معادله تکامل رشد تلفیق و معادلات دیفرانسیل بیولوژیکی و مکانیکی حاصل شدند. برای حل آنها از روش اجزای محدود در نرمافزار آباکوس با نوشتن زیربرنامهای برای رفتار ماده در زبان فرترن استفاده شد. عضلهی دوسررانی قسمت سر بلند به شکل یک استوانه فرض شده و شبیهسازی آن برای یک دوره ٦ هفتهای و بهمیزان ١٠% افزایش طول اولیه انجام شد. نتایج نشان میدهند که ماهیچه بهطور ناهمگن رشد میکند و بیشینه کشیدگیها در رویهها اتفاق میافتند و نه در داخل عضله که در ناحیه بالا در رویه بیرونی معادل1/045 ودر ناحیه پایین در رویه درونی معادل 1/06 میباشند. بهعلاوه، نتایج میتواند بهنحوه درمان صحیح و بهینه و توان بخشی بیماران و جراحیهای ارتوپدی کمک کند. | ||
کلیدواژهها | ||
رشد بافت نرم؛ تحلیل المان محدود؛ هایپرالاستیک؛ عضلانی اسکلتی؛ شبیهسازی | ||
عنوان مقاله [English] | ||
Simulation of Biceps Femoris Muscle Growth Based on Stretch Using a Multiscale Model | ||
نویسندگان [English] | ||
Saeed Javadi1؛ Abdolrahman Jaamialahmadi2؛ Ali Reza Danesh Mehr3؛ Mohaddeseh Azadvari4؛ Saeid Nekoonam4 | ||
1Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad | ||
2Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad | ||
3Mechanical Engineering, Tehran University | ||
4Tehran University of Medical Sciences | ||
چکیده [English] | ||
Understanding the process of muscle tissue growth is important to professionals who are involved in curing musculoskeletal disorders, physical medicine and rehabilitation specialists and orthopedic surgeons. This article investigates the development of a musculoskeletal cell and also determining the vulnerable areas of biceps femoris muscles due to passive strains applied on it. By decomposing the deformation gradient tensor to two parts, the elastic and growth, the finite growth relations have been applied for an isotropic hyperelastic muscle material behavior. Consequently, the continuum relations were combined with the growth evolution equation whrer a series of mechanobiological relations were obtained. To solve them, a FORTRAN user-defined material subroutine (UMAT) for the finite element Abaqus software was written and executed. The biceps femoris – long head muscle was simulated based on a 6-week period assuming as a cylinder with 10% increase in initial length. Results of the simulation indicate that maximum strains occur in the surfaces, not inside the muscle. They reach 1.045 near the proximal muscle-tendon junction in the posterior layer and 1.06 in distal muscle-junction in interior surface. Also, these results can help a correct and optimal treatment, patient’s rehabilitation and orthopedic surgeries. | ||
کلیدواژهها [English] | ||
Soft tissue growth, Finite element analysis, Hyperelastic, Musculoskeletal, Simulation | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] B.V. Reed, T. Ashikaga, B.C. Fleming, N.J. Zimny, Effects of ultrasound and stretch on knee ligament extensibility, Journal of Orthopaedic & Sports Physical Therapy, 30(6) (2000) 341-347. [2] W.E. Prentice, Rehabilitation Techniques for Sports Medicine and Athletic Training with Laboratory Manual and ESims Password Card, McGraw-Hill Education, 2005. [3] D.P. Greene, S.L. Roberts, Kinesiology: Movement in the Context of Activity, Mosby, 1999. [4] T. UETAKE, F. OHTSUKI, Sagittal configuration of spinal curvature line in sportsmen using Moire technique, Okajimas folia anatomica Japonica, 70(2-3) (1993) 91-103. [5] R.L. Lieber, Skeletal muscle structure, function, and plasticity, ٣ ed., Lippincott Williams & Wilkins, 2009. [6] A. Rehfeld, M. Nylander, K. Karnov, Compendium of Histology: A Theoretical and Practical Guide, Springer, 2017. [7] G.M. Cooper, R.E. Hausman, R.E. Hausman, The cell: a molecular approach, ASM press Washington, DC, 2000. [8] P.E. WILLIAMS, G. Goldspink, Longitudinal growth of striated muscle fibres, Journal of cell science, 9(3) (1971) 751-76. [9] G. Goldspink, Alterations in myofibril size and structure during growth, exercise, and changes in environmental temperature, Comprehensive Physiology, (2011). [10] D. Thompson, ’AW,(١٩١٧, ١٩٤٢) On Growth and Form, in, Cambridge Univ. Press, 1917. [11] D. Carter, W. Hayes, The bahavior of bone as a twophase porous structure, J. Bone Joint Surgery, 59 (1977) 964-962. [12] S. Cowin, D. Hegedus, Bone remodeling I: theory of adaptive elasticity, Journal of Elasticity, 6(3) (1976) 313- 326. [13] S.C. Cowin, The mechanical and stress adaptive properties of bone, Annals of Biomedical Engineering 11(3-4) (1983) 263-295. [14] S.C. Cowin, Wolff’s law of trabecular architecture at remodeling equilibrium, Journal of biomechanical engineering, 108(1) (1986) 83-88. [15] S.C. Cowin, K. Firoozbakhsh, Bone remodeling of diaphysial surfaces under constant load: theoretical predictions, Journal of Biomechanics, 14(7) (1981) 471-484. [16] F.-H. Hsu, The influences of mechanical loads on the form of a growing elastic body, Journal of biomechanics, 1(4) (1968) 303-311.. [17] R. Skalak, Growth as a finite displacement field, in: Proceedings of the IUTAM symposium on finite elasticity, Springer, 1981, pp. 347-355. [18] K. Rajagopal, Multiple natural configurations in continuum mechanics. Technical Report 6, Institute for Computational and Applied Mechanics, University of Pittsburgh., (1995). [19] K. Rajagopal, A. Srinivasa, Mechanics of the inelastic behavior of materials-Part 1, theoretical underpinnings, International Journal of Plasticity, 14(10-11) (1998) 945- 967. [20] S. Göktepe, O.J. Abilez, E. Kuhl, A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening, Journal of the Mechanics and Physics of Solids, 58(10) (2010) 1661-1680. [21] D. Ambrosi, F. Mollica, On the mechanics of a growing tumor, International journal of engineering science, 40(12) (2002) 1297-1316. [22] A.A. De Smet, T.M. Best, MR imaging of the distribution and location of acute hamstring injuries in athletes, American Journal of Roentgenology, 174(2) (2000) 393-399. [23] T.A. Järvinen, T.L. Järvinen, M. Kääriäinen, H. Kalimo, M. Järvinen, Muscle injuries: biology and treatment, The American journal of sports medicine, 33(5) (2005) 745- 764. [24] D.G. Thelen, E.S. Chumanov, D.M. Hoerth, T.M. Best, S.C. Swanson, L. Li, M. Young, B.C. Heiderscheit, Hamstring muscle kinematics during treadmill sprinting, Med Sci Sports Exerc, 37(1) (2005) 108-114.. [25] E.K. Rodriguez, A. Hoger, A.D. McCulloch, Stressdependent finite growth in soft elastic tissues, Journal of biomechanics, 27(4) (1994) 455-467. [26] E.H. Lee, Elastic-plastic deformation at finite strains, Journal of applied mechanics, 36(1) (1969) 1-6. [27] A. Menzel, E. Kuhl, Frontiers in growth and remodeling, Mechanics research communications, 42 (2012) 1-14. [28] W.M. Lai, D.H. Rubin, E. Krempl, D. Rubin, Introduction to continuum mechanics, Butterworth-Heinemann, 2009. [29] Y. Liu, H. Zhang, Y. Zheng, S. Zhang, B. Chen, A nonlinear finite element model for the stress analysis of soft solids with a growing mass, International Journal of Solids and Structures, 51(17) (2014) 2964-2978. [30] A.M. Zöllner, O.J. Abilez, M. Böl, E. Kuhl, Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis, PloS one, 7(10) (2012) e45661. [31] E. Kuhl, Growing matter: A review of growth in living systems, Journal of the Mechanical Behavior of Biomedical Materials, 29 (2014) 529-543. [32] N.J. O'Dwyer, P.D. Neilson, J. Nash, Mechanisms of muscle growth related to muscle contracture in cerebral palsy, Developmental Medicine and Child Neurology, 31(4) (1989) 543-547. [33] A.M. Zöllner, J.M. Pok, E.J. McWalter, G.E. Gold, E. Kuhl, On high heels and short muscles: a multiscale model for sarcomere loss in the gastrocnemius muscle, Journal of theoretical biology, 365 (2015) 301-310. [34] G.A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering science, Meccanica 37(4) (2002) 489-490. [35] L.A. Taber, Biomechanical Growth Laws for Muscle Tissue, Journal of Theoretical Biology, 193(2) (1998) 201-213. [36] V.A. Lubarda, A. Hoger, On the mechanics of solids with a growing mass, International Journal of Solids and Structures, 39(18) (2002) 4627-4664. [37] A. 6.13, Analysis User's Manual. Simulia. Dassault Systemes, (2013). [38] A.M. Zöllner, M.A. Holland, K.S. Honda, A.K. Gosain, E. Kuhl, Growth on demand: reviewing the mechanobiology of stretched skin, Journal of the mechanical behavior of biomedical materials, 28 (2013) 495-509. [39] L. Beltran, V. Ghazikhanian, M. Padron, J. Beltran, The proximal hamstring muscle-tendon-bone unit: A review of the normal anatomy, biomechanics, and pathophysiology, European journal of radiology, 81(12) (2012) 3772-3779. [40] N. Palastanga, R. Soames, Anatomy and human movement, structure and function with PAGEBURST access, 6: anatomy and human movement, Elsevier Health Sciences, 2011. [41] P. Zioupos, J. Currey, Changes in the stiffness, strength, and toughness of human cortical bone with age, Bone,22(1) (1998) 57-66.. [42] C.N. Maganaris, J.P. Paul, Tensile properties of the in vivo human gastrocnemius tendon, Journal of biomechanics, 35(12) (2002) 1639-1646. [43] G. Himpel, E. Kuhl, A. Menzel, P. Steinmann, Computational modelling of isotropic multiplicative growth, Comp Mod Eng Sci, 8 (2005) 119-134. [44] M.K. Chakouch, F. Charleux, S.F. Bensamoun, Quantifying the elastic property of nine thigh muscles using magnetic resonance elastography, PloS one, 10(9) (2015) e0138873. [45] C. Chanaud, C. Pratt, G. Loeb, Functionally complex muscles of the cat hindlimb. II. Mechanical and architectural heterogenity within the biceps femoris, Experimental brain research, 85(2) (1991) 257-270. [46] S. Göktepe, A. Menzel, E. Kuhl, The generalized Hill model: A kinematic approach towards active muscle contraction, Journal of the Mechanics and Physics of Solids, 72 (2014) 20-39. | ||
آمار تعداد مشاهده مقاله: 804 تعداد دریافت فایل اصل مقاله: 1,314 |