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ABSTRACT:  Differential global surface impedance (DGSI) model, a rigorous approach, has been 
applied to the analysis of three dimensional plasmonic circuits. This model gives a global relation 
between the tangential electric field and the equivalent surface electric current on the boundary of 
an object. This approach helps one bring the unknowns to the boundary surface of an object and so 
avoid volumetric discretization.  It also eliminates the need for equivalent surface magnetic current 
consideration. Therefore, there is no need to evaluate the rather complex integral operator related to 
this current. This will result in a great reduction in computation time and memory resources. On the 
other hand, due to small field variations along the longitudinal direction of each boundary segment, it 
is suggested to use the two dimensional DGSI matrix in the analysis of a three dimensional plasmonic 
circuit. This leads to a much simpler formulation of the DGSI model. Besides, our numerical results 
verify that this simplifying assumption will not greatly affect the accuracy of the analysis. Plasmonic 
waveguides with different thicknesses along with a line coupler have been analyzed. The results are 
verified with the results of a commercial software as well as global surface impedance (GSI) model 
previously presented in the literature. 
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1. INTRODUCTION
The study of metallic plasmonic structures enables 

researchers to manipulate light. The surface plasmon 
polariton (SPP) phenomenon is introduced as the interaction 
of light and metal in such structures. The electromagnetic 
field confinement described by this phenomenon, supports 
fundamentals of electromagnetic fields propagation along 
the metal/dielectric interface resulting in the possibility of 
building a plasmonic waveguide. An important building block 
of these kind of waveguides is a plasmonic metal strip. Such a 
structure can support long-range surface plasmon polaritons 
(LRSPPs). Hence, for a plasmonic circuit design efficient 
modeling of a plasmonic metal strip is of great interest.

At microwave frequencies, metal can be modeled like a 
perfect electric conductor, while, in the optical frequencies 
the electromagnetic fields penetrate inside the metal. In this 
frequency regime metal is modeled as a lossy dielectric material 
with negative dielectric constant. Due to the fast decaying 
nature of the electromagnetic fields inside a plasmonic metal, 
numerical simulation of such a structure is very challenging in 
this regime. To follow near-field variations correctly, very fine 
discretization is unavoidable. Large number of unknowns as 
well as high computational cost (both memory resources and 
processing time) will be the result of such a fine discretization. 
Therefore, it is quite challenging to find an appropriate 

numerical modeling method to simulate such problems.
Different numerical methods have already been used in 

the analysis of plasmonic structures. Finite element method 
(FEM) [1] and finite difference time domain (FDTD) [2] are 
among the most popular methods applied to the analysis of 
such structures. Using these methods, the whole solution 
domain of the desired problem should be discretized. The 
volume integral equations (VIE) [3] limits the discretization 
to the object at hand rather than the whole solution domain. 
This will decrease the number of unknowns in the simulation. 
However, due to the above-mentioned fast decaying nature 
of electromagnetic fields inside plasmonic structures, 
the volumetric discretization of a plasmonic circuit is an 
important challenge in the analysis of such structures. Thus, 
it is an important goal to find a method which can decrease 
the number of unknowns by limiting the simulation to the 
boundary surface of the object. Classic surface integral 
equation (SIE) techniques such as PMCHWT are formulated 
based on equivalence principle [10]. In such methods the 
problem is divided into two exterior and interior problems 
presuming zero fields either inside or outside of the object; 
and at the same time solving for the both unknown electric 
and magnetic currents on the boundary using these two 
sets of equations.  Surface impedance models bring the 
electromagnetic fields variations inside the object to its 
boundary surface. The conventional local surface impedance 



H. Ameri et al., AUT J. Elec. Eng., 51(2) (2019) 219-226, DOI: ﻿ 10.22060/eej.2019.16253.5279

220

models establish a relationship between the tangential electric 
field of a boundary segment of an object and the magnetic 
field (corresponding surface electric current) of that point 
[4]. Since the precision of this model deteriorates while 
approaching the corners or sharp edges or when the metal 
strip is very thin, global surface impedance model has 
attracted attentions. Global surface impedance (GSI) model 
relates the tangential electric field on each boundary segment 
of an object to the tangential magnetic field of all the boundary 
segments. This relation is established through a matrix form 
called global surface impedance matrix. Such a nonlocal 
model has been used to model skin effect of conductors in 
[5-7]. Plasmonic structures have also been analyzed with this 
model [8, 9]. In the approaches introduced in [8, 9], both 
surface electric and magnetic currents should be taken into 
account to correctly model electromagnetic fields variations. 
The magnetic current will then be replaced by the electric 
current through the mentioned GSI impedance leading to a 
single source formulation. These single source formulations 
halve the number of unknowns in comparison to the classic 
SIE techniques. However, evaluating the rather complex 
integral operator of the magnetic current in the surface 
integral equation is still a challenge in such an approach. 
Taking advantage of equivalence principle, the authors 
developed differential global surface impedance (DGSI) 
model [11]. The usage of this model will result in a problem 
of single surface electric current’s radiation in a homogenous 
unbounded region, eliminating the need for magnetic current 
consideration. In that paper, periodic structures made of 2D 
dielectric cylinders have been analyzed using DGSI model. It 
has been observed that using this model the complexity of the 
problem along with the computational resources and cost will 
be reduced.

In this paper, 3D plasmonic circuits will be simulated 
using DGSI model. The challenging part of a plasmonic 
circuit analysis is modelling the plasmonic metal strip. To this 
end, the 2D cross section of the metal strip will be modeled by 
DGSI. This 2D analysis simplifies computation of the surface 
impedance. The proposed DGSI model, is applied to the 
interior problem of a metal strip, finding the relation between 
the tangential electric field and the equivalent surface electric 
current on the boundary surface of the metal strip. In the 
next step, the derived DGSI model is employed to the surface 
integral equation to analyze the plasmonic circuit. Then, using 
the method of moments (MoM) [12] to solve the achieved 
equation, one can obtain the unknown equivalent surface 
electric current distribution on the metal strip. The proposed 
method is applied to the analysis of a plasmonic waveguide 
and a line coupler. The efficiency and accuracy of the method 
is compared with the previously proposed GSI method. 

This paper is organized as follows. In section II the 
formulation of the problem is presented. The numerical 
results are remarked in Section III following some concluding 
remarks in section IV. 

2. FORMULATION OF THE PROBLEM
In this section, first, the DGSI formulation will be 

described briefly. Then, the exterior problem formulation 
using mixed potential integral equation (MPIE) [14] will 
be explained. After that, DGSI model will be employed into 
the mentioned MPIE and is used for the analysis of a typical 
plasmonic circuit as in ‎Fig. 1.

2-1 DGSI Formulation
As mentioned earlier, DGSI model gives a relation 

between the tangential electric field and the equivalent surface 
electric current on the boundary of an object. The equivalent 
surface electric current determines the discontinuity of the 
tangential magnetic field along the boundary. Therefore, one 
can define this current in terms of the tangential magnetic 
fields on either sides of the boundary. To this end, a boundary 
value problem for the magnetic field interior to the object 
boundary may be set up. Let’s assume an arbitrary object as 
in ‎Fig. 2 made of a linear, homogenous and isotropic medium 
characterized by the permittivity of inε , permeability of inµ
and the conductivity of inσ  embedded in a medium filled 
with a material with constitutive parameters ( ), ,out out outε µ σ
. The reasoning put forward in the paper is valid in a piecewise 
homogenous medium (multilayered medium) while the object 
is wholly embedded in one layer. However, when the object is 
partly located in one layer and partly in another, it should be 
divided in two separate parts. The following equation shows 
the introduced boundary value problem [11]:

 
Fig. 1. a typical plasmonic circuit 

  

Fig. 1 . a typical plasmonic circuit

 
Fig. 2. Problem understudy with and arbitrary shape 

  

Fig. 2 . Problem understudy with an arbitrary shape



221

H. Ameri et al., AUT J. Elec. Eng., 51(2) (2019) 219-226, DOI: ﻿ 10.22060/eej.2019.16253.5279

( )
2 0

; , ,
ˆ ˆ

s

H k H
in out

n H j n E
ξ ξ ξ

ξ ξ ξ

ξ
ωε

 ∇×∇× − = =  × ∇× = ×  

 

 

�
(1)

where ( )k j jξ ξ ξ ξωµ ωε σ= − +  is the wave number, H


the 
magnetic field, and the subscript ξ  determines that the object 
volume (V in Fig. 2) is either filled with the material with the 
same properties of the material inside or outside of the object. 
n̂ is the normal vector directed from inside of the object to the 
boundary. In order to solve such a boundary value problem 
one can obtain its corresponding Green’s function as in the 
following formula:
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where ,r r′ 

 define field and source points positions 
respectively.

Using these equations the equivalent surface electric 
current which is the difference of the tangential magnetic 
fields on either sides of the boundary can be found as follows: 
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

� (3)

where the integration is taken over the boundary surface 
S.

This equation gives an integral relation between the 
equivalent surface electric current and the tangential electric 
field on the boundary. To find a matrix form of this relation, 
using appropriate test and basis functions, one can apply 
MoM to this equation, i.e.:

[ ] [ ],DGSI
s s sJ Y E =   	�   (4)

where [ ]sE  and [ ]sJ  are column vectors containing 
amplitudes of the electric field and surface electric current 
respectively. The differential global surface admittance matrix 
is defined by DGSI

sY   . Taking the inverse of this matrix, 
DGSI
sZ   the DGSI impedance matrix will be evaluated. This 

impedance matrix presents the DGSI relation between the 
equivalent surface electric current and the tangential electric 
field. That is:

[ ] [ ].DGSI
s s sE Z J =    � (5)

For the analysis of a plasmonic circuit, DGSI matrix for the 
3D plasmonic metal strip should be found. Since each segment 
of the discretized strip is very small, it can be assumed that 
there exists a slight variation along the longitudinal direction 
on each basis function. Hence, it is possible to assume no axial 
variations i.e. 0z∂ ∂ = along this direction [13]. Therefore, it 
will be presumed that TMz relation resides between axial 
components of the surface electric current and field, while, 

between transverse components of these quantities a TEz 
relation exists. This simplifying assumption helps one to 
evaluate 2D DGSI matrices of an object cross section for both 
TMz and TEz cases. Then, a block-diagonal matrix ( )DGSI

sZ  
made of these matrices can be used in the 3D problem of the 
plasmonic circuit. That is:
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where ( ),
DGSI
s TMbdiag Z    and ( ),

DGSI
s TEbdiag Z   are block-

diagonal matrices made of 2D DGSI matrices for TMz 
( ),

DGSI
s TMZ    and TEz ( ),

DGSI
s TEZ    polarizations, respectively. In 

the Appendix the calculation of TMz DGSI matrix elements 
for a 2D rectangular strip is presented. In order to separate 
the effect of axial and transverse source points on their 
corresponding field points, these matrices are placed in DGSI 
matrix ( )DGSI

sZ    in the form of four submatrices (blocks). The 
first block of this matrix represents the effect of axial source 
points on axial field points, while the fourth block defines this 
effect for transverse source and field points. The zero matrix 
[ ]0  describes that axial (transverse) source points has no 
contribution on transverse (axial) field points. This is due 
to our simplifying assumption, explaining the zero coupling 
between axial and transverse segments. According to the 
explained arrangement of DGSI matrix, one should arrange 
the electric field and the equivalent surface electric current 
vectors in the same manner. 

It is obvious that, in a 3D analysis of a structure the hybrid 
nature of TMz and TEz polarizations should be taken into 
account. Since this issue has been considered in the evaluation 
of the MoM coefficient matrix obtained in the next section, 
the mentioned simplifying assumption in the construction of 
DGSI matrix may not greatly affect the results accuracy. Our 
numerical results given in section III verifies this theory.

2-2 Exterior problem formulation
As explained in the previous section, the electromagnetic 

fields behavior inside the object under study is simulated using 
the DGSI model. The relation between surface electric field 
and current on the boundary surface of the object given by this 
model is then employed to the exterior problem formulation 
to solve for the unknown surface electric current. Due to 
uniqueness theorem, in a lossy medium an electromagnetic 
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field is specified by the sources inside the region, the 
tangential component of either electric or magnetic field 
over the boundary or tangential component of electric field 
on part of the boundary and magnetic field on the remaining 
parts. After finding the unknown surface electric current, the 
tangential component of the electric field on the boundary 
can be calculated using (5). Therefore, having the tangential 
electric field at hand one can solve Helmholtz equation inside 
to find the fields internal to object. Hence, the correct fields 
inside the scatterer will be found and one can will be able to 
obtain the absorption property of the plasmonic material.

Applying the DGSI model to the analysis of a plasmonic 
circuit, it is obvious that the exterior problem will be a 
problem of an equivalent surface electric current’s radiation in 
an unbounded region with the same constitutive parameters 
as the material of the exterior region. Thus, the conventional 
SIE for penetrable objects will be modified to a simple form. 
That is:

ˆ ˆ ,
ext

s ss
E n E n G J ds

+
′= × + × ⋅∫

  



� (7)

where 
ext

E


 defines the excitation electric field and G  
is the electric field dyadic Green’s function for the exterior 
region. Applying MoM to this equation along with choosing 
appropriate test and basis functions will give the matrix form 
of this equation:

[ ] [ ][ ],ext
s mn sE E L J = +  � (8)

where [ ]sJ  and [ ]sE  are the column vectors containing 
the amplitudes of the equivalent surface electric field and 
the electric field respectively. extE    is also a column vector 
containing the amplitudes of the excitation electric field 
and [ ]mnL matrix is the MoM coefficient matrix. Substituting 
Es from (5) into (8), and doing some manipulations, the 
following equation will be obtained to evaluate the unknown 
vector [ ]sJ :

[ ]( )[ ] .DGSI ext
s mn sZ L J E   − =     �   (9)

Using the Mixed Potential Integral Equation formulation, 
one can solve this equation. Therefore, the elements of MoM 
coefficient matrix will be:
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r′ is the vector pointing to the source point with the 
coordinates of ( ), ,x y z′ ′ ′  while mr

  is the corresponding vector 
for the observation point with the coordinates of ( ), ,m m mx y z . 
The length of mth(nth) segment is denoted by ( )m nl∆  and vector 

( )nml∆


 shows the current direction along the segment. The 
charge nodes defined by ( )m n± ± are related to the mth(nth) 
current segment as explained in [12].

MoM matrix elements should be arranged in the same 
manner as the DGSI matrix elements. Therefore, MoM matrix 
should be divided into four submatrices to construct a block 
matrix: 

[ ] ,
AA AT
mn mn

mn TA TT
mn mn

L L
L

L L

        =
        

	�  (12)

where submatrix ( )AA TT
mn mnL L        located on the main 

diagonal models the effect of axial (transverse) source points 
on axial (transverse) field points. On the other hand, the 
coupling effect of the axial (transverse) source points on 
the transverse (axial) observation points are represented 
in ( )TA AT

mn mnL L       . The nonzero value of the off-diagonal 
submatrices describes that in the MoM matrix the hybrid 
nature of the axial and transverse polarizations has been taken 
into consideration. 

3.	 NUMERICAL RESULTS
In this section a plasmonic waveguide as shown in Fig.1 

is simulated. Modeling the rectangular metal strip is the most 
challenging part of a waveguide analysis. Therefore, without 
loss of generality this strip can be assumed to be located in 
free space i.e. 
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. Hence, the free space Green’s 
function can be easily used to evaluate MoM matrix (equation 
11) while there is no need for the calculation of a  layered 
medium Green’s function in case of existence of a substrate. 
In this way, the field behavior of the metal strip can be directly 
studied without being worried about the reflections from 
dielectric layers. 

The first structure is assumed to be a plasmonic metal 
strip made of silver with the complex dielectric constant 

19 0.53r jε = − −  in the free space wavelength of 0 633nmλ = . 
The proposed 3D rectangular structure, is illuminated by a 
TMz polarized plane wave propagating normal along ŷ−  axis. 
The strip, terminated with PEC walls at both ends, has the 
width of 0.2w mµ= . Its thickness is assumed to be 0.1t mµ=  
and its length is 0.5l mµ= . The absolute value of the axial 
electric field ( zE ) is shown in ‎Fig. 3. The field values are 
evaluated along the center axial line of the top surface of 
the waveguide (i.e. the z axis passing through ( )2,x w y t= =
). The results are verified with the results of CST Microwave 
Studio simulation. GSI model has also been used to simulate 
this structure showing good agreement with our numerical 
results.

As another example, waveguide constructed from gold 
with the complex dielectric constant 131.95 12.5r jε = − −  in 
the free space wavelength of 0 1.55 mλ µ= is assumed. The line 
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is terminated with a PEC wall at the end modeling a short 
circuited line. Delta gap generator is used as the excitation on 
one side of the waveguide. ‎Fig. 4 shows the absolute value of 
the axial electric field along the center line of the top surface 
of the waveguide with 500 , 1 , 2t nm W m l mµ µ= = =
. Our analysis is done on a PC Intel (R) Corei7-4790K 
CPU@4.00GHz, with 32 GB of RAM. In GSI method it takes 
about 91 seconds to fill the MoM matrix while in DGSI 
method this time is about 86 seconds. Since the size of MoM 
matrices is the same in both methods the time needed for 
inversion of this matrices is almost the same. Therefore, using 
the DGSI approach, the computation time in the analysis of 
this circuit is 0.95 times less than the computation time of GSI 
model. 

This shows that elimination of the magnetic current from 
the exterior problem formulation, decreases the computation 
time, since there is no need for evaluating the complex 
magnetic current operator. The absolute value of the axial 
electric field on the center line of the top surface of the strip 
for different thicknesses ( 200 ,t nm=  100nm respectively) 
is also shown in Figures 5 and 6. 

A line coupler as typically shown in ‎Fig. 7 is the next 
example investigated. This coupler is made of two similar lines 
made of silver with the characteristics mentioned for the first 
structure. Each through line has the thickness of 0.3t mµ=  
, width of 0.5w mµ=  and length of 1l mµ=  . The spacing 
between the two lines is 
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.
Since the two through lines have the same shape and 

size, the DGSI model remains the same for these two strips. 
Hence, the DGSI matrix can be evaluated for one of the strips 
and used for the other one avoiding extra calculations. This 
means that the interior problem of the two strips is simulated 
evaluating DGSI matrix for one of these strips. This leads to 
a great reduction in the computation cost. ‎Fig. 8 shows the 
absolute value of the axial electric field along the centerline 
of the top surface in the first strip while this strip is excited. 
For the non-excited strip the axial electric field is sketched 

 
Fig. 3. Absolute value of  the axial electric field along the z axis passing through ( )2,x w y t= = . 

  

Fig. 3 . Absolute value of  the axial electric field along the z axis 

passing through ( )2,x w y t= = .

 

 
Fig. 4. Absolute value of the axial electric field on the center line of the top surface of the strip, 500 , 1 , 2t nm W m l m = = =  

  

Fig. 4 . Absolute value of the axial electric field on the center line 
of the top surface of the strip, 500 , 1 , 2t nm W m l mµ µ= = =

 

 
Fig. 5. Absolute value of the axial electric field on the center line of the top surface of the strip, 200 , 1 , 2t nm W m l m = = =  

  

Fig. 5. Absolute value of the axial electric field on the center line of 
the top surface of the strip,  
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in ‎Fig. 9. A standing wave behavior is observed due to the 
existence of PEC wall at the end of the lines. The results are 
also compared with the results of GSI model and show good 

agreement. 

4.	 CONCLUSION
In this paper, the previously introduced differential global 

surface impedance model has been successfully applied to 
the analysis of plasmonic circuits. This model gives a relation 
between the equivalent surface electric current and the 
tangential component of the electric field on the boundary 
surface of an object under study. Using this model there is 
no need to consider the effect of equivalent surface magnetic 
current as in the conventional SIE formulation for penetrable 
objects. It means that making use of the DGSI model, the 
problem can be solved as a problem of radiation of a surface 
electric current in an unbounded homogenous region. This 
will result in a much simpler and faster evaluation of the MoM 
matrix. It is also shown that due to the small field variations 
along the longitudinal direction in each segment, 2D DGSI 
matrix can be used in the analysis of a 3D problem without 
greatly sacrificing the accuracy. Moreover, this approach 
will lead to a much simpler formulation of the DGSI model. 
Hence, the complexity of the method will be reduced. The 
proposed method has been applied to plasmonic waveguides 
and a line coupler. The results are compared with the results 
of GSI model showing good agreement and less computation 
time.

Appendix: DGSI Evaluation for a rectangualr metal Strip
In a 2D structure there is no field variations along z axis 

(i.e. 0z∂ ∂ = ). Therefore, the problem of finding the DGSI 
matrix for a 2D rectangular strip can be independently 
formulated for either the TMz or the TEz field configurations. 
In the TMz case ( , , )z x yE H H  field components exist in the 
structure, so the dyadic Green’s function in  will only have one 
component zzG  . This equation can be easily solved to obtain 
this Green’s function as:
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where 
1 0
2 0l

l
l

ε
=

=  ≠ is the Neumann number and 
( ) ( )2 22 2,xl ylk k l t k k l Wπ π= − = − . The width and thickness of the 

rectangular strip are represented by W and t, respectively 
(see Fig. 1). The elements of the DGSI admittance matrix 

DGSI
sY    are found by substituting this Green’s function into 

(3), It is clear that this matrix can be written as a differential 
admittance 
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Fig. 7. a typical plasmonic line coupler 

  

Fig. 7 . a typical plasmonic line coupler

 
Fig. 8. Absolute value of the axial electric field on the centerline of the top surface of the first strip (excited line) 

  

Fig. 8 . Absolute value of the axial electric field on the centerline of 
the top surface of the first strip (excited line)

 

 

Fig. 9. Absolute value of the axial electric field on the centerline of the top surface of the second strip (non-excited line) 

  

Fig. 9 . Absolute value of the axial electric field on the centerline of 
the top surface of the second strip (non-excited line)
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where the length of each segment along the thickness and 
width of the rectangle are denoted by t∆  and W∆ , respectively. 
The medium intrinsic wave is defined by ξη . The DGSI 
impedance matrix will be obtained by taking the inverse of 
this admittance matrix. Moreover, the impedance matrix for 
the transverse polarization (the TEz field configuration) will 
be obtained following the same procedure. 
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