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ABSTRACT: The coronary arteries are of the important cardiovascular diseases. The autograft is the 
main treatment for this problem, but in many patients, the autografts are not applicable. So, due to 
a large number of requirements, it needs to find suitable replacements for diseases of blood vessels. 
Nanomaterial structures are highly contributive in tissue engineering vascular scaffolds due to their 
ability in mimicking the nanoscale dimension of the natural extracellular matrix and the existing 
mechanical match between the native vessel and the structure. The aim of this research was developing 
and mechanically improving nanofibrous hybrid structures using blend electrospinning methods with 
different ratios of the polyethylene terephthalate, polyurethane and polycaprolactone. The morphological 
and mechanical properties of all fabricated structures were evaluated. The average fiber diameter, porosity, 
stress and Young’s modulus changes’ range in composite structures (polycaprolactone/polyurethane  and 
polyethylene terephthalate/polyurethane ) were obtained 343 ± 94 to 382 ± 83 nm, 58.6 ± 3.12 to 81 ± 1.7 
%, 2.66 ± 0.39 to 19.05 ± 3.2 MPa and 3.18 ± 0.09 to 41.4± 3.31 MPa, respectively. According to results, 
the fabricated scaffolds as well as polyethylene terephthalate/polyurethane  structure exhibited suitable 
mechanical and biological properties and clinical requirements as a small-diameter vascular graft.
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1. Introduction
Atherosclerosis as an important cardiovascular diseases

is a great cause of death worldwide [1]. The autograft is a 
common treatment for this problem but in some patients has 
limited clinical success due to small size, previous harvesting 
and the age of patients [2]. Therefore, synthetic vascular 
prostheses have been clinically approved to treat this disease 
[3]. The previously obtained results have shown the synthetic 
vascular prostheses were being successfully used in large-
diameter (> 6 mm) blood vessel replacement while in small 
diameter replacements have rejected due to series of problems 
such as thrombosis, lack of functional endothelial coverage 
and the intimal hyperplasia [4,5]. The desirable properties 
of the Nano-structure such as the high specific surface area, 
high porosity, good cell attachment makes it very attractive in 
vascular tissue applications [6]. Electrospinning as a simple 
and reliable technique has been applied for the fabrication of 
nanoscale structures such as vascular graft that can resemble 
the natural ExtraCellular Matrix (ECM) in native graft [7]. 
At the moment, the woven synthetic vascular prostheses 
such as PolyTetraFluoroEthylene (PTFE) and Poly Ethylene 
Terephthalate (PET) have been successfully used in vascular 
graft replacements with a large diameter but in a small diameter 
due to mismatch the properties of natural vascular have failed. 
In this regard, according to the composite structure of natural 
vessels, this study focused on the fabrication of synthetic 

vascular prostheses using nonwoven hybrid nanofiber 
structure by the electrospinning method for replacing  a small 
diameter vascular graft. In other hands, the aim of this research 
was developing and mechanically improved hybrid nanofiber 
structures using blend electrospinning methods with different 
ratios of the polyethylene terephthalate, PolyUrethane (PU) 
and PolyCaproLactone (PCL). 

2. Methodology
Materials and methods

The PCL (Mw 80,000), PET and PU, TetraHydroFuran 
(THF), N, N-DiMethylFormamide (DMF), DiChloroMethane 
(DCM), ethanol and chloroform were purchased from 
Sigma Aldrich, USA. TriFluoroacetic Acid (TFA), 
1,1,1,3,3-HexaFuoro-2-Propanol (HFIP) were purchased 
from Merck,  Germany. The solvents were used without 
further purification. The neat and hybrid nanofiber structures 
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Fig. 1. A schematic of electrospinning setup

Ml / hr

Power supply

Syringe pump

KvkV

ml / hr
Syringe pump

Power supply



N. Jirofti et al., Amirkabir J. Mech. Eng., 52(12) (2021) 881-884, DOI: 10.22060/mej.2019.16159.6288 

882

fabricated using custom-designed electrospinning setup (Fig. 
1). The information of the fabrication the neat and hybrid 
nanofiber structure and their electrospinning conditions have 
presented in Table 1. In following the morphological and 
mechanical properties all structures were evaluated using 
Scanning Electron Microscopy (SEM), Fourier Transform 
InfraRed spectroscopy (FTIR) and tensile properties.  

3. Results and Discussion
The morphology of the neat and hybrid nanofiber 

structures evaluated using scanning electron microscopy  
images, FTIR analysis, and obtaining the porosity of the 
electrospun scaffolds. According to the results (Table 2), 
the average fiber diameter in hybrid nanofiber structures is 
significantly smaller than the neat structures. 

The results showed that with increasing the PCL and 
decreasing the PU ratios in the hybrid structures the porosity 
of the structures has increased. 

The neat PET and PET50/PU50 as a hybrid nanofiber 
structures revealed the highest load, tensile and Young’s 
modulus. According to the results (Table 3) the  range of 
the maximum load, tensile stress, tensile strain and Young’s 
modulus for the hybrid structures were obtained within 2.03 
± 0.33 to 40.88 ± 9.21 N, 2.66 ± 0.39 to 19.05 ± 3.20 MPa, 
101 ± 14 to 421 ± 51.35 %, and 3.18 ± 0.09 to 41.4 ± 3.31 
MPa, respectively.

The PET/PU as hybrid nanofiber structure due to high 
elasticity of PU  and high tensile strength of PET has an 
optimum load, stress, strain and Young’s modulus.

 For the PCL/PU hybrid nanofiber structures with 75 % 
of PCL, the maximum load, maximum stress, and maximum 
Young’s modulus were obtained. Interestingly, in a hybrid 
nanofiber structure containing an equal value of the PCL and 
PU, the minimum load and stress were observed. In addition, 
due to optimum strength between PET and PU, in PET/PU 
structure the highest strain were obtained. 

4. Conclusions
According to the results it has been obtained that the 

neat PCL, PU and PET polymers, due to the difference in 
their degradation, elasticity and stiffness can improve the 
mechanical properties of the PCL/PU and PET/PU as the 
hybrid nanofiber structures. Also it has been demonstrated 
that PCL/PU and PET/PU nanofiber structures due to mimic 
the properties of the extracellular matrix of the native vessels 
can be applied for vascular tissue engineering applications.
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Electrospinning Conditions

Structures Concentration Voltage
(kV)

Flow rate
(ml/hr)

Distance
(cm)

PET 15 %w/w 25 0.5 25
PU 15 %w/w 20 2 20
PCL 10 %w/w 18 3 25
PET75/PU25 8 % v/v 20 2 25
PET50/PU50 8 % v/v 20 2 25
PET25/PU75 8 % v/v 20 2 25
PCL75/PU25 8 % v/v 20 2 25
PCL50/PU50 8 % v/v 20 2 25
PCL25/PU75 8 % v/v 20 2 25

Porosity 
(%) 

Average fiber 
diameter (nm) Samples

89.1  ±  0.69 
63.0  ±  0.46 
74.0  ±  1.37 
81.0  ±  1.70 
78.8  ±  3.20 
74.3  ±  0.15 
69.5  ±  2.30 
65.0  ±  1.50 
58.6  ±  3.12 

433  ±  80 
470  ±  95 
404  ±  44 

372  ±  122 
363  ±  85 
382  ±  83 
375  ±  89 
369  ±  91 
343  ±  94 

PCL 
PU 
PET 
PCL75/PU25 
PCL50/PU50 
PCL25/PU75 
PET75/PU25 
PET50/PU50 
PET25/PU75 

Structures Maximum load
(N)

Tensile  stress at maximum load
(MPa)

Tensile strain at
maximum load (%)

Young’s modulus
(MPa)

PET 10.03 ± 0.75 4.04± 0.45 100 ± 8 18.0 ± 1.8

PU 7.26  ± 0.90 3.19 ± 0.54 321 ± 71 1.2 ± 0.39

PCL 7.00 ± 1.68 2.7 ± 0.44 142 ± 17 4.8 ± 0.11

PCL75/PU25 19.39 ± 4.81 14.74 ± 4.47 101 ± 14 23.0 ± 3.42

PCL50/PU50 2.03 ± 0.33 3.00 ± 0.66 288 ± 12 6.0 ± 0.548

PCL25/PU75 9.81 ± 1.62 5.98 ± 1.21 271 ± 85 5.46 ± 1.68

PET75/PU25 7.11 ± 1.52 2.66 ± 0.39 388 ± 5.2 19.3 ± 2.04

PET50/PU50 40.88 ± 9.21 19.05 ± 3.20 339 ± 85 41.4 ± 3.31

PET25/PU75 18.60 ± 3.08 9.24 ± 0.61 421 ± 51.35 3.18 ± 0.09
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Table 1. Characterization of the solvent used in the present study .
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Fig. 1. Schematic design of electrospiining setup  •
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 Fig. 2. SEM image of the neat and hybrid structures A) PCL, B) PU, C) PET, D) PCL75/PU25, E) PCL50/PU50 F) PCL25/PU75,
G) PET75/PU25, H) PET50/PU50,  I) PET25/PU75 and K) artificial blood vessels
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 Table 4. The average fiber diameter and porosity of neat
structures and PCL/PU, PET/PU hybrid structures
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Fig. 3. FTIR spectra of A) PCL/PU hybrid structure, B) PET/PU hybrid structure
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Table 5. Mechanical properties (maximum load, stress, strain and Young’s Modulus) in neat structures and PCL/PU and 
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± ±

 Fig 4. Stress-strain curve of A) PCL/PU hybrid structure, B) PET/PU hybrid structure  and Young’s Modulus of  C) PCL/PU
 hybrid structure, D) PET/PU hybrid structure
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