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Optimal Vibration Reduction of the Flexible Shaft-Disk-Blades System Using a Set 
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ABSTRACT: In this paper, the application of nonlinear energy sinks for indirect vibration reduction 
of the blades in a flexible shaft-disk-blades system of a real steam turbine is conducted. 37 packets 
of seven-connected blades are mounted on the disk. The cyclic symmetric finite element analysis is 
employed to perform frequency analysis of this system. For the 11th mode, which is a combination of 
the second bending mode of shaft and the third bending mode of disk-blades, a two degrees of freedom 
reduced order model is identified. Nonlinear energy sinks with a small mass, an essential nonlinear 
stiffness and a linear damping are installed on the reduced order model in the anti-node position of the 
disk. The Runge-Kutta method is used to solve the nonlinear equations of motion numerically. Optimum 
stiffness and damping of the absorbers are determined to minimize the vibration amplitude of the blades. 
The results show that the occurrence of strongly modulated response around the resonance leads to the 
desired vibration reduction of the blades. If the absorbers have large nonlinear stiffness or low damping, 
a saddle-node bifurcation and a wide island is appeared in the negative detuning frequencies, and the 
blade could experience large amplitude periodic oscillation.
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1. Introduction
Recently, modern turbines are designed close to their

critical operating points with lower stability margin. 
Therefore, accurate dynamic analysis and using advanced 
vibration control systems are mandatory for them. Dynamic 
analysis of the shaft-disk-blades system of the turbine could 
be conducted using only a sector with fewer Degree Of 
Freedoms (DOFs) instead of the entire model [1,2]. The real 
resonances of bladed disk system are determined through 
Singh’s Advanced Frequency Evaluation (SAFE) diagram. 
The major excitation on the blades is usually vane passing 
flow. The 2nd -6th Nodal Diameters (NDs) are more important 
in steam turbines and the occurrence of resonance in these 
NDs should be considered [3]. In-plane motion of a row 
of blades, at the first ND, is coupled by the bending and 
transversal modes of the rotor and No coupling exists with 
the torsional modes [4]. Three types of coupled motion could 
be seen in the system including inter-blade, shaft-disk-blade, 
and disk-blade [5]. The vibration amplitude of blades could 
be damped by adding Nonlinear Energy Sink (NES) into 
blades [6], on the disk of the Jeffcott rotor [7], or on bearings 
[8]. Because of the lack of own natural frequency of the NES, 
unlike the linear absorbers, two peaks is not appeared around 
resonance point of the system, and hence, NES has more 
effective performance.

Application of the NES in a real flexible shaft-disk-

blades system with a lot of blades has not studied yet and 
is conducted in this research. The case study includes 259 
blades in 37 packet of 7-connected blades by a tip shroud. 
A periodic model of the structure is analyzed using finite 
element software and various localized and coupled modes of 
the system are identified. Some NESs are added to the disk to 
suppress the blades vibration indirectly. Each NES includes 
a small mass, an essentially nonlinear stiffener and a linear 
damping. In the vicinity of the 1:1 resonance of the 11th mode 
of the system, nonlinear dynamic system equations are solved 
numerically using the Runge-Kutta method and the NES 
parameters are optimized for the best vibration suppression. 
System behavior sensitivity to the NES parameters is 
surveyed too.  

2. Methodology
The disk-blade system is the eleventh stage of a twelve-

stage 30 MW steam turbine. It is made of steel and its weight 
is 2001 kg. The periodic model of this system includes a set 
of 7-connected blades and a slice of the disk and shaft. This 
model has been meshed in a finite element software and the 
centrifugal force caused by the angular speed of 3000 rpm is 
applied on elements. Furthermore, the structural and modal 
analysis are conducted. The interaction between modes is 
investigated using the SAFE diagram. A strong structural 
coupling exists between blades, disk, and shaft motions in 
the 11th mode, and therefore, a high level of energy capturing *Corresponding author’s email: p_safarpour@sbu.ac.ir

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 

please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.



﻿

850

and suppressing by the NESs, mounted on the disk, could 
be occurred. Thus, this mode is selected for the NES tuning. 
Furthermore, a 2DOF reduced order model (Fig. 1) is 
identified for modelling of the 11th and 12th modes. 

Around the 1:1 resonance of the system, vane passing flow 
exerts as an excitation force on blades with the frequency of 
Vane Passing Frequency (VPF). The deformation of the shaft 
or disk could only change the magnitude of the force. In each 
sector, a NES is mounted on the anti-node position of the 
desired mode shape on the disk (Fig. 2). Sector equations of 
motion are as follow: 

Aerodynamic damping was included in the system. System 
vibration is studied in the vicinity of the 1:1 resonance at the 
first ND of the 11th mode, therefore, the relative excitation 
frequency is ω/ω2,11=1+ϵσ, where σ is the detuning parameter 
and ϵ is a small number.

3. NES Optimization
Nonlinear equations of motion of the system has been

solved numerically using the Runge-Kutta method. Fig. 3 
displays the 3Dimension (3D) plot of the blade maximum 
frequency response in terms of NESs’ stiffness and damping. 

The optimized parameters of NESs are as follow:

4. Discussion and Results
Shaft-disk-blades frequency response with the optimized

NES has been shown in Fig. 4. The Strongly Modulated 
Response (SMR) has occurred in a frequency bandwidth of 4 
Hz in the range of -0.02<σ<0.15. Nonlinear system responses 
larger than the linear system is occurred in the ranges of 
0.12<σ<0.2 and 0.33<σ<0.47, of course, too smaller than 
the resonance amplitude. In other frequency ranges, the 
blade vibration amplitude is equal or smaller than the system 
without NES. Decreasing damping and increasing stiffness 
create an island near resonance and a saddle-node bifurcation 
occurs in frequency response. Therefore, blades response 
may be attracted by the large amplitude stable node in some 
initial conditions.

5. Conclusions
Shaft is coupled with disk-blade motion only at zero

and first NDs. The optimized NES could reduce the blade 
vibration amplitude up to 38% and its performance is more 
sensitive to the nonlinear stiffness than linear damping.

Fig. 2. Shaft-disk-blades system cross section view at the first ND 
of the 11th mode; circle shows the position of NES.

Fig. 1. Schematic of the two-DOF reduced order model; NES has been shown by dotted lines. 
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Fig. 4. Blade frequency response with NES (solid line) and without NES (dashed line).
Fig. 4. Blade frequency response with NES (solid line) and 

without NES (dashed line).



﻿

851

Science and Technology, 31 (11) (2017) 5219–5229.
[6]	S. Bab, S. E. Khadem, M. K. Mahdiabadi, & M.

Shahgholi, Vibration mitigation of a rotating beam under
external periodic force using a nonlinear energy sink
(NES). Journal of Vibration and Control, 23 (6) (2017)
1001–1025.

[7] S. Bab, S. E. Khadem, & M. Shahgholi, Lateral vibration
attenuation of a rotor under mass eccentricity force using
non-linear energy sink. International Journal of Non-
Linear Mechanics, 67 (2014) 251–266.

[8]	S. Bab, S. E. Khadem, M. Shahgholi, & A. Abbasi,
Vibration attenuation of a continuous rotor-blisk-journal
bearing system employing smooth nonlinear energy
sinks. Mechanical Systems and Signal Processing, 84
(2017) 128–157.

References
[1]	D. J. Mead, Wave propagation and natural modes in

periodic systems: I. Mono-coupled systems. Journal of
Sound and Vibration, 40 (1) (1975) 1–18.

[2] G. Óttarsson, Dynamic modeling and vibration analysis
of mistuned bladed disks. (1994).

[3] P. Polach, Evaluation of the suitability of the bladed disk
design regarding the danger of the resonant vibration
excitation. Engineering Mechanics, 18 (3–4) (2011) 181–
191.

[4]	G. Genta, Dynamics of rotating systems , Springer
Science & Business Media, 2007.

[5] Y.-J. Chiu, X.-Y. Li, Y.-C. Chen, S.-R. Jian, C.-H. Yang, &
I.-H. Lin, Three methods for studying coupled vibration in 
a multi flexible disk rotor system. Journal of Mechanical



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k



44 3425
DOI:   10.22060/mej.2019.16274.6319

3425

p_safarpour@sbu.ac.ir

Creative Commons License
https://www.creativecommons.org/licenses/by-nc/4.0/legalcode

1  Sector



44 3425

3426

f

f

f

X X

1  Sing’s Advanced Frequency Evaluation (SAFE) diagram
2  Nodal Diameter (ND)
3  Vane Passing Frequency (VPF)4  Linear and Non-Linear Energy Absorber



3427

1  Targeted Energy Transfer (TET)
2 Nonlinear Energy Sink (NES)
3  Linear Absorber or Tuned Mass Damper
4 Coleman
5 

6  Nonlinear Normal Mode
7  Relaxation Oscillation
8  Strongly Modulated Response (SMR)
9  Cyclic Symmetric Model

44 3425



3428

1  Tuned

M iU i

m m m  [K

cK

if

N

K M

.Fig. 1. A periodic Structure

1

1 , 1
c

c

M K K
K i N

KK i i i

i i i

U U U U
U U f    

1 1

2
, 1

i c

c c

M K K
K K i N

i Ki K i

i i i

U U
U U f    

1

1

1

1

1

1

0  0 0

0 0 0 

0 0 0
0 0 0
0 2
0 2

N

c

c c c

c c

M

M

K
K K K K

K K K

111

 0

M NM NNM N

111

1

i

N

i

i i

i

N

U

U

U
U

f
U
U f

U
f

U

M KMM KKKU U f

44 3425



3429

I E

2 1 /k k N

k

E IU u k

1  Circulant Matrix

DK DM

i ie

 ;
 ;

i k
i k

*
k ie e

k k

, , , , , kuu
k

i

k

k

E IU u

3 12

3 12

2 3 1

2 22

1 1 2

1 1 1 1 1
1 1
1 1

11

N

N

N

I II

I II

I N I N I

E
e e e
e e e

e e e

e
ee

ee

1

1

1

0  0 0

0 0 0 
0  0 0

0 0 0 

D

DN

D

DN

T

M

M
K

K

E I

 0

M DNM DDNM D

0
DN

K DNKDDNKD
N

i

u

u

e f

1

1

D D

T

T

M K

E I

E I

M DDM D KKKKDDKDKDKKK
N

i

N

i

u u

e f

e f

1 2
12

{ , , , }
, , , , kk k

T

j Nj je e e
N

T

k k k k

U U U U
u  u u  u

44 3425



3430

rpm

 Fig. 2. (a) A complete model of the shaft-disk-blade system, (b) a sector of shaft-disk-blade (includes a packet of connected
blades and a slice of disk-shaft) with the periodic boundary condition.t

Fig. 3. (a) Finite element model of the sector included of 6057 structural elements, (b) Boundary condition of the periodic model.t
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1  Veering Region

ND=

ND=

2 Shaft Bending (SB2) 

 Fig. 4. Frequency diagram of the flexible shaft-disk-blades
 system of the 11th stage of the steam turbine; combined modes
 of the three components (solid lines) and disk-blade and blade

local modes (dashed lines).t
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Fig. 5. Various mode shapes of the flexible shaft-disk-blade system at low NDs.t
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1 Out of plane disk-blade Bending (OB3) 
2 In plane disk-blade Bending (IB3) 

 Fig. 7. Excitation in bladed disk system; (a) ND=0 or the synchronous whirl of the rotor, (b) whirl at the first ND of the first family,
(c) whirl at the first ND of the 11th family.t

 Fig. 6. Frequency diagram of the flexible shaft-disk-blade system close to the 11th and 12th families of natural modes (solid
lines); frequency diagram of the reduced order models (ROM) (-., --, …) t
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Fig. 12. Blade frequency response sensitivity to the nonlinear stiffness of NES. t
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Fig. 13. Blade frequency response sensitivity to the damping of NES. t
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