تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,750 |
بررسی تجربی ضریب انتقال حرارت جابجایی و عدد ناسلت، در نانوسیال آب/کربن | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 15، دوره 53، شماره 1، فروردین 1400، صفحه 209-220 اصل مقاله (969.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2019.16148.6289 | ||
نویسندگان | ||
امیرحسین شیروی* 1؛ مجتبی شفیعی2؛ حدیث بستانی3؛ محمد فیروززاده4؛ مریم بزرگمهریان3 | ||
1گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی جندی شاپور، دزفول، ایران | ||
2گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی جندی شاپور، دزفول، ایـران | ||
3گروه مهندسی مکانیک، دانشکده مهندسی مکانیـک، دانشگاه صنعتی جندی شاپور دزفـول، ایــران | ||
4گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران | ||
چکیده | ||
یکی از مهمترین عوامل تاثیرگذار برعملکرد یک سیال در فرایند انتقال حرارت، ضریب انتقال حرارت سیال میباشد. با توجه به بالاتر بودن ضریب انتقال حرارت رسانشی فلزات نسبت به مایعات، میتوان با استفاده از ذرات جامد فلزی، میزان انتقال حرارت را افزایش داد. یکی از روشهای جدید برای افزایش انتقال حرارت در مبدلهای حرارتی، استفاده از نانوسیالات میباشد. در این مقاله پارامترهای اصلیِ تأثیر گذار بر افزایش ضریب انتقال حرارت جابجایی نانو سیال کربن نسبت به سیال پایه آب، ازجمله دبی و غلظت نانو سیال را در محدوده رینولدز 7100 تا 16700 که حالت جریان آشفته درون لوله محسوب میشود، بررسی شده است. نتایج به دست آمده نشان داد که افزایـش رینولدز منجر به افزایش ناسلت و ضریب انتقال حرارت جابجایی و کاهـش ضریـب اصطـکاک میشود. همچنین نشان داده شد که در یک رینـولدز ثـابت، نانـو سیـال کربن توانسته است تـا 17/10 % ضریب انتقال حرارت جابجایی بیشتری نسبت به سیال پایـه (آب) داشته باشد. مشخص شد که با افزودن نانوذرات به آب، در ابتدا شاهد افزایش در ضریب انتقال حرارت جابجایی نانوسیال هستیم. این افزایش تا غلظت حدود 2/0 درصد جرمی از نانوکربن ادامه داشته و پس از آن ضریب انتقال حرارت جابجایی، روندی کاهشی پیدا میکند. بعـلاوه در ایـن پـژوهش، افت فشار ناشی از تغییرات رینولدز نیز بررسی شد و مشخص شد که رفتار این منحنی با دیاگرام مودی کاملاً در تطابق است. | ||
کلیدواژهها | ||
نانوسیال؛ انتقال حرارت؛ عدد ناسلت؛ افت فشار | ||
عنوان مقاله [English] | ||
An Experimental Investigation on the Convective Heat Transfer Coefficient and Nusselt Number in Water/Carbon Nanofluid | ||
نویسندگان [English] | ||
Amir Hossein Shiravi1؛ Mojtaba Shafiee2؛ Hadis Bostani3؛ Mohammad Firoozzadeh4؛ Maryam Bozorgmehrian3 | ||
1Department of Mechanical Engineering, Faculty of Mechanical engineering, Jundi-Shapur University of technology, Dezful, Iran | ||
2Department of Chemical Engineering, Faculty of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran | ||
3Department of Mechanical Engineering, Jundi-Shapur University of Technology, Dezful, Iran | ||
4Department of Mechanical Engineering, Faculty of Mechanical Engineering, Jundi-Shapur University of technology, Dezful, Iran | ||
چکیده [English] | ||
The heat transfer coefficient of fluid is one of the most important effective factors on the performance of fluid in the heat transfer process. Due to the higher conductive heat transfer coefficient of metals than liquids, metal particles can be used to increase the heat transfer rate of liquids. Nanofluid is one of the novels and developing methods to improve the heat transfer rate in heat exchangers. In this paper, the main effective parameters (flow rate and concentration) on increasing the convective heat transfer coefficient of water carbon nanofluid compared with water as a base fluid, are investigated in the Reynolds range of 7,100 to 16,700. The results illustrate that increasing the Re leads to increase in the Nusselt number and convective heat transfer coefficient, and also to decrease the friction factor. It is also shown that at a constant Re, carbon nanofluid is able to enhance the convective heat transfer coefficient up to 10.17%, compared with pure water. It is found that adding carbon nanoparticles to water, initially leads to increasing the convective heat transfer coefficient, while this trend continues until the concentration of about 0.2 wt%, and then has a descending trend. In addition, the pressure drop was investigated due to changes in Re and was shown that the behavior of this curve is in agreement with Moody’s diagram. | ||
کلیدواژهها [English] | ||
Nanofluid, Heat transfer, Nusselt number, Friction factor | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] M.C. Sportelli, R.A. Picca, N. Cioffi, Recent advances in the synthesis and characterization of nano-antimicrobials, TrAC Trends in Analytical Chemistry, 84 (2016) 131-138. [2] D. Chen, P. Szostak, Z. Wei, R. Xiao, Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate, Science of The Total Environment, 539 (2016) 381-387. [3] M. Firoozzadeh, A.H. Shiravi, M. Shafiee, Experimental Study on Photovoltaic Cooling System Integrated With Carbon Nano Fluid, Journal of Solar Energy Research, 3(4) (2018) 287-292. [4] Y. Li, J. Yang, J. Song, Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle, Renewable and Sustainable Energy Reviews, 69 (2017) 652-663. [5] O. Mahian, A. Kianifar, C. Kleinstreuer, A.-N. Moh’d A, I. Pop, A.Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow, International Journal of Heat and Mass Transfer, 65 (2013) 514-532. [6] X. Chen, T. Zhao, M.-Q. Zhang, Q. Chen, Entropy and entransy in convective heat transfer optimization: A review and perspective, International Journal of Heat and Mass Transfer, 137 (2019) 1191-1220. [7] D. Khurana, R. Choudhary, S. Subudhi, A critical review of forced convection heat transfer and pressure drop of Al 2 O 3, TiO 2 and CuO nanofluids, Heat and Mass Transfer, 53(1) (2017) 343-361. [8] K. Bashirnezhad, M. Ghavami, A.A. Alrashed, Experimental investigations of nanofluids convective heat transfer in different flow regimes: A review, Journal of Molecular Liquids, 244 (2017) 309-321. [9] R. Ranjbarzadeh, A. Karimipour, M. Afrand, A.H.M. Isfahani, A. Shirneshan, Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe, Applied Thermal Engineering, 126 (2017) 538-547. [10] J. Fan, L. Wang, Review of Heat Conduction in Nanofluids, Journal of Heat Transfer, 133(4) (2011) 040801-040801-040814. [11] A. Pramuanjaroenkij, A. Tongkratoke, S. Kakaç, Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement, Journal of Engineering Physics and Thermophysics, 91(1) (2018) 104-114. [12] J.-Y. Jung, H.-S. Oh, H.-Y. Kwak, Forced convective heat transfer of nanofluids in microchannels, in: ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2006, pp. 327-332. [13] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47(24) (2004) 5181-5188. [14] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of heat transfer, 125(4) (2003) 567-574. [15] S. Paryani, A. Ramazani SA, Investigation of the combination of TiO2 nanoparticles and drag reducer polymer effects on the heat transfer and drag characteristics of nanofluids, The Canadian Journal of Chemical Engineering, 96(6) (2018) 1430-1440. [16] W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Acta, 491(1-2) (2009) 92-96. [17] Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat transfer, 125(1) (2003) 151-155. [18] E.B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm, Accurate basis of comparison for convective heat transfer in nanofluids, International Communications in Heat and Mass Transfer, 52 (2014) 1-7. [19] S. Fotukian, M.N. Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, International communications in heat and mass transfer, 37(2) (2010) 214-219. [20] A.B. Kasaeian, S. Nasiri, Convection Heat Transfer Modeling of Nano- fluid Tio2 Using Different Viscosity Theories, International Journal of Nanoscience and Nanotechnology, 11(1) (2015) 45-51. [21] C. Selvam, T. Balaji, D.M. Lal, S. Harish, Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets, Experimental Thermal and Fluid Science, 80 (2017) 67-76. [22] S.E.B. Maı̈ga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices and Microstructures, 35(3) (2004) 543-557. [23] A. Ghozatloo, A. Rashidi, M. Shariaty-Niassar, Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science, 53 (2014) 136-141. [24] A. Ghozatloo, M. Shariaty-Niasar, A.M. Rashidi, Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime, International Journal of Nanoscience and Nanotechnology, 10(4) (2014) 237-244. [25] S. El Bécaye Maïga, C. Tam Nguyen, N. Galanis, G. Roy, T. Maré, M. Coqueux, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, International Journal of Numerical Methods for Heat & Fluid Flow, 16(3) (2006) 275-292. [26] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, 28(2) (2007) 211-219.
| ||
آمار تعداد مشاهده مقاله: 3,033 تعداد دریافت فایل اصل مقاله: 2,413 |