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ABSTRACT: Considering the optimal performance and new applications of the ducted fans, especially 
in unmanned aerial vehicle missions, this paper aims to provide an optimal and rapid method for designing 
aerial vehicles based on new mathematical and analytical tools which improved and accelerated many of 
the long engineered processes. In this new fast design method, an initial design is carried out based on 
the momentum theory. Then by connecting the matrix laboratory and a ducted fan design code software, 
several optimal design schemes for the duct are extracted by the particle swarm optimization and direct 
algorithm. The parameters search domain in the algorithm is obtained from the initial design with the 
momentum theory method and the various results of optimization software, in the case. Finally, in order 
to obtain the final duct design, according to the optimized information, a multilayer perceptron neural 
network using an error backpropagation algorithm is trained which in order to obtain the optimal training 
samples and the network output validations, the neural network is trained and test by 28 airfoils sample. 
In the redesign loops, without a time-consuming optimization, the trained neural model can extract the 
duct parameters very quickly, based on the constraints of structure, control design, and mission targets. 
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1- Introduction
Nowadays, Unmanned Aerial Vehicles (UAV) are

developing at a considerable rate of the variety and range of 
applications. In general, UAVs are divided into fixed-wing, 
Vertical Takeoff Or Landing (VTOL), and hybrid type. The 
VTOL has a special place among the drones because of 
the ability to takeoff and landing vertically. Duct fans are 
a kind of VTOLs, usually composed of one or two fans in 
an outer duct, and their control surfaces are symmetrically 
underneath the fan. In Fig. 1, different parts of a ducted fan sre 
introduced. The ducted fan uses a combination of rotors and 
wings, but instead of the usual shape, the wing surrounds the 
rotor annularly. The duct increases the trust and provides lift 
during the cruise flight. Flights and wind tunnels tests prove 
the ducted fan benefits which are mentioned in reference [1].

any papers focus on the optimal design of the ducted fan 
[2], but in these articles, only empirical or analytic methods 
such as Blade Element Theory (BET) and Momentum Theory 
(MT) are used which optimization or acceleration of these 
methods has not been considered with novel evolutionary 
algorithms or neural networks. 

In the paper, an attempt has been made to provide an 
optimal and fast way to design a ducted fan. In the new 
method, first, using the momentum theory, based on the 
requirements of the mission defined for the UAV, an initial 
design is performed, then The initial model is optimized 
with the Ducted Fan Design Code (DFDC) software, which 

is based on classical vortex/blade-element methods of Drela 
and Youngren [3], and a general 3Dimensional (3D) vortex-
lattice or panel method for aerodynamic analysis of ducted 
fans.

The used optimization method is the Particle Swarm 
Optimization (PSO) algorithm, the search domain of 
the optimization parameters is extracted from the initial 
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Fig. 1. ducted fan details
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momentum theory design. In the different optimal designs 
based on various airfoils for the ducted fan body, the design 
parameters such as airfoil installation angle, airfoil length, 
and airfoil tip relative to the fan core are obtained different, 
which greatly affects the design efficiency. Therefore, it is 
necessary to make several optimizations to choose a proper 
airfoil for the production of maximum thrust, having an 
appropriate interior space for proper structure, fuel tank 
place, and other control and electrical elements, as well as 
having the minimum weight of the instrument, which is 
time-consuming. In this regard, in the final design phase, a 
MultiLayer Perceptron (MLP) neural network was trained 
based on a number of optimized designs which its input are 
airfoil properties and its output are optimal values for the 
airfoil installation parameters. The neural model, can achieve 
the best possible design of the final duct with all the practical 
design constraints in the shortest time possible.

2- Methodology
For initial approximations and related calculations, rotor

computation methods, such as the BET and MT methods 
should be used. In this section, the MT method will be used 
to avoid the difficulties of selecting airfoil blade parameters. 
This method has two important tools. The first tool is the 
continuum equation. This tool can be expressed as Eq. (1).

 

1

(1)cte,       =cte cteAV AV     

The second tool for applying momentum theory is the 
Bernoulli equation.

 

2

(2)21 cte
2

V p    

The initial design steps of a ducted fan based on MT are 
presented in reference [4].

2- 1- Optimization
The PSO algorithm is used to optimize the initial design

of the ducted fan. Designing variables include selecting the 
appropriate airfoil, the size of the inlet, and outlet of duct, 
which are variables of the airfoil installation angle and airfoil 
chord length, the airfoil attack edge distance to the fan rotor 
core, and the distance between the fan edge and the inner body 
of the duct. The cost function used for the PSO algorithm 
or direct optimization method is 6( 10 / )J T P= − +  or 

8(1/ 2*10 )J T P−= + , which is the effect of the power and 
thrust on the cost function. Fig. 2 is an example of an analysis 
performed on DFDC software used for airfoils in which the 
cost function value is presented in terms of the number of the 
cost function evaluations.

The optimal values of the design variables for the 28 airfoil 
samples are achieved. The direct optimization method is 
used to validate the values obtained by the PSO optimization 
method. The direct method always provides a global answer 
if there are enough examples in the problem-solving domain.

3- Results and Discussion
In this section, in order to obtain optimal values of design

parameters, a neural network is trained using the outputs of the 
PSO algorithm. The results of training a two-layer perceptron 
neural network with a backpropagation error algorithm with 
the Levenberg-Marquardt method for the angle of mounting 
of the airfoil to duct core are shown in Fig. 3. In this model, 
the input vector to the neural network has the geometric 
properties of NACA airfoils, including the Camber curvature, 
the maximum curvature distance from the airfoil attack edge, 
and the cord to thickness ratio.

As the neural network training information increases, 
this network will provide a more accurate model of the duct 
design. 

Five five-digit airfoils and five six-digit NACA Airfoils 
were assigned to the test, which showed that the outputs of 
the neural network and the output of the PSO algorithm were 
less than 10% different. Based on the simulations, a sufficient 
number of samples can be extracted to the neural network 
based on the required accuracy. For example, for an error of 
less than 3%, a sample of 15 airfoils is sufficient. 

Fig. 2. Airfoil optimization information of NACA23018 Fig. 3. Estimation of airfoil installation angle using neural 
network with 10 training samples
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4- Conclusion
According to the momentum theory method, a ducted fan

was first designed which only expressed the dimensions of 
the inlet, output, thrust force and power output in this case. 
In this method of design, a simple nozzle is considered 
between the inlet and outlet, where the fan is located in the 
nozzle throat. But in this paper, a combination of DFDC 
analytical software for ducted fan analysis, PSO optimization 
algorithm, and a neural network for the rapid and optimal 
design of this perpendicular UAV was used. In the first step, 
using the combination of MATLAB and DFDC software and 
with the PSO optimization algorithm, the optimal design 
for each airfoil was performed then a multilayer perceptron 
neural network was trained to increase the design speed 
and accuracy based on the optimizations. Optimal sample 
numbers were obtained for neural network training. Finally, 
it was found that this neural network is capable of predicting 
95% accuracy of design and installation specifications of 
4-digit NACA airfoils and with more than 90% accuracy

in predicting other NACA airfoils. As a result, this method 
greatly increases the accuracy and speed of the design.

References
[1] U.R. Mogili, B.B.V.L. Deepak, Review on application

of drone systems in precision agriculture, Procedia
computer science, 133 (2018) 502-509.

[2] L. Cho, S. Lee, J. Cho, Numerical and experimental
analyses of the ducted fan for the small VTOL UAV
propulsion, Transactions of the Japan Society for
Aeronautical and Space Sciences, 56(6) (2013) 328-336.

[3] M. Drela, H. Youngren, Axisymmetric analysis and
design of ducted rotors, in:  DFDC Software Manual,
2005.

[4] A. Ko, O. Osgar, P. Gelhausen, Ducted fan UAV
modeling and simulation in preliminary design, in:
AIAA modeling and simulation technologies conference
and exhibit, 2007.



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k



3368 3353
DOI:  10.22060/mej.2019.16388.6352

3353

m_navabi@sbu.ac.ir

Creative Commons License
https://www.creativecommons.org/licenses/by-nc/4.0/legalcode

1  Blade Element Theory (BET)
2  Momentum Theory (MT)



3368 3353

3354

1  AVID OAV

2  Ducted Fan Design Code (DFDC)
3  Vortex-lattice
4  Panel method
5  MATLAB
6  Particle Swarm Optimization (PSO)
7  MultiLayer Perceptron (MLP)

Fig.1. Ducted fan structure 8



3355

cte     ,       =cte cteAV AV  

V A

p 21
2

V

21 cte
2

V p  

reqT

engineP

1  Actuator Disk

engineP
.available engineP P

2 2( )
4disk fan hubA D D

2 2

0 2
req req

available
available thrust

T T
P TV m

m P P

1
0

mA
V

2
disk

mV
A

2 2
2 0 0 2( )

2
p p V V

2

2

swirl
swirl swirl

mK
K P

m A
4 0

reqV V
m

4A

2

3 2
2

[ ln( )]available swirl fan

hub

P K D
p p

m A D
2 2 3 2[ ( )]fan swirlP P A V p p

fan availableP P

. ,newm b m b

 Fig.2 . Sections 0: free stream, 1:duct inlet, 2:before fan, 3: after fan,
4: duct outlet

3368 3353



3356

Table 1. Initial design input parameters

 

cruiseALTft (  m) 

cruiseVkph 

 

fanD in (  m) 

hubD in (  m) 

engineP hp (  kW) 

 rpm 

reqT lbf (  N) 
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Table 2. Initial design output parameters
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Table 4. Parameters used in DFDC software

Table 3. Design parameters range
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Table 5. Optimal values of design variables with particle swarm algorithm

Table 6. Optimal values of design variables with direct algorithm.
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Fig. 6. Forward path in the backpropagation algorithm

Fig. 5. Neural network structure

Fig.7. Backward path in the backpropagation algorithm

3368 3353



3363

ˆ /Y Y Y

NACA

5
10

15
20

25 0 1 2 3 4 5 6

-18

-16

-14

-12

-10

-8

-6

CamberT/C

A
irf

oi
l c

or
d 

an
gl

e 
to

 c
en

te
r (

de
gr

ee
)

output
target

Fig. 8. Estimation of airfoil installation angle using neural network with 10 training samples
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Fig. 10. Mean squared error of the training algorithm for the installation angle neural network with 28 training airfoils

Fig. 9. Mean squared error of neural network training algorithm for installation angle with 10 training airfoils
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