- Wang, F. Xiao, X. Zhu, B. Huang, J. Wang, S. Amirkhanian, Energy consumption and environmental impact of rubberized asphalt pavement, Journal of Cleaner Production, 180 (2018) 139–158.
- Vaitkus, Influence of warm mix asphalt technology on asphalt physical and mechanical properties, Construction and Building Materials, 112 (2016) 800–806.
- Lo Presti, Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review, Construction and Building Materials, 49 (2013) 863–881.
- E. Kaloush, Asphalt rubber : Performance tests and pavement design issues, Construction and Building Materials, 67 (2014) 258–264.
- J. Lee, C.K. Akisetty, S.N. Amirkhanian, The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements, Construction and Building Materials, 22 (2008) 1368–1376.
- M. Nejad, P. Aghajani, A. Modarres, H. Firoozifar, Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods, Construction and Building Materials, 26 (2012) 481–489.
- Yu, Z. Leng, Z. Dong, Z. Tan, F. Guo, J. Yan, Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives, Construction and Building Materials, 175 (2018) 392–401.
- Akisetty, Evaluation of warm mix asphalt additives on performance properties of crm binder and mixtures, PhD Dissertation, Clemson University, (2008).
- R.M. Oliveira, H.M.R.D. Silva, L.P.F. Abreu, S.R.M. Fernandes, Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures, Journal of Cleaner Production, 41 (2013) 15–22.
- Leng, H. Yu, Z. Zhang, Z. Tan, Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization, Construction and Building Materials, 144 (2017) 291–299.
- Wang, X. Liu, P. Apostolidis, T. Scarpas, Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology, Journal of Cleaner Production, 177 (2018) 302–314.
- Du, J. Chen, Z. Han, W. Liu, A review on solutions for improving rutting resistance of asphalt pavement and test methods, Construction and Building Materials, 168 (2018) 893–905.
- B.S. Bastos, L.F.A.L. Babadopulos, J.B. Soares, Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways, Construction and Building Materials, 145 (2017) 20–27.
- Radhakrishnan, M. Ramya Sri, K. Sudhakar Reddy, Evaluation of asphalt binder rutting parameters, Construction and Building Materials, 173 (2018) 298–307.
- Santagata, O. Baglieri, D. Dalmazzo, L. Tsantilis, Evaluation of the anti-rutting potential of polymer-modified binders by means of creep-recovery shear tests, Materials and Structures, 46 (2013) 1673–1682.
- Cardone, G. Ferrotti, F. Frigio, F. Canestrari, Influence of polymer modification on asphalt binder dynamic and steady flow viscosities, Construction and Building Materials, 71 (2014) 435–443.
- Subhy, D. Lo Presti, G. Airey, An investigation on using pre-treated tyre rubber as a replacement of synthetic polymers for bitumen modification, Road Materials and Pavement Design, 16 (2015) 245–264.
- Saboo, P. Kumar, Analysis of Different Test Methods for Quantifying Rutting Susceptibility of Asphalt Binders, Journal of Materials in Civil Engineering, 28 (2016) 04016024.
- Kumar, N. Saboo, P. Kumar, S. Chandra, Effect of warm mix additives on creep and recovery response of conventional and polymer modified asphalt binders, Construction and Building Materials, 138 (2017) 352–362.
- Zhang, H. Wang, J. Gao, Z. You, X. Yang, High temperature performance of SBS modified bio-asphalt, Construction and Building Materials, 144 (2017) 99–105.
- Venudharan, K.P. Biligiri, N.C. Das, Investigations on behavioral characteristics of asphalt binder with crumb rubber modification: Rheological and thermo-chemical approach, Construction and Building Materials, 181 (2018) 455–464.
- U. Bahia, D.I. Hanson, M. Zeng, H. Zhai, M.A. Khatri, R.M. Anderson, NCHRP REPORT 459, Characterization of Modified Asphalt Binders in Superpave Mix Design, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, D.C, (2001).
- D’Angelo, R. Kluttz, R.N. Dongre, K. Stephens, L. Zanzotto, Revision of the superpave high temperature binder specification: the multiple stress creep recovery test (with discussion), Journal of the Association of Asphalt Paving Technologists, 76 (2007).
- L.J. Wasage, J. Stastna, L. Zanzotto, Rheological analysis of multi-stress creep recovery (MSCR) test, International Journal of Pavement Engineering, 12 (2011) 561–568.
- E. Zoorob, J.P. Castro-Gomes, L.A. Pereira Oliveira, J. O’Connell, Investigating the Multiple Stress Creep Recovery bitumen characterisation test, Construction and Building Materials, 30 (2012) 734–745.
- Zhang, C. Xing, F. Gao, T. shuai Li, Y. qiu Tan, Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt, Construction and Building Materials, 127 (2016) 466–474.
- Zhou, H. Li, P. Chen, T. Scullion, Laboratory evaluation of asphalt binder rutting, fracture, and adhesion tests, Texas. Dept. of Transportation. Research and Technology Implementation Office, 2014.
- J. Navarro, P. Partal, F. Martínez-Boza, C. Gallegos, Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen, Energy and Fuels, 19 (2005) 1984–1990.
- C. Huang, Rheological characteristics of crumb rubber-modified asphalts with long-term aging, Road Materials and Pavement Design, 7 (2006) 37–56.
- H. Shafabakhsh, M. Sadeghnejad, Y. Sajed, Case study of rutting performance of HMA modified with waste rubber powder, Case Studies in Construction Materials, 1 (2014) 69–76.
- Venudharan, K.P. Biligiri, Conceptualization of permanent deformation characteristics of rubber modified asphalt binders: Energy-based algorithm and rheological modeling, Construction and Building Materials, 126 (2016) 388–397.
- Venudharan, K.P. Biligiri, Heuristic Principles to Predict the Effect of Crumb Rubber Gradation on Asphalt Binder Rutting Performance, Journal of Materials in Civil Engineering, 29 (2017) 04017050.
- Zhao, F. Xiao, S.N. Amirkhanian, B.J. Putman, Characterization of rutting performance of warm additive modified asphalt mixtures, Construction and Building Materials, 31 (2012) 265–272.
- Xiao, P.E.W. Zhao, S.N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives, Construction and Building Materials, 23 (2009) 3144–3151.
- K. Akisetty, S. Lee, S.N. Amirkhanian, Laboratory investigation of the influence of warm asphalt additives on long-term performance properties of CRM binders, International Journal of Pavement Engineering, 11 (2010) 153–160.
- Akisetty, F. Xiao, T. Gandhi, S. Amirkhanian, Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive, Construction and Building Materials, 25 (2011) 950–956.
- M. Rodríguez-alloza, J. Gallego, I. Pérez, Study of the effect of four warm mix asphalt additives on bitumen modified with 15 % crumb rubber, Construction and Building Materials, 43 (2013) 300–308.
- M. Rodríguez-alloza, J. Gallego, I. Pérez, A. Bonati, F. Giuliani, High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives, Construction and Building Materials, 53 (2014) 460–466.
- Yu, Z. Leng, Z. Zhou, K. Shih, F. Xiao, Z. Gao, Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber, Journal of Cleaner Production, 141 (2017) 336–345.
- Amirkhanian, M. Corley, Utilization of rubberized asphalt in the United States - an overview, in: Proceedings of 04 International Symposium on Advanced Technologies in Asphalt Pavements, South Korea, 2004: pp. 3–13.
- ASTM Standard D6114, Standard Specification for Asphalt-Rubber Binder, American Society for Testing and Materials, (2009).
- Edwards, P. Redelius, Rheological effects of waxes in bitumen, Energy & Fuels, 17 (2003) 511–520.
- Lu, H. Soenen, P. Redelius, Impact of Bitumen Wax on Asphalt Performance-Low Temperature Cracking, Proceedings of the 3Rd Eurasphalt and Eurobitume Congress Held Vienna, May 2004, 2 (2004) 1351–63.
- AASHTO Standard T316, Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer, American Assiciation of State and Highway Transportation Officials, (2010).
- Subhy, Advanced analytical techniques in fatigue and rutting related characterisations of modified bitumen: Literature review, Construction and Building Materials, 156 (2017) 28–45.
- Dongre, J. D’Angelo, G. Baumgardner, G. Reinke, New developments in refinement of the superpave high temperature specification parameter, In 40th Annual Meeting of the Petersen Asphalt Research Conference, Laramie, WY, (2003).
- AASHTO, Multiple Stress Creep Recovery Test of Asphalt Binder Using a Dynamic Shear Rheometer (MSCR), TP70-12, (2012).
- A. D’Angelo, The relationship of the mscr test to rutting, Road Materials and Pavement Design, 10 (2009) 61–80.
- AASHTO M332, Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test, Wshington, (2014).
|