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ABSTRACT: In this paper, a new four-parameters model called the complementary
odd Weibull power series (COWPS) distribution is defined and its properties are ex-
plored. This new distribution exhibits several new and well-known hazard rate shapes
such as increasing, decreasing, bathtub-shaped and J-shape hazard rates. Some of its
mathematical properties are obtained including moments, quantiles reliability, and
moment generating functions. The maximum likelihood estimation method is used
to estimate the vector of parameters. A simulation study is presented to investigate
the performance of the estimators. Finally, The usefulness of the model has been
demonstrated by applying it to a real-life dataset.
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1. Introduction

In 2006, Cooray introduced a three-parameter generalization of the Weibull distribution called the odd Weibull
distribution with cumulative distribution function (cdf) and probability density function (pdf) given by:

G(x;α, β, γ) =

(
eαx

β − 1
)γ

1 +
(
eαxβ − 1

)γ , x > 0, (1.1)

and

g(x;α, β, γ) =
αβγxβ−1eαx

β
(
eαx

β − 1
)γ−1

{
1 +

(
eαxβ − 1

)γ}2 , x > 0, (1.2)

where α > 0 and βγ > 0 (Cooray, 2006). Then the odd Weibull distribution has been widely used in reliability and
applications to real data. Based on odd Weibull distribution, many authors have extensively defined and studied the
generalization of this model. Some well-known generalizations are the beta odd Weibull distribution by Cordeiro et
al. (2015), the Kumaraswamy odd Weibull distribution by Alizadeh et al. (2015), The Zografos-Balakrishnan odd
Weibull distribution by Cordeiro et al. (2015), and the odd Weibull Poisson distribution by Alizadeh et al. (2017).

In the other hand, during the recent decade, many compound distributions have been presented by complemen-
tary risk motivation by compounding a lifetime model and a member of the power series family. These models
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motivated by a system consisting of parallel components with an unknown amount of components. For instance,
Cancho et al. (2011) proposed the complementary exponential Poisson distribution. In the same context, Flores et
al. (2013) introduced the complementary exponential power series distribution, Munteanu et al. (2014) presented
complementary Weibull power series distribution, and Cordeiro and Rodrigo (2014) introduced the complementary
extended Weibull power series distribution. In this paper, we introduce the complementary odd Weibull power
series distribution (COWPS), which is obtained by compounding odd Weibull and power series distributions in a
parallel structure. The compounding procedure follows key ideas of Marshall and Olkin (1997), which builds a
wider and more flexible family of continuous lifetime distributions.

The contents of this paper are organized as follows. Section 2 introduces the COWPS distribution; section 3
derives some mathematical properties; section 4 presents five special cases of the COWPS distribution; estimation
of the parameters of the COWPS distribution by maximum likelihood is investigated in section 5; simulation studies
are given in Section 6; application to a real dataset is illustrated in section 7; the paper is concluded in section 8.

2. The new distribution

Suppose that N is a discrete random variable following a zero-truncated power series distribution with mass
function (Noack, 1950) given by

P (N = n) =
anθ

n

C (θ)
, n = 1, 2, ...,

where an depends only on n, C (θ) =
∑∞

n=1 anθ
n and θ > 0 is such that C(θ) is finite. Table 1 shows useful

quantities of some power series distributions (truncated at zero) such as Poisson, geometric, logarithmic, negative
binomial and binomial distributions.

Table 1: Members of The power series family.

Distribution pdf θ Extended parameter space after compounding an C(θ)

Zero truncated Poisson e−θθn/n!
(
1− e−θ

)
θ > 0 θ ∈ (−∞,+∞) 1/n! eθ − 1

Geometric (1− θ) θn−1 0 < θ < 1 θ ∈ (−∞, 0)
⋃
(0, 1) 1 θ/(1− θ)

Logarithmic −θn/n log (1− θ) 0 < θ < 1 θ ∈ (−∞, 0)
⋃
(0, 1) 1/n -log(1− θ)

Negative binomial

(
n+m− 1

n

)
(1− θ)

m
θn/1− (1− θ)

m
0 < θ < 1 θ ∈ (−∞, 0)

⋃
(0, 1)

(
n+m− 1

n

)
(1− θ)

−m − 1

Zero truncated binomial

(
m
n

)
θn/ ((1 + θ)

m − 1) 0 < θ <∞ θ ∈ (−1, 0)⋃(0,+∞)

(
m
n

)
(1 + θ)

m − 1

Let’s also consider X1, X2, ..., XN be a random sample following the odd Weibull distribution, independent of
N , with cdf and pdf given by (1.1) and (1.2) respectively. The complementary odd Weibull power series (COWPS)

distribution is defined by the marginal cdf Y = max {Xi}Ni=1:

F (y;ξξξ) = {C(θ)}−1
C

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠

= {C(θ)}−1
C

(
θ
{
1 +

(
eαy

β − 1
)γ}−1

)
, y > 0, (2.1)

where ξξξ = (α, β, γ, θ) is parameters vector of COWPS family of distributions. Furthermore, the random variable
Y , following (2.1), extends some distributions, which have been introduced in the literature. The odd Weibull
distribution is the particular case for N = 1. The EPS (Chahkandi and Ganjali, 2008) and WPS (Morais and
Barreto-Souza, 2011) distributions are obtained by taking γ = 1 and γ = 1, β = 1 respectively. Since

lim
θ→0+

F (y;ξξξ) = lim
θ→0+

{C(θ)}−1
C

(
θ
{
1 +

(
eαy

β − 1
)γ}−1

)
=
{
1 +

(
eαy

β − 1
)γ}−1

,

the OW distribution is a limiting particular case.
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3. Some useful properties

Some basic statistical and mathematical properties of the COWPS distribution are provided in this section.

3.1. Reliability functions

The probability density, survival and hazard rate (hrf) functions are given by

f(y;ξξξ) =
αβγθyβ−1eαy

β
(
eαy

β − 1
)γ−1

C(θ)
{
1 +

(
eαyβ − 1

)γ}2 C ′

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠ , y > 0, (3.1)

F̄ (y; ξ) = 1− {C(θ)}−1
C

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠ , y > 0,

and

h(y;ξξξ) =
αβγθyβ−1eαy

β
(
eαy

β − 1
)γ−1

{
1 +

(
eαyβ − 1

)γ}2 C ′

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠

⎧⎨⎩C(θ)− C

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠⎫⎬⎭

−1

, y > 0.

The COWPS is simulated by inverting F (y;ξξξ) = U in (2.1) as follows: if U has a uniform U(0, 1) distribution, the
solution of the nonlinear equation

Q(U ;ξξξ) =

{
1

α
log (1 + φ(U, θ))

} 1
β

, (3.2)

has the pdf (3.1), where

φ(U, θ) =
C−1 (UC(θ))

θ − C−1 (UC(θ))
,

and C−1(.) is the inverse of C(.) function.

3.2. Moments, moment generating, and mean residual lifetime functions

Let Y be a COWPS random variable with pdf (3.1). Using the concept of power series and some other mathe-
matical expansions, we derived two linear representations for the cdf and pdf of COWPS distribution. Since

⎧⎨⎩
(
1− e−αyβ

)γ

e−αγyβ +
(
1− e−αyβ

)γ
⎫⎬⎭

n

=

∞∑
k=0

λke
−αkyβ

∞∑
k=0

ρke−αkyβ

=

∞∑
r=0

cre
−αryβ

,

where ρk is defined by Cordeiro et al. (2015),

λk = λk(n, γ) = (−1)k
(
γn

k

)
,
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cr = cr(n, γ) =
1

ρ0

(
ρr − 1

ρ0

r∑
s=1

ρscr−s,

)
,

and c0 = λ0/ρ0. Then, equations (3.1) and (2.1) can be expressed as

F (y,ξξξ) = θn{C(θ)}−1
∞∑

n=1

∞∑
r=0

cr(n, γ)e
−αryβ

, y > 0,

and

f(y,ξξξ) = αβθn{C(θ)}−1
yβ−1

∞∑
n=1

∞∑
r=0

dr(n, γ)e
−αryβ

, y > 0, (3.3)

where dr(n, γ) = −rcr(n, γ). Equation (3.3) is the main result of this section. So, several mathematical properties
of the proposed family such as moments and moment generating function can be obtained by using this expansion.
The formula for the sth moment of Y is obtained from (3.3) as

μ′s = αβθn[C(θ)]
−1

∞∑
n=1

∞∑
r=0

dr(n, γ)

∫ +∞

0

ys+β−1e−αryβ

dy

= θn[C(θ)]
−1

∞∑
n=1

∞∑
r=0

dr(n, γ)
Γ
(

s
β + 1

)
α

s
β r

s
β+1

= α−
s
β θn[C(θ)]

−1
Γ

(
s

β
+ 1

) ∞∑
n=1

∞∑
r=0

dr(n, γ)r
− s

β−1.

The moment generating function of Y is determined from (3.1) by direct integration and is given by

MY (t) = E
[
etY

]
= E

[ ∞∑
s=0

(ty)
s

s!

]
=

∞∑
s=0

ts

s!
μ′s

= α−
s
β θn[C(θ)]

−1
Γ

(
s

β
+ 1

)
[C(θ)]

−1
∞∑
s=0

∞∑
n=1

∞∑
r=0

dr(n, γ)r
− s

β−1.

Given survival to time y0, the residual life is the period from y0 until the time of failure. The mean residual lifetime
of the COWPS distribution is given by

m(y0) = [S(y0)]
−1

∫ ∞

y0

vf(v)dv − y0

= [S(y0)]
−1

αβθn{C(θ)}−1
∞∑

n=1

∞∑
r=0

dr(n, γ)

∫ ∞

y0

vβe−αrvβ

dv − y0

=
θnΓy0

(
β−1 + 1

)
α

1
β [S(y0)]C(θ)

∞∑
n=1

∞∑
r=0

dr(n, γ)r
− 1

β−1 − y0.

4. Some special cases

Some special cases of the COWPS distribution are introduced in this section. To illustrate the flexibility of the
distributions, graphs of the pdf and hazard rate function for some selected values of the parameters are presented.

4.1. Complementary odd Weibull Poisson (COWP)
The complementary odd Weibull Poisson (COWP) distribution is defined by pdf (3.1) with C(θ) = exp(θ)− 1,

leading to
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f(y;ξξξ) =
αβγθyβ−1eαy

β
(
eαy

β − 1
)γ−1

(eθ − 1)
{
1 +

(
eαyβ − 1

)γ}2 exp

⎛⎝ θ
(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠ , y > 0,

where α > and βγ > 0. The θ parameter space in COWP distribution is extended to R−{0} for more flexibility of
this distribution. Similar extensions of the parameter space may be done to other COWPS distributions in addition
to the COWP distribution, as can be viewed in Table 1 (For more details see Goldoust et al., 2017).

4.2. Complementary odd Weibull geometric (COWG)

The complementary odd Weibull geometric (COWG) distribution is defined by pdf (3.1) with C(θ) = θ/(1− θ),
leading to

f(y;ξξξ) =
αβγ(1− θ)yβ−1eαy

β
(
eαy

β − 1
)γ−1

{
1 + (1− θ)

(
eαyβ − 1

)γ}2 , y > 0, (4.1)

where α >, βγ > 0 and θ ∈ (−∞, 1). Figures 1 and 2 show graphs of the probability density and hazard rate
functions of the COWG distribution for some selected values of the parameters.
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Figure 1: Graphs of the COWG pdf for some values of its parameters.

4.3. Complementary odd Weibull logarithmic (COWL)

The complementary odd Weibull logarithmic (COWL) distribution is defined by pdf (3.1) with C(θ) = − log(1−
θ), leading to

f(y;ξξξ) =
αβγθyβ−1eαy

β
(
eαy

β − 1
)γ−1

− log (1− θ)
{
1 +

(
eαyβ − 1

)γ}{
1 + (1− θ)

(
eαyβ − 1

)γ} , y > 0,

where α >, βγ > 0 and θ ∈ (−∞, 1).

4.4. Complementary odd Weibull binomial (COWB)

The complementary odd Weibull binomial (COWB) distribution is defined by pdf (3.1) with C(θ) = (1 + θ)
m−1,

leading to
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Figure 2: Graphs of the COWG hrf for some values of its parameters.

f(y;ξξξ) =

⎛⎜⎝ αβγrθyβ−1eαy
β
(
eαy

β − 1
)γ−1

((1 + θ)
r − 1)

{
1 +

(
eαyβ − 1

)γ}2

⎞⎟⎠
⎛⎝1 + (1 + θ)

(
eαy

β − 1
)γ

1 +
(
eαyβ − 1

)γ
⎞⎠r−1

, y > 0,

where α >, βγ > 0 and θ ∈ (−1,+∞).

5. Maximum likelihood estimation

Suppose Y1, Y2, . . . , Yn is a random sample with observed values y1, y2, . . . , yn from the COWPS family of
distributions with an unknown vector of parameters ξξξ = (α, β, γ, θ). The log-likelihood function of ξξξ is


 (ξξξ|yyy) = n log [α] + n log [β] + n log [γ] + n log [θ]− n log [C (θ)] + (β − 1)

n∑
i=1

log [yi]

+α

n∑
i=1

yi
β + (γ − 1)

n∑
i=1

log
[
eαy

β
i − 1

]
− 2

n∑
i=1

log
[
1 +

(
eαy

β
i − 1

)γ]
+

n∑
i=1

log

[
C ′

(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
)]

. (5.1)

By differentiating (5.1) with respect to α, β, γ and θ, we obtain the components of score vector Un (ξ) =
(∂
/∂α, ∂
/∂β, ∂
/∂γ, ∂
/∂θ), where

∂


∂α
=

n

α
+

n∑
i=1

yi
β + (γ − 1)

n∑
i=1

yβi e
αyβ

i

eαy
β
i − 1

− 2γ

n∑
i=1

yβi

(
eαy

β
i − 1

)γ−1

1 +
(
eαy

β
i − 1

)γ

+γθ

n∑
i=1

yβi e
αyβ

i

(
eαy

β
i − 1

)−γ−1

C ′′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
)

{(
eαy

β
i − 1

)−γ

+ 1

}2

C ′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
) ,
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∂


∂β
=

n

β
+

n∑
i=1

log [yi] + α (γ − 1)

n∑
i=1

log[yi]y
β
i e

αyβ
i

eαy
β
i − 1

− 2αγ

n∑
i=1

log[yi]y
β
i

(
eαy

β
i − 1

)γ−1

1 +
(
eαy

β
i − 1

)γ

+αγθ

n∑
i=1

log[yi]y
β
i e

αyβ
i

(
eαy

β
i − 1

)−γ−1

C ′′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
)

{(
eαy

β
i − 1

)−γ

+ 1

}2

C ′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
) ,

∂


∂γ
=

n

γ
+

n∑
i=1

log
[
eαy

β
i − 1

]
− 2

n∑
i=1

log
[
eαy

β
i − 1

] (
eαy

β
i − 1

)γ

1 +
(
eαy

β
i − 1

)γ

+θ

n∑
i=1

log
[
eαy

β
i − 1

] (
eαy

β
i − 1

)−γ

C ′′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
)

{(
eαy

β
i − 1

)−γ

+ 1

}2

C ′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
) ,

and

∂


∂θ
=

n

θ
− nC ′ (θ)

C (θ)
+

n∑
i=1

C ′′
(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
)

{(
eαy

β
i − 1

)−γ

+ 1

}
C ′

(
θ

{(
eαy

β
i − 1

)−γ

+ 1

}−1
) ,

where C ′ (.) and C ′′ (.) are the first and second derivative of C(.) respectively. The maximum likelihood estimators
are obtained by equating Un (ξ) to zero. This non-linear system of equations has not closed form and the estimated

values of the parameters (ξ̂ξξ) must be found by using iterative methods. For interval estimations and hypothesis
tests on the parameters in ξξξ, we require the 4× 4 observed information matrix In(ξξξ) as follow

In(ξξξ) =

⎛⎜⎜⎜⎜⎝
∂2�
∂α2

∂2�
∂αβ

∂2�
∂α∂γ

∂2�
∂α∂θ

∂2�
∂β∂α

∂2�
∂β2

∂2�
∂β∂γ

∂2�
∂β∂θ

∂2�
∂γ∂α

∂2�
∂γ∂β

∂2�
∂γ2

∂2�
∂γ∂θ

∂2�
∂θ∂α

∂2�
∂θ∂β

∂2�
∂θ∂γ

∂2�
∂θ2

⎞⎟⎟⎟⎟⎠ .

Under standard regularity conditions when n → ∞, the distribution of
(
ξ̂ξξ − ξξξ

)
could be approximated by a

multivariate normal N4

(
000, In(ξ̂ξξ)

−1)
distribution to construct approximate confidence intervals for the parameters

and tests of hypotheses (Cox and Hinkley, 1979).

6. Simulation study

In this section, the results of a simulation study are presented. We evaluate the performance of the maximum
likelihood estimates of the COWG distribution as the special case of COWPS distribution by using (3.2) with
respect to sample size n. We repeated simulation study k = 1000 times with sample size n = 100, 200, 500, 1000 and
parameter values I : α = 0.5, β = 1.5, γ = 0.7, θ = 0.5 and II : α = 1, β = 2, γ = 1.5, θ = 0.7 then the parameters
are estimated by ML method. The bias and mean squared error (MSE) of the parameters are given respectively by

biasξ (n) =
1

1000

1000∑
i=1

(
ξ̂i − ξ

)
,
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Table 2: The mean, bias and MSE of the MLE estimators from 1000 samples.

I II
n ξξξ Average Bias MSE ξξξ Average Bias MSE
100 α 0.0601 0.101 0.096 α 1.355 0.355 0.472

β 1.578 0.078 0.098 β 0.1.731 0.269 0.342
γ 0.643 -0.057 0.035 γ 1.372 -0.128 0.142
θ 0.432 -0.068 0.069 θ 0.641 -0.059 0.086

200 α 0.586 0.086 0.072 α 1.203 0.203 0.311
β 1.541 0.041 0.079 β 1.845 -0.155 0.301
γ 0.671 -0.029 0.021 γ 1.389 -0.111 0.069
θ 0.451 -0.049 0.054 θ 0.735 0.035 0.069

500 α 0.551 0.053 0.51 α 1.102 0.102 0.213
β 1.528 0.028 0.055 β 1.982 -0.018 0.206
γ 0.689 -0.011 0.005 γ 1.459 -0.041 0.057
θ 0.467 -0.032 0.033 θ 0.711 0.011 0.052

1000 α 0.512 0.012 0.031 α 1.032 0.032 0.101
β 1.513 0.013 0.039 β 2.080 0.080 0.095
γ 0.695 -0.005 0.003 γ 1.485 -0.015 0.027
θ 0.498 -0.002 0.026 θ 0.696 -0.004 0.034

and

MSEξ (n) =
1

1000

1000∑
i=1

(
ξ̂i − ξ

)2

,

for ξ = α, β, θ, λ where ξ̂i is ith MLE of ξ.
The empirical results are presented in Table 2. The results indicate that the maximum likelihood estimators

carry out well for estimating the parameters of the COWG model. According to Table 2, it can be concluded
that as the sample size n increases, the MSEs decay toward zero. Furthermore, the bias of estimated values of the
parameters is greatly reduced as the sample size n is increased.

7. Illustrative real data examples

In this section, we prepare an application to real data to demonstrate the importance of the COWPS through
the special model complementary odd Weibull geometric (COWG) with pdf (4.1). The data are times to the death
of 26 psychiatric patients. This dataset has been studied by Elbatal et al. (2015). The data are: 1, 1, 2, 22, 30, 28,
32, 11, 14, 36, 1, 33, 33, 37, 35, 25, 31, 22, 26, 24, 35, 34, 30, 35, 40, 39.

This new four-parameters distribution is compared to its sub-models and some well-known lifetime distributions.
The following different distributions have been used: exponential distribution (Exp), Weibull distribution (Wei),
odd Weibull distribution (OW) (Cooray, 2006), beta Weibull distribution (BW) (Famoye and Olumolade, 2005)
and beta generalized exponential distribution (BGE) (Barreto-Souza et al., 2008) to analyze the data. Estimates

of the parameters of COWPS distribution and their standard error, -log-likelihood (−
(ξ̂ξξ)), Kolmogorov-Smirnov
statistic (K-S) and its p-value, Akaike information criterion (AIC), corrected Akaike information criterion (AICc)
and Bayesian information criterion (BIC) are reported in Table 3.

Table 3 shows that the COWG distribution gives the best-fit respect to all indices. Due to the 
(ξ̂ξξ) value, the
largest K-S p-value, the smallest AIC value, the smallest AICc value, and the smallest BIC value are obtained for
the COWG distribution. Furthermore, the histogram of the dataset and plots the estimated densities are displayed
in Figure 3.

Finally, the total time on test (TTT) transform procedure, proposed by Aarset (1987), is provided. TTT-
transform is a tool to identify the hazard behavior of the distributions. Graph of the TTT-transform is displayed
in Figure 4 for psychiatric patient’s dataset. Aarset (1987) proposed that If the TTT-transform graph is convex
and concave, the hrf will have J-shape.
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Table 3: Estimates and goodness-of-fit measures for the psychiatric patient’s dataset.

Model ξ̂ξξ −�(ξ̂ξξ) K-S p-value AIC AICc BIC

Exp 0.0396 109.969 0.471 0.042 221.938 222.105 223.196

SE
(
ξ̂ξξ
)

0.0078

Wei 1.6659, 0.0040 106.617 0.395 0.076 217.234 217.756 219.750

SE
(
ξ̂ξξ
)

(0.14207, 0.0019)

OW 2.3569, 0.0021, 0.2612 102.166 0.267 0.0.185 210.332 213.189 214.106

SE
(
ξ̂ξξ
)

(0.1763, 0.0008, 0.1296)

BW 2.8460, 0.0021, 0.1813, 0.0285 96.722 0.207 0.431 201.544 204.544 206.476

SE
(
ξ̂ξξ
)

(0.4389, 0.0004, 0.1482, 0.0433)

BGE 8.4938, 0.0173, 0.1583, 202.2628 101.603 0.39 0.251 211.206 214.206 216.238

SE
(
ξ̂ξξ
)

(0.0097, 4.8377, 0.0867, 245.0212)

COWG 2.3823, 0.0038, 0.1709, 0.8118 93.371 0.147 0.541 194.742 196.647 199.774

SE
(
ξ̂ξξ
)

(0.1768, 0.0015, 0.0837, 0.1201)
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Figure 3: Fitted densities to the psychiatric patient’s dataset.

Graph of the estimated hazard rate function is displayed in Figure 4 and it has J-shape. Hence, the COWG
distribution could be the appropriate model for the fitting of this dataset.

8. Concluding Remarks

We introduce a new four-parameters distribution, so-called complementary odd Weibull power series (COWPS),
which includes several distributions widely used in the lifetime literature. Mathematical properties including the
moments and moments generating functions were presented. The maximum likelihood estimation technique is used
to estimate the model parameters. A simulation study is presented to investigate the performance of the estimators.
Finally, an application of the new distribution has also been demonstrated with real-life data. The results, compared
with sub-model and other well-known distributions, revealed that the COWPS provides a better fit for modeling
real-life data.
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Figure 4: Graphs of the estimated hrf and total test time.
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[15] B. G. Munteanu, A. Leahu, I. Pârtachi, The max-Weibull power series distribution,

An. Univ. Oradea Fasc. Mat., 21(2) (2014) 133-139.

[16] A. Noack, A class of random variables with discrete distributions, Ann. Math. Statistics, 21 (1950) 127-132.

Please cite this article using:

Mehdi Goldoust*, The Complementary Odd Weibull Power Series Distribution: Properties
and Applications, AUT J. Math. Com., 1(1) (2020) 57-67
DOI: 10.22060/ajmc.2019.15207.1015

67




