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Counting closed billiard paths
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ABSTRACT: Given a pool table enclosing a set of axis-aligned rectangles, with a
total of n edges, this paper studies closed billiard paths. A closed billiard path is
formed by following the ball shooting from a starting point into some direction, such
that it doesn’t touch any corner of a rectangle, doesn’t visit any point on the table
twice, and stops exactly at the starting position. The signature of a billiard path is
the sequence of the labels of edges in the order that are touched by the path, while
repeated edge reflections like abab are replaced by ab.

We prove that the length of a signature is at most 4.5n−9, and we show that there
exists an arrangement of rectangles where the length of the signature is 1.25n+2. We
also prove that the number of distinct signatures for fixed shooting direction (45◦) is
at most 1.5n− 6.
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1. Introduction

The closed billiard paths problem was first presented at the open problem session of the 29th Canadian Conference
on Computational Geometry, and to our best knowledge, this paper gives the first study on this problem. O’Rourke
defines the problem as follows [2]. Consider a collection of axis-aligned rectangles, which all are enclosed in one outer
rectangle; the outer rectangle is the enclosing boundary (billiard table) and other rectangles are inner boundaries
(obstacles). A simple, closed billiard path is a path that is closed, non-self-intersecting forming a simple polygon,
that do not touch a rectangle corner, where all reflections are mirror reflection. The signature of a billiard path is
defined by the labels of edges which reflect the billiard path, where the repeated edge reflections (ab)k are reduced
to ab. In Figure 1, the signature of the billiard path 〈4(56)21292(37)2348〉 is 456129237348.

For a set of rectangles with a total of n edges, O’Rourke posed the following open questions on simple, closed
billiard paths.

1. What is the maximum length of such a signature?

2. What is the largest number of distinct signatures achievable for one fixed reflection angle (e.g., 45◦ in Figure 1).

3. What is the largest number of distinct signatures achievable for paths at arbitrary reflection angles?

In this paper, in Section 2, we prove an upper bound of 4.5n− 9 for the length of a signature, and we show that
there exists an arrangement of rectangles with signature length 1.25n + 2. Also, in Section 3, we prove that the
number of distinct signatures for fixed reflection angle 45◦ is bounded by 1.5n− 6.

2. Maximum Length of a Signature

Consider a billiard path P and its signature S. We define an alternative signature S′ from S, where any pattern
aba in S is replaced by ab; this results in |S| ≤ 1.5 · |S′|. In Figure 1, the alternative signature of the billiard path
with signature S = 456129237348 is S′ = 4561293748.
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To compute the maximum length of a signature, we construct a planar graph G(V,E) from a billiard path
P = 〈. . . pk−1pkpk+1 . . . 〉 such that |E| = |S′|, where S′ is the alternative signature of P . The set V of nodes
of G are defined as follows: Corresponding to each rectangle edge ei we place a node vi at the middle of ei (see
Figure 2(b)). We also draw the set E of edges (vi, vj) of G using the following rules.
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Figure 1: A billiard path of a set of four rectangles.
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Figure 2: Consecutive segments between ei and ej ; (a) only one segment. (b) more than one segment.

(a) If there is only one segment pkpk+1 in P between rectangle edges ei and ej , where pk ∈ ei and pk+1 ∈ ej ,
then we draw the edge (vi, vj) with two bends at pk and pk+1, i.e., (vi, vj) = 〈vipk, pkpk+1, pk+1vj〉. See
Figure 2(a).

(b) If there exists a sequence of consecutive segments pkpk+1, pk+1pk+2, . . . in P between two parallel rectangle
edges ei and ej , we ignore all but the first one (pkpk+1) and draw an edge (vi, vj) in the graph G, similar to
case (a).

(c) If there are two non-consecutive segments pkpk+1 and qkqk+1 in P between two horizontal rectangle edges ei
and ej , where pk, qk ∈ ei and pk+1, qk+1 ∈ ej and |pk|x < |qk|x, then there exists at least one rectangle inside
the quadrilateral pk, pk+1, qk+1, qk. Here, |r|x denotes the x-coordinate of r. Take the leftmost rectangle inside
the quadrilateral and place a node vl on its left edge el; see Figure 3.

Note that there is no segment in path P touching el, otherwise it would cause a self-intersection which means
that P is not a valid path. Also note that there can be no two segments in P both above and below el for
the same reason; following this observation, w.l.o.g., assume there is no segment of P between el and ej .
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Corresponding to pkpk+1, we draw an edge (vi, vj) = 〈vipk, pkpk+1, pk+1vj〉 with two bends at pk and pk+1,
and also corresponding to qkqk+1 we draw an edge (vl, vj) with one bend at b, the intersection of ej and the
vertical line through vl; i.e., (vl, vj) = 〈vlb, bvj〉.
Our method can easily be extended if there exist more than two, say three, non-consecutive segments (denote
by pkpk+1, qkqk+1, and rkrk+1 in order from left to right) in P between two horizontal rectangle edges ei and
ej : all we need to do is adding a new edge (v′l, vj) in G corresponding to the next segment rkrk+1, where v′l
is on the left edge e′l of the leftmost rectangle in the quadrilateral qkqk+1rk+1rk.

A similar approach works if the non-consecutive segments are between two vertical rectangle edges ei and ej .
Note that if there are two segments in P between a vertical rectangle edge and a horizontal rectangle edge,
as shown in Figure 4, this leads to self-intersection in P and is thus obsolete.

el

pk+1 qk+1

pk qk

ej

eivi

vjb

vl

Figure 3: Two non-consecutive segments pkpk+1 and qkqk+1 between ei and ej .

Figure 4: Two segments in path between a vertical and a horizontal rectangle edge lead to self-intersection.

By the above construction, there could be the case that some segments si and sl (like sl = bvj and si = pk+1vj
in Figure 3) of edges (vi, vj) and (vl, vj) overlap on an edge ej of a rectangle. We can define a valid ordering
between the edges of G whose segments overlap on some rectangle edge ej : Consider a line Lj parallel to ej which
intersects all the edges of G overlapping on ej ; see Figure 5. The distances from the intersection points to vj define
an ordering for the corresponding edges (and hence an ordering for their segments which overlap on ej ; denote
the segments in order by sj,1, sj,2, . . . , sj,k). Since we have an ordering for segments sj,1, sj,2, . . . , sj,k, it is easy to
slightly move the segments in order (by adding some new bends) inside the rectangle of ej in such a way that no
two edges of G overlap. Thus we can obtain a planar drawing for G. Figure 5 depicts a drawing of three edges
inside a rectangle with no overlappings of their segments.

ej

Lj

vj

Figure 5: Drawing the edges with no overlappings.

173



Z. Rahmati et al., AUT J. Math. Comput., 1(2) (2020) 171-177, DOI:10.22060/ajmc.2020.17320.1026

By Euler’s formula [1], it is proven that for any planar graph G, the number of edges is at most 3n − 6. Thus
|S′| ≤ 3n−6. Since the length of a signature S of a billiard path P is at most 1.5 times the length of the alternative
signature S′ of P , the following obtains.

Theorem 1. For a collection of axis-aligned rectangles, all enclosed in one rectangle, with a total of n edges, the
maximum length of a signature is at most 4.5n− 9.

Remark. In Theorem 1 there is no dependency on the reflection angle. Therefore, such a bound holds for arbitrary
reflection angles.

Lower bound. Consider a set of 4k + 2 rectangles with a total of n edges. Let R be the outer rectangle, where
we place the bottom-left corner of R at the origin and its top-right corner at (4k + 3, 8).

Let R1, . . . , Rk+1 be a collection of rectangles, each with width 1 and height 7; place the rectangle Ri with
its center at (4i − 2.5, 4). Let R′1, . . . , R

′
k be a collection of rectangles, each with width 2 and height 2; place

the rectangle R′i with its center at (4i − 0.5, 4). Let R′′1 , . . . , R
′′
2k be a collection of rectangles, each with width 1

and height 2; place the rectangle R′′2i+1 with its center at (4i − 0.5, 1.5) and the rectangle R′′2i with its center at
(4i− 0.5, 6.5).

If we shoot a ray from (1, 0) with reflection angle 45◦ to the right, length of the signature of the resulting billiard
path would be 1.25n+ 2. As seen in Figure 6, for k = 2, the number of edges is equal to n = 40 and the length of
the signature is 52. It is obvious to see that, by increasing k by one unit (i.e., adding four new inner rectangles)
the signature length increases by 20.

Figure 6: The signature length of ten rectangles is 50.

3. Number of Distinct Signatures

To count the number of distinct signatures, we charge each signature to a corner of a rectangle.
For each biliard path P , we define a starting point ps residing on some upper edge of a rectangle 1. Now, you

can trace the path by following a ray of light shooting from ps, where the edges of rectangles are perfect mirrors2.
Since we have a fixed reflection angle 45◦, the billiard path P can now be represented by the shooting point ps
residing on some upper edge of a rectangle.

1If there is no upper edge involved in the path P , rotate the whole collection of rectangles by 90◦ until you find such upper edge; if
you still don’t find such an upper edge, let ps be some reflection point on the bottom edge of the bounding rectangle.

2The ray shooting is the problem of determining the first intersection of a ray with a set of obstacles [1].
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Lemma 1. Let P be a billiard path with signature S and shooting point ps . If ps is translated to the right by the
amount α such that the corresponding rays do not touch any corner over translation, the new point p′s (which is of
distance α to ps) is a shooting point for a billiard path P ′ with the same signature S′ = S.

Proof. Let P = 〈p1 . . . pk〉 and P ′ = 〈p′1 . . . p′k〉, where p1 = ps and p′1 = p′s. We claim, for 1 6 i 6 k, that the
points pi and p′i touch the same edge (resulting in the same signature) and are within distance α.

We know that ps and p′s are at distance α. Also, ps and p′s reside on the same edge, as otherwise there would
be a point from ps at distance β < α such that it would touch a corner (the contradiction).

Assume that for all p1 to pi and p′1 to p′i, our claim is true, and pi and p′i reside on some upper edge (if
not, rotate the whole collection of rectangles until it satisfies). Let pj = pi+1 and p′j = p′i+1. It is easy to see that
‖pj−p′j‖∞ = ‖pi−p′i‖∞ = α (see Figure 7): If pj and p′j both reside on a horizontal edge, then we have d(pj , p

′
j) = α

(because pjp
′
j is parallel to pip

′
i). If pj and p′j both reside on a vertical edge, then d(pj , p

′
j) = α · tan(45◦) = α.

Thus we have proven our claim.
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Figure 7: Shooting rays to the right.

Note that (as shown in Figure 8) there are three cases if a ray touches the corner of some rectangle.

Case 1 Case 2 Case 3

Figure 8: Three cases when a ray touching the corner of some rectangle.

Lemma 2. For each signature, there exists a path with the same signature touching a corner of a rectangle.

Proof. By translating the shooting point ps of a path P slightly to right, unless we touch a corner of a rectangle,
our signature remains the same (from Lemma 1).

Over translation, if a corner touches, which is one of the three cases in Figure 8, we still can have the same
signature as before. If Case 2 (resp. Case 3 and Case 1) occurred when touching the corner, and we move the path
more to the right (resp. up and left/down), then the corresponding signature changes. Therefore, we can charge
any path P and its signature to (one of the three cases of) some corner. In Figure 9, the translated path can touch
three corners p1 (Case 2), p2 (Case 1), and p3 (Case 3) with the same signature as before.

Note that it not possible that a translated path touches a corner of the outer rectangle before a corner of an
inner rectangle. If there exists such a path (see the blue dashed path in Figure 10), then a bit before touching the
corner of the outer rectangle the path must lead to self-intersection, which is not a valid billiard path.

If the translated path touches a corner of the outer rectangle, where at the same time it touches a corner of
an inner rectangle, then the path reflects to itself (a degenerate case); we interpret this case which will have the
same signature as before. Consider the billiard path in Figure 11 (with signature S = . . . 13124 . . . ). We can say
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Figure 9: The dashed blue path is the translation of the billiard path.

Figure 10: A path touches a corner of the outer rectangle before a corner of an inner rectangle.

that the translated path first reflects to the rectangle side 3 (Case 2), next touches both rectangle sides 1 and 2,
respectively, at the cornet of the outer rectangle, and finally reflects to the rectangle side 4 (Case 3). This implies
that both Case 2 and Case 3 occur at the same time (and we say that the signature of the translated path is still
S = . . . 13124 . . . ).
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Figure 11: A translated path touches both a corner of the outer rectangle and a corner of an inner rectangle.

From above lemma, the following results:

Corollary 1. There exists a rectangle corner from which a shooting ray can produce the maximum-length signature.

Theorem 2. For a collection of axis-aligned rectangles, all enclosed in one rectangle, with a total of n edges, there
are at most 1.5n− 6 distinct signatures.

Proof. From Lemma 2, over translation of a path to the right, each signature S can be charged to a corner (one
of the three cases, in Figure 8) of a rectangle. Thus we have at most 3(n− 4) distinct signatures.
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Note that by translating the path in the opposite direction (i.e., translating to the left), without changing the
signature S, the path touches another corner. This implies that each signature is counted twice. Thus the number
of distinct signatures is at most 3(n− 4)/2.

�

4. Discussion

For a set of axis-aligned rectangles with a total of n edges, we gave an upper bound 4.5n− 9 for the maximum
length of a signature, showed an arrangement of rectangles with signature length 1.25n + 2, and proved that the
number of distinct signatures is at most 1.5n− 6. It would be interesting to improve these bounds. Also, another
interesting question is to provide an efficient algorithm to find the maximum-length signature.
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