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ABSTRACT: Software Architecture (SA) generally has a considerable influence on
software quality attributes. Coordination of software architecture to the requirements
of the stakeholders and avoiding common mistakes and faults in designing SA increases
the chance of success of the project and satisfaction of the stakeholders. Making the
wrong decisions at the architectural design phase usually proves very costly later
on. Refactoring is a method which helps in detecting and avoiding complications,
improving the internal characteristics of software, while keeping the external behavior
intact. Various problems can undermine the architecture refactoring process. The
existence of different requirements in different domains, the diversity of architecture
description languages, and the difficulty of describing refactoring patterns lead to
the difficulty of performing automatic and semi-automatic refactoring on the SA. In
this study, we use model transformation as a way to overcome the above mentioned
difficulties. In this regard, the first step is converting the SA to a pivot-model. Then,
based on the refactoring patterns, the refactoring process is performed on the pivot-
model. And finally, the pivot-model is converted back to the original (source) model.
In this paper, the requirements of the stakeholders are taken into account in the
refactoring process by modeling them as refactoring goals. These goals show the
importance of the quality attributes in the project and the process of refactoring.
The applicability of the framework is demonstrated using a case study.
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1. Introduction

Software architecture is one of the essential tools which helps in increasing the level of the software quality attributes.
It plays a critical role in fulfilling the stakeholders quality requirements. On the downside, software architecture can
have an adverse effect on the software quality attributes and decrease their level. The structure of the architecture,
the type of the styles and patterns used to form it, the amount of detail used in describing the architecture, and
tools used to analyze the architecture and ensuring its consistency are some of the factors that play a role in the
success of using a software architecture. A primary way to avoid the negative side effects of the architecture is
recognizing the common faults in designing SA and mitigate them using an appropriate approach.

Software architecture can be described using an Architecture Description Language (ADL). ADLs present a
common understanding of the SA and enable users to perform some analyses on it. ADLs such as ACME [20],
AADL [16], xADL [33], and MetaH [60] have been successfully used in the industry in the past decade [26]. Without
using an ADL or some other well-defined language (that have a defined meta-model) to describe the SA we cannot
expect to be able to perform analyses on the SA and find common faults in its design.

One of the proper approaches to recognize and resolve design faults in the SA is software refactoring. Software
refactoring was introduced by Opdyke in 1992 [47]. The aim of refactoring is to improve the internal quality of
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software without changing the external behavior and the functionality of software [17]. In the past years, several
works have been done to extending the refactoring concept on software artifacts other than source code. These
works extend refactoring to a higher level of abstraction such as design, architecture, and software requirements.
While the focus of refactoring at the code-level is on improving software maintainability, refactoring at the higher
levels also has to consider other quality attributes [67].

Improving some quality attributes at code level is rather difficult, requiring large scale changes to be made to
software. For example, improving the performance of a software system cannot be done simply by refactoring the
code. Improving performance sometimes needs large changes in the SA, and the application of some performance
enhancing styles. Performance, security, and other quality attributes can be affected positively or negatively while
using various architectural patterns.

1.1. Motivations for having a tool

In this section, we briefly discuss the need for a refactoring tool at the software architecture level. In manual
performing of the SA refactoring, one may face these difficulties:

M1. Finding refactoring opportunities is difficult: The conditions of performing some of the refactoring
patterns are complicated. One needs to check several elements of the SA and their relation to each other in order
to find a refactoring opportunity in it.

M2. Performing refactoring patterns is time-consuming and error-prone: Finding a refactoring
opportunity in the SA is not the end of refactoring. One may need to change several elements of the architecture
and their relation for carrying out the refactoring pattern. One of the simplest refactoring patterns on the SA is
rename. Consider renaming an element which has n relations to other elements of the architecture: One needs to
check and modify all these n relations to perform the rename refactoring. It is also important to note that making
changes to the SA elements and their relations without using a tool is error-prone (similar to other human-related
works).

M3. Checking the correctness of the refactoring is time-consuming: After performing the refactoring,
one should test the functionalities of the SA to ensure that the set of the functionalities of the SA before and after
performing SA refactoring is not changed. This action may be extremely time-consuming. For example, in merging
two elements of an SA, one needs to check all members of the two and the relation of them to other elements of
that SA.

M4. Knowledge of the humans is limited: Finding a person who knows about all refactoring patterns
which are applicable on an SA in detail is hard. Using a tool we can aggregate knowledge of the community and
remove the dependency on people. Providing a tool to reuse the refactoring patterns can reduce the amount of
effort needed for specifying them and could improve the synergism in describing them.

M5. Calculating the trade-off among refactoring patterns is challenging: Consider the situation that
multiple refactoring patterns can be applied to a software architecture simultaneously. In this situation, one should
calculate the trade-off among refactoring patterns and choose the refactoring pattern that satisfies the stakeholders
requirements to the highest possible degree. Calculating the trade-off among refactoring patterns without using a
tool is challenging and time-consuming.

1.2. Problems

The refactoring process at architecture-level as the highest level of abstraction in the software development
process faces several challenges. We ought to provide appropriate solutions to these challenges to be able to design
a framework for supporting SA refactoring.

Ch1. The first challenge is the lack of appropriate tools to aid in performing refactoring. Refactoring tools can
assist in finding refactoring opportunities in the software architecture and help in avoiding common mistakes in
designing architecture and improve the overall quality of the software architecture. In order to perform refactoring
on an ADL, one needs to use appropriate tools designed for that ADL. However, the existence of a plethora of
different ADLs, arising from the diversity of domains and requirements, limits the tools and their applications.
Defining separate refactoring tools for each ADL and defining the corresponding refactoring patterns is not an easy
task.

Ch2. The second challenge in performing SA refactoring is the difficulty of cataloging refactoring patterns, bad
smells, and architectural styles.

Ch3. The way that the refactoring goals are specified and used in the refactoring activities present another
challenge in performing SA refactoring. The user has to specify the goals of the refactoring to perform software
architecture refactoring. Refactoring goals show what the main aim of performing refactoring is.
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1.3. Solutions

The solutions provided by our framework to overcome the mentioned challenges are as follows:
S1. Model Driven Engineering [36] (MDE) approaches have been used successfully to solve the challenges which

are similar to the first challenge (Ch1). We use the model transformation tools which are used in the MDE approach
to produce a pivot-model for each ADL. After transforming the ADL to a pivot-model, the refactoring patterns can
be applied without worrying about the syntax of a particular ADL..

By transforming the ADL to a pivot-model, the refactoring patterns defined on that pivot-model can be reused.
Reusing the refactoring patterns can save the time needed to define them and increase the maturity of the defined
patterns by reusing and reassessing them repeatedly. Finally, the refactored pivot-model is converted back to the
original form (source model). The transformation needs the semantics of the model, which is in turn provided by
meta-models. Using model transformation languages in our framework facilitates defining new refactoring rules by
the users.

S2. Several works have been done on describing patterns. One of the approaches uses formal description to
describe the patterns. Another approach uses OCL to describe patterns. In this paper, we introduce a way to
describe refactoring patterns, which can be reused in several projects and in different refactoring processes. To face
the second challenge (Ch2), we use a UML profile to describe the different properties of an SA refactoring pattern.
The relationship between the refactoring patterns and the quality attributes will be considered in designing this
UML profile.

S3. To solve the Ch3 challenge, we develop an approach, which uses quality attributes, to describe the refactoring
goals. The importance of each quality attribute is described using a positive integer. One of the advantages of
our framework over similar frameworks is using refactoring goals in the refactoring process. In our framework,
stakeholder(s) of the project specify the refactoring goals using the AHP method.

1.4. Paper Structure

The structure of the remainder of this article is as follows. After presenting some essential background in
Section 2. We introduce the framework for performing refactoring on software architectures in Section 3. Section 4
evaluates the applicability of the framework in an example domain. Threats to validity of the result of the proposed
framework are assessed in Section 5. In Section 6, the idea of the paper, weaknesses, challenges, and opportunities
are discussed. We survey related work in Section 7. The paper concludes in Section 8 with a summary and a
discussion of possible future work.

2. Background

2.1. Model Driven Engineering

Model Driven Engineering is an approach used to deal with the complexity of different domains and their
optimum description [61]. This approach has been developed in response to the inability of the third-generation
languages to specify the plethora of needs present in different domains. MDE uses Domain-Specific Modeling
Languages (DSMLs), as well as Generators and Transformation tools [32].

Transformation tools and generators have the ability to perform a wide range of analyses on software artifacts
from code-level to architecture level to documents. Using these tools increases the compatibility between different
software artifacts and reduces possible faults.

2.2. Model Transformation

A model is an abstraction of the real world. Each model has a distinctive approach to abstract the world. It
is possible that the same real world object is portrayed differently by different modeling languages. By describing
their semantics, the meta-model gives us a unique understanding of the objects.

Model transformation is the description of model to model (M2M) conversion in a specific domain. In this
approach, the semantics of the model comes from the model’s meta-model. Mens et al. [41] introduce two types
of transformation: Exogenous and Endogenous. The differences between the two types lie in the relation between
source and target meta-models. The meta-models of the source and the target in the Endogenous transformation
are the same, whereas in the Exogenous ones they are different. In this research, transforming an ADL to a UML
profile is exogenous, while SA refactoring is an endogenous transformation.
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2.3. Formal Description of Patterns

For automating the process of SA refactoring one should specify the patterns which should be checked on the
SA. Different approaches have been employed to describe architectural and design patterns. Formal specification
of patterns is used in [38, 37]. Mikkonen [42] used Temporal Logic of Actions to propose a pattern specification
notation called DisCo. LePus, a notation for specifying pattern properties, was introduced by Eden [15]. Dietrich
et al. present a formal pattern description language in [11]. This language can be used to describe patterns at
higher-level artifacts. A formal method for defining design patterns is developed by Lano et al. [37].

3. A Framework for Software Architecture Refactoring based on the Model Transformation

In this section, we introduce our approach to perform refactoring on the software architecture using model
transformation. In Section 3.1, the general methodology of performing refactoring based on model transformation
is presented. To carry out our methodology, we implement several components.

The type of activities in our framework are divided into three major categories:

- Regular User level activities: Defining the refactoring goals and architecture instances are the two activities
done at this level. The activities at this level need knowledge about defining architecture with the specific
ADL we want to perform refactoring on its instance and knowledge about how to model refactoring goals in
our framework.

- Expert level activities: Definition of the Domain Specific Languages (DSL) pivot-model, the transformation
rules, and the SA refactoring rules are the main activities in this level. These activities are performed just
once in refactoring a specific ADL. Once the pivot-model for describing an ADL is designed, it can be reused
repeatedly in many refactorings performed on that ADL. This fact is the same about the transformation
rules and the SA refactoring rules. Expert knowledge about the pivot-model (e.g. a UML profile), the
transformation language (e.g. ATLAS Transformation Language (ATL) [29]), and the constraint language
(e.g. OCL) is a prerequisite for performing activities at this level.

- Tool level activities: These activities are common to all SA refactorings performed using our framework.
Performing refactoring and decision making are the two main activities in this category. Our algorithm for
making decisions and performing refactoring can be reused on any transformation once implemented. As a
result, the user of the tools (whether an expert or a regular user) need not deal with implementing or providing
these activities in our framework.

3.1. The General Methodology of SA Refactoring

One of the biggest difficulties in performing SA refactoring is the lack of appropriate analysis tools (See Sec-
tion 1.1 M1-5). Other difficulties include the extreme dependency of the refactoring patterns on the ADL notation
(Ch1), and the ad hoc nature of SA refactoring (Ch2). These difficulties cause the hardness of performing SA
refactoring, and mean the refactoring process is mostly a human activity, with few automated tools available to aid
in the process.

Within this framework, our main goal is to eliminate dependence on a specific language and create a tool to
perform SA refactoring on various domains (S1). Accordingly, ADLs are transformed to a pivot-model (e.g. a
UML profile) and various refactoring patterns are described on that model. The characteristics of the ADLs such
as the type of elements and the type of connection between elements in a specific domain are very similar, and the
differences in the languages lie mainly in the amount of the detail they can describe. Using a pivot-model which
describes most characteristics of a domain means the majority of the ADLs on that domain can be transformed to
that pivot-model.

Figure 1 shows an overview of the SA refactoring approach proposed in this framework. To perform SA refac-
toring, the ADL code is transformed to an appropriate pivot-model. In this paper, we use transformation languages
to transform the source model to the designed pivot-model. To do the transformation, one requires access to the
meta-model of the source and the pivot-models. Meta-model is a model that shows the arrangement of the ele-
ments of the model and indicates the interactions between them. For transforming a model to another model using
a transformation language, the user should specify the mapping policy by transformation rules.

The refactoring process begins when one does the transformation of the source model to the pivot-model. A
pivot-model, refactoring goals, and refactoring patterns constitute the parameters based on which the refactoring
process works. Refactoring goals specify the aim of SA refactoring, and direct the process of selecting applicable
patterns. In situations where multiple refactoring patterns are applicable, it is the refactoring goals that ultimately
determine which pattern leads to what level of satisfaction, and thence how to prioritize the patterns to apply.
Another input to the refactoring process is the refactoring patterns. Refactoring patterns determine applicable
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Figure 1: The general methodology of SA refactoring proposed in this paper.

patterns in a specific domain. These patterns describe the source conditions and specify the target shape and post-
conditions which should be met. The refactoring patterns delineate the amount of improvement (or the lowering)
in the quality and sub-quality attributes of the software. All the pattern constraints can be described using a
constraint language (e.g. OCL).

The refactoring process starts with an instance of the source model, and then the refactoring patterns which
can be applied in regard to refactoring goals on this instance are performed on it. The first stage of the refactoring
process is prioritizing refactoring patterns according to the objectives of SA refactoring. The prioritizing algorithm is
illustrated in Algorithm 3. After prioritizing the patterns, the matched patterns with a higher priority are performed.
At the end of the refactoring process, the pivot-model is transformed to the original form using transformation rules.

3.2. Expert Level Components and Activities

3.2.1. A pivot-model for defining DSL

ADLs generally fall into two categories: General-Domain and Domain-Specific. One of the approaches for
analyzing ADLs is to transform them into a pivoting model and then check the refactoring conditions on that
model. General-Domain ADLs can be described using a pivot-model like the one provided in [25]. Describing
Domain-Specific ADLs requires specific pivot-models, which are designed to support special needs of those domains.
For this kind of ADLs, one can use predefined pivot-models (e.g. UML profiles) if they exist.

Before we introduce our approach towards creating a pivot-model for supporting a DSL, it is appropriate to
take a look at the key elements in the meta-models:

1. Fundamental Language Constructs: The meta-model of a domain-specific modeling language contains the es-
sential concepts of that domain. For example, a DSML for modeling real-time applications may have processors,
queues, tasks, etc.

2. Relationships: The set of valid relationships that exist between language elements in the meta-model. In our
example, a processor may work on various tasks. (a relation between the processor and the relevant tasks
exists)

3. Constraints: The constraints that exist on the combination of the language elements in the meta-model. In
our example, a processor can only work on one task at a given time.

Each element of the DSL meta-model should be considered in designing the pivot-model to map DSL elements
into. In what follows, we suggest a guideline for designing a pivot-model appropriate for supporting a specific
DSL language based on the work of Selic [56]. This guideline uses the DSL meta-model to design an appropriate
pivot-model.

1. Selection of base meta-classes: For supporting each type the essential concepts of the DSL which are present
in the meta-model, we should select a proper meta-class. The semantics of the selected meta-class should be
close to the semantics of the domain concept. This is important because the people who know pivot-model
semantic, expect a particular behavior from a specific meta-class and its inherited classes. Using the elements
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whose semantics are closest to the semantics of the essential concepts in designing a pivot-model facilitates its
understandability.

2. Adding/Refining attributes to/from the base meta-class: Adding/Refining attributes to/from the base meta-
class are ways to specialize the meta-class for use in a specific domain. The semantics of the DSL are transferred
to the pivot-model by adding or refining attributes to/from the selected base meta-class. An investigation on
the concept of the DSL would reveal the attributes needed to support it by a meta-class in the pivot-model
metamodel. For example, a processor may have clock speed, isActive, etc. attributes in a DSL designed to
model real-time computation.

3. Checking the constraints: All the constraints that can be applied on the base meta-class should be checked to
detect any conflicts.

4. Checking the associations: The associations among the meta-classes selected to support DSL should be inves-
tigated and verified that these associations do not have conflicts. A large number of conflicts can be avoided
by setting lower multiplicity bound to zero. If conflict cannot be avoided, the type of the meta-class selected
to support a concept in the DSL should be changed to another meta-class type appropriate to support it.

Implementation. We used UML profiles to implement the pivot-model for supporting DSL models in our
framework. UML structure consists of different abstraction levels [58]. The M0 level consists of the actual instances
of the system. Various system models constitute the M1 level. The instances of the M1 models are in M0 level.
The M2 level contains elements to describe models in level M1 (Meta-models). Finally, the M3 level consists of
models to describe models in the M2 level. This level is called the meta-meta-model level. The Ecore [59] modeling
language is in the M3 level.

Because not all elements of other models can easily be transformed to UML elements, to transform a model to
UML model, one usually needs to provide a specific profile. The UML infrastructure contains UML profile extension
mechanisms [58]. UML profiles provide compatibility between UML meta-models and platforms, domains, business
objects, and software processes. UML profiles are an appropriate tool for describing DSL. Software architecture
in different domains can be modeled using this UML feature [21, 1]. Compared to other languages and tools, the
advantages of UML profiles include the availability of OCL constraints and the vast number of available tools. A
sample of designing UML profile is demonstrated in the case study in Section 4.2.2.

3.2.2. Refactoring Pattern Specifier

At minimum, every refactoring pattern has these parts:

- Context: Every refactoring pattern is applicable only in a specific context. The pattern applicable in the
context of real-time software systems may not be suitable to be used in the context of a data-intensive
software system.

- Refactoring Conditions (Problem): The refactoring conditions which must be matched on the model in order
to perform refactoring.

- Refactoring Action (Solution): The actions done on the software artifacts such as architecture to perform the
SA refactoring.

- Refactoring Post Conditions: Post conditions are the conditions that must be met to ensure that the refac-
toring is behavior preservative. Having post conditions guarantees the preservation of the external behavior
of the software after performing refactoring by examining the Original and Refactored models and comparing
the set of the functionalities, relations, and configurations of the changed components in the Original and
Refactored models.

- Refactoring Goals: Performing each of the SA refactoring patterns affects some of the quality attributes of
the software systems. The effects lead to an increase or a decrease in the amount of the corresponding quality
attributes.

In our refactoring approach, every ADL is transformed to a pivot-model and the conditions of the SA refactoring
pattern in the context of that ADL are checked on that pivot-model. If the conditions are matched on the pivot-
model, the refactoring activities are performed on it and refactoring postconditions are checked to verify that the
behavior has been preserved after performing refactoring.

A refactoring rule is defined by five elements: its name, a guard which defines when the rule can be applied, a
set of parameters, a body that implements the effect of the rule, and a post condition rule which checks the effect
of the rule and ensures behavior preservation of the rule. Because we use the ATL [29] language for implementing
our framework, and it supports OCL constraints in its syntax, we can use OCL to write refactoring conditions,
actions, and post conditions. We use ATL rules to write the refactoring conditions and refactoring actions like the
code snippet below:
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1 rule RefactoringName{

2 from [refactoring condition in ATL & OCL]

3 to [refactoring action in ATL & OCL]

4 do { [refactoring action in ATL & OCL (imperative)]}

5 }

We want to show a refactoring on a simplified version of the class diagram here. In order to perform refactoring
in our framework, we need the meta-model of the model we want to do refactoring on. We introduce the meta-model
of a simple version of the class diagram in Figure 2. We include the essential and simple part of the class diagram
in our meta-model. This meta-model supports simple classes and their relations to each other. In this figure
(Figure 2), each Class contains some Operations and Attributes. Every Operation has some Parameters. Every
Parameter has only one GenericType. Every GenericType relates to DataType or Class class. Every Attribute has
only one GenericType. Every Reference can relate to one additional References class. And finally every Class can
have some References.

One well-known refactoring is folding. Figure 3 shows a graphical definition of folding refactoring. In this
figure, two methods with the same name and body in two classes are moved to the same location. Here we show a
refactoring rule for performing folding refactoring on the models which conforms to the meta-model we introduced
in Figure 2.

name : String
isAbstract : Boolean

Class

name : String

Parameter

name : String

GenericType

name : String

DataType

name : String
containment: Boolean
lowerBound : Integer
upperBound : Integer

Reference

name : String
body : String

Operation

name : String

Attribute

0..1

0..1

0..1

11

*

**

*

Figure 2: Simple Class Diagram Meta-Model

doSTH(S3)

S1

doSTH(S3)

S2

S3

S1

S2

doSTH()

S3

Figure 3: Folding refactoring between three classes in UML

The first step in defining a refactoring rule is specifying refactoring conditions (guards). The condition of
refactoring in this sample is:

- Methods body are the same.

- Methods belong to different classes.

We use OCL and ATL to write the above conditions as follows:

1 rule FoldingRule{

2 from ops : SMC!Operation (

3 SMC!Operation.allInstances ()

4 ->select(p1, p2 | p1.body = p2.body and p1.name = p2.name and p1.class != p2.class)

5 )

6 }

In order to perform refactoring we need to access and manipulate the parameter of the operation we used. And
for finding S3 (The target class) we need access to the related GenericType. So we modify our rule as follows:

1 rule FoldingRule{

2 from ops : SMC!Operation (SMC!Operation.allInstances ()

3 ->select(p1, p2 | p1.body = p2.body and p1.class != p2.class)),

4 param : SMC!Parameter (ops ->exists(o | param.operation.name = o.name),

5 type : SMC!GenericType (param ->exists(p | type.name = p.type.name)

6 }
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Now we can perform refactoring on the selected Operation and Parameters. We want to drop two similar
operations, their parameters (including related types) from class S1 and S2, and add new operations to class S3.
We utilize findClass helpers to do this job. The findClass helper finds the target class to which we want to move
the method (this is the S3 class in our example). In the code snippet below we first add a new operation to class
S3 and then drop all selected entities from Operations, Parameter and GenericType class.

1 helper context SMC!GenericType def : findClass : SMC!GenericType = self ->iterate(p|

2 if (p.class != null) then p.class endif);

3

4 rule FoldingRule{

5 ...

6 to drop

7 do {

8 st = ops.getAppliedStereotypes ()->first();

9 ops.setValue(st , "class", type.findClass);

10 ops.setValue(st , "param", null);

11 ops.applyStereotype(st);}

12 }

Refactoring patterns can exist in various forms. Architectural styles, design patterns, and bad smells can be a
source for defining refactoring patterns. However, defining an architectural style as a pattern is a challenging and
complicated undertaking. We describe a concrete example of defining the refactoring rules in Section 4.2.5

Implementation. There are many methods for describing SA refactoring patterns. These methods are
surveyed in Section 7 of this paper. In our framework, we use a UML profile to describe refactoring patterns.

The context profile for describing refactoring patterns is shown in Figure 4. The following provides a brief
explanation for each part of the profile:

<<profile>>

Refactoring Pattern Context

<<metaclass>>

Class

<<stereotype>>

ArchRefactoring

name : String
goals : Goal[0..*]
rule : String
lazyRules : String[0..*]
helpers: String[0..*]
requiredPatterns : String[0..*]
postConditions : String
context : String

<<stereotype>>

Goal

node : QualityNode
subGoals : Goal[0..*]
metrics : QualityMetric[1..*]

<<stereotype>>

QualityMetric

name : String
type : MetricType
metricFormula: String
metricMax: String
metricMin: String

<<enumeration>>

MetricType

ProductMetric
ProcessMetric
ProjectMetric

<<stereotype>>

QualityNode

name : String

Figure 4: Context Profile of Software Architecture Refactoring Patterns

- ArchRefactoring Stereotype: This stereotype describes constraints on transforming from a source model to
a target model. Each refactoring pattern affects a different range of quality attributes. The goals variable in
ArchRefactoring reflects the effect of the pattern on the quality attributes. Rules specify the ATL rules like
the code snippet introduced before. Lazy Rules are the helper rules needed by the main refactoring rule. Lazy
rules in ATL are the rules which can be used declaratively (they need to be called). Helpers variable contains
the helpers which are used by the current pattern rules. The helpers are the peripheral functions used by main
refactoring rule. Required patterns are the patterns that the current pattern uses (calls) during refactoring.
The post conditions which should be met in performing a refactoring rule can be specified by ATL and OCL,
and are stored in the postCondition variable. After a refactoring pattern is applied, our framework checks its
post conditions. Our framework keeps a copy of the architecture before performing a refactoring and rolls it
back if the post conditions of the refactoring pattern are not met. PostCondition can use the Old or New
model to access the model before and after refactoring. An example of using postCondition is described in

186



M.Tanhaei, AUT J. Math. Comput., 1(2) (2020) 179-216, DOI:10.22060/ajmc.2020.17541.1027

the case study section. The context variable specifies the UML profile (the middle model to which the source
model is transformed) which the current refactoring pattern belongs to.

- Goal Stereotype: This stereotype describes the effect of the refactoring pattern on the quality and sub-
quality attributes. Node specifies the related quality or sub-quality attributes. Subgoals specify sub-quality
attributes of the current quality or sub-quality attribute. Metrics measures the effect of the pattern on the
current quality or sub-quality attribute.

- QualityMetric Stereotype: This stereotype maintains the metric formula and is used to measure quality
and sub-quality attributes. MetricFormula specifies the formula needed to compute the metric value in the
refactoring context. Refactoring framework evaluates the metricFormula string on the UML profile which the
source model is transformed to. The result of the formula evaluation on the UML profile is an unnormalized
value (FormulaVal).

Formula 1 demonstrates the normalization formula. The value of metricMax and metricMin in Formula
1 are determined experimentally. One can find the metricMax and metricMin values by playing with the
parameter(s) of the metricFormula string.

NormalMetric = 6 ∗ FormulaV al −metricMin

metricMax−metricMin
− 3 (1)

- MetricType Enumeration: This enumeration type specifies the type of the metric. A metric has one of the
following three types: Product Metric, Process Metric, or Project Metric [30].

- QualityNode Stereotype: This stereotype defines the name of the quality and sub-quality attributes. This
name is used for discovering the QualityAttribute class in the search and reasoning algorithms.

Figure 5: Refactoring Pattern Profile in the EMF [59]

We provide several UML profiles in this paper. The users can apply these profiles, and import the profile
instances to the refactoring process. Figure 5 shows refactoring pattern profile in the Eclipse Modeling Framework
(EMF) [59]. Applying UML profile can be done by using UML Editor in EMF or by using org.eclipse.uml2 Java
library. We utilized this library in our tool.

3.2.3. Models Transformer

Model transformation can be done using general-purpose (e.g., Java) or M2M (e.g., QVT [23], ATL [29] and
Xtend [46]) languages. Transforming a model to another model in general-purpose languages requires a large
amount of code to be written. The hardness of transforming models using general-purpose languages is the existence
philosophy of M2M languages. These languages facilitate the transformation process.
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Implementation. In this framework, we used ATL transformation languages [23] to do the transformation.
ATL is an element of the Eclipse M2M sub-project of the EMF [59]. ATL enables the user to transform a model
which conforms to a meta-model to another model. According to [8] ATL is the fastest language for transforming
models to each other. In this language, full control on the transformation process from source to target exists.
Using the ATL language has some advantages for our refactoring framework. One of the advantages of ATL is the
ability to use OCL in the transformation rules. The other advantage of ATL is the existence of a Java library which
can be used in standalone programs. The code snippets below shows a simple transformation from ACME ADL to
the related UML profile.

1 module ACME2UML;

2 create OUT : ACMEPROFILE from IN : ACME;

3

4 rule Element2EelementProfile{

5 from m : ACME!Element

6 to a : ACMEPROFILE!Element (

7 a.name <- m.name

8 a.property <- prop

9 a.representations <- reps

10 )

11 }

In order to perform model transformation, one needs the semantics of the source and target models. For
our purpose, the semantics of a model can be defined by using meta-model languages. Using the meta-model of
particular models, elements of the models can be transformed into one another. One of the meta-model description
models widely used in the open-source world is the Ecore model in the EMF [59]. Ecore is a meta-meta-model
which can be used to describe the meta-model of a specific model in Eclipse. In this research, we used the Ecore
meta-meta-model to describe the source meta-model.

For transforming the source model to target model we also need a mapping rule. The mapping rules describe
the way each element of the source model should be present in the target model. The source model is transformed
to the target model using these mapping rules. In the case study of this research, we present a transformation from
ACME ADL [20] to a UML profile.

3.3. Regular User Level Components and Activities

3.3.1. Refactoring Goals Specifier

Refactoring at the architecture level usually seeks various goals. Unlike code refactoring whose main purpose
is focused on increasing maintainability of software, architecture refactoring can target a wider range of quality
attributes. Therefore, in performing refactoring on software architecture, one might have multiple goals in mind [64].
Our ultimate purpose is to attain the refactoring goals to the maximum extent possible.

In order to specify the refactoring goals for a project, we need a categorization of the quality attributes. There
are various software quality attribute classification models. Some of the more stablished are Dromey [13], Boehm [7],
McCall [40], and ISO 9126 [27]. We use the ISO 9126 [27] quality attributes classification standard in this framework.
In the ISO 9126 standard, quality attributes are divided into 6 categories. Each quality attribute consists of some
sub-quality attributes. Figure 6 shows the ISO 9126 classification of the quality attributes. In the ISO 9126-2 [27]
standard some metrics are defined for measuring the value of the quality and sub-quality attributes which are used
in the ISO 9126 quality model.

However, our framework and algorithms for refactoring on the SA are developed independently of the quality
models. As a result, other quality models can be also used in our framework.

Each quality attribute is related to some sub-quality attributes. The importance of each quality and sub-
quality attribute differs in various projects. In a military project, security, reliability, and performance have the
highest importance while in a Customer Relation Management (CRM) related project, the focus is on usability and
reliability. Due to this fact, some refactoring patterns can be ideal for some kinds of projects, but be costly and
wasteful for other kinds of projects. In other words, not every refactoring pattern is suitable for every project.

One has to evaluate the importance of quality and sub-quality attributes in a given project, and then decide on
the subsequent course of action.

In this section, we describe a refactoring goals specifier which can be used to define refactoring goals for a
software project. The refactoring goals specifier gives us the ability to describe the importance of quality and
sub-quality attributes related to a software project. It relates each quality attribute to some sub-quality attributes
with a specific importance factor. The related quality attributes can form a graph. In the formed graph, the weight
of each edge shows the importance of each quality and sub-quality attributes of the project. The nodes in the
formed graph are quality and sub-quality attributes. A sub-quality node can have only one parent in that graph
(the graph is a tree). Figure 7 shows a refactoring goals graph for a CRM-Related project.
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Figure 6: ISO 9126 [27] classification of quality attributes. The quality attributes are placed into 6 main quality
and 27 sub-quality attributes.

Refactoring goals are a collection of quality and sub-quality attributes related to a project. Each quality attribute
has an importance factor ranging from 0 to 10. In a sample project, it is possible that a quality or sub-quality
attribute has a higher importance for the stakeholders. In this situation, the stakeholders can assign a higher value
to the importanceFactor of the corresponding quality or sub-quality attribute. In our framework, the value of
importanceFactor is used to decide about the proper refactoring patterns in the refactoring process.
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Figure 7: Refactoring Goals Graph For a CRM Related Project

The importanceFactor of each quality and sub-quality attribute can be assigned using different approaches. One
of the appropriate approaches to calculate the importanceFactor is to use the Analytic Hierarchy Process (AHP)
method [55]. The AHP approach is used mainly to support decision making in complex decision problems. However,
we utilized the method used in AHP to calculate priorities, and leave out the decision making part of the AHP.
The AHP approach (for use in our problem) takes three steps to calculate the importance factor of each element
in a graph.

1. Dividing a problem to some sub-problems (and to sub-sub-problems), and forming a hierarchy.

2. Finding the priority of the (sub-)sub-problems to each other (pairwise comparisons).

3. Forming a priority matrix and computing the overall priority of each (sub-)sub-problem.

The first step in using the AHP method is to divide the problem into some sub-problems and form a tree of
the problem and sub-problems. There are several well-known quality models in the context of quality attributes
(mentioned before). We used the ISO 9126 [27] standard to categorize the quality attributes in some (sub-)sub-
quality attributes.

The second step in using the AHP method is to find the priorities of each quality and sub-quality attribute
relative to each other. The pairwise comparison is done between siblings in the hierarchy. For example in Figure 7
the stakeholder(s) should provide pairwise comparison between Functionality, Portability, Reliability, and Usability.
The stakeholder(s) of the project can assign a score between 1-9 in comparing two (sub-)qualities. In the situation
in which stakeholders have different views on the quality attributes and the pairwise scores are different, a weighted
average of the pairwise comparison scores between quality attributes can be used. The scores of the stakeholders
with higher importance will take a higher weight in computing the average. Table 1 shows the relative scores used
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Table 1: Relative scores between j and k in AHP [55]

Score Interpretation

1 Two elements are equally important

3 j is slightly more important than k

5 j is more important than k

7 j is strongly more important than k

9 j is absolutely more important than k

2,4,6,8 Middle scores

in the AHP approach [55]. The output of the AHP calculation does not depend on the range of the comparison
table [55]. As a result, users can use any other relative scores such as a simple range of 1 to 3 to compare the
quality attributes. Assigning a score to the pairwise comparison between two quality or sub-quality attributes is
not difficult for the stakeholders.

The last step in using AHP to calculate the priority of the quality and sub-qualities is to form a matrix from
pairwise comparison scores. This step can be done using tools such as PriEsT [57]. The result of calculation is
priority scores for each quality or sub-quality attribute. These scores are floating point numbers between 0 and
1. The stakeholders can use these numbers in forming refactoring goals or simply multiply all the values by an
appropriate number and use the modified numbers in forming refactoring goals.

Implementation. The graphical presentation of the refactoring goals is not appropriate for using in our
framework. We designed a UML profile to capture this information from the user (Figure 8). The user should
apply this UML profile for importing the refactoring goals to our framework.

We briefly explain each part of this profile:

- RefactoringGoal Stereotype: This stereotype specifies the most important quality attributes in the project.
Improving these quality attributes provides tangible benefits to the stakeholders.

- QualityAttribute Stereotype: This stereotype specifies the importance of each quality and sub-quality at-
tribute of the project. The node variable specifies the quality or sub-quality we focus on. The importanceFactor
has a value ranging from 0 to 10. This value is assigned by project stakeholders. Project importance, project
type, the external forces, and team experience usually determine the value of importanceFactor. Each quality
attribute can have some sub-quality attribute, which is specified by the subQualities variable.

- QualityNode Stereotype: This stereotype has already been described in Section 3.2.2.

<<profile>>

Refactoring Goals Context

<<metaclass>>

Class

<<stereotype>>

QualityAttribute

node : QualityNode
subQualities : QualityAttribute[*]
importanceFactor : Integer

<<stereotype>>

RefactoringGoal

qualities : QualityAttribute[1..*]

<<stereotype>>

QualityNode

name : String

Tree well-formedness constraint:

context UML::InfrastructureLibrary::Core:: 

Constructs::Class

inv : self.isStereotyped(“QualityAttribute”)

implies

self.connection->select 

(isStereotyped(“QualityAttribute”))-> size = 1

Figure 8: Context Profile of Refactoring Goals

3.4. Tool Level Components and Activities
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3.4.1. Weight Calculation Component

After defining all applicable refactoring patterns on the pivot-model, decision has to be made about which are
the most suitable patterns to apply. The most appropriate patterns should be selected in regard to the refactoring
goals. This is because, as noted before, one pattern may be appropriate for some projects, but be inappropriate for
some other projects. In this section, we provide algorithms for computing the propriety of each refactoring pattern
in regard to the refactoring goals.

Each refactoring pattern changes the value of one or more quality attributes. The amount of NormalMetric
before and after performing refactoring shows the amount of this impact. The larger the difference is, the more
positive the impact on the quality attribute is. A negative difference indicates a negative impact on the quality
attribute. The difference ranges from -6 to +6 from the most negative to the most positive impact on the quality
attribute.

We use OveralQFactor for computing the overall importance of a quality attribute in the SA refactoring.
Algorithm 1 shows the procedure used for computing OveralQFactor. The computation of OveralQFactor is based
on the importance value which the stakeholders have characterized in the refactoring goals.

In Algorithm 1, we aim to calculate the overall quality factor of a node Q in the graph G. At the beginning of
the algorithm, the value of this factor is zero. We look for a parent of the Q node in graph G in Line 1. In the next
line of code (Line 1) we grab the QualityAttribute stereotype instance (See QualityAttribute in Figure 8) related to
the Q node. The QQ variable contains a copy of the QualityAttribute instance. It contains the importanceFactor,
node, and subQualities of the Q quality. If the quality node has no parent in the refactoring goals graph G we have
reached the root node, and the amount of overall quality factors of the root node equals one (Line 1). Otherwise,
we continue our algorithm in Line 1 by setting the child factor to zero. The code in Line 1 iterates for each child
of the parent of the node Q (siblings of the Q). We sum the importantFactor of the siblings (including Q itself) of
the Q quality and put them in child factor. In line 1, by dividing the amount of the Q importanceFactor by the
child factor we attain the relative importance of the quality attribute Q to its siblings. However, for computing the
overall importance of the Q attribute, we need to calculate the relative importance of its parent and multiply it by
the relative importance of the Q attribute (Line 1).

Algorithm 1: OveralQFactor Calculation

Function: CalculateOveralQFactor (G, Q)
Data: G is refactoring goal. Q is the QualityNode which we want to compute the OveralQFactor of.
Result: Returns OveralQFactor of the Q.
begin

factor = 0;
parent = find parent(G, Q);
QQ = findQualityStereoType(G, Q);
if parent is empty then

factor = 1;
end
else

child factor =0;
foreach child in parent.qualities do

child factor = child factor + findQualityStereoType(G, child).importanceFactor;
end
relative importance = (QQ.importanceFactor/child factor);
factor = relative importance * CalculateOveralQFactor(G, parent);

end
return factor;

end

The difference between NormalMetric before and after performing refactoring is multiplied by the calculated
OveralQFactor for each quality attribute existing in the refactoring goals. The sum over all quality attributes of
OveralQFactor times the difference between NormalMetric before and after refactoring is denoted by W in this
paper. If W is greater than zero, the impact of the refactoring pattern on the project is positive. A negative
value for W shows the negative effect of the refactoring pattern on the project. In cases where several refactoring
patterns are applicable, the refactoring pattern with a higher W has higher priority. Algorithms 2-3 demonstrate
the calculation of W in a project by using the refactoring goals.

Algorithm 2 computes the gain or loss corresponding to the increase or decrease in the value of a quality attribute
attained by performing a refactoring pattern. At the beginning of the algorithm, the amount of subW (added value)
and metricSum are set to zero (Lines 2-2). If the number of metrics used to measure a quality attribute is more than
one, we compute and use their average (Lines 2-2). We use EvalFormula function for computing the value of the
metric formula before and after performing refactoring on the Model (Line 2). The EvalFormula function is given a
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Model, a MetaModel, a Pattern, and a formula and given the amount of that formula in the model after performing
the Pattern on the Model. If the user does not provide an input Pattern for the function, the function evaluates the
given formula on the current version of the Model. The value of subW equals to the product of the improvement
measured by metrics (metricSum) by the overall importance of that quality attribute (OveralQFactor) (Line 2 of
Algorithm 2 does this computation). If the quality attribute has some subQuality attribute, we compute the subW
for each of them and add them to the overall subW computed before (Line 2).

Algorithm 3 computes subW for all quality attributes which are affected by performing a refactoring pattern
P . This algorithm iterates on the instances of the Goal class and tries to calculate the added value for each of
these instances (see Figure 4). In Line 3 of this algorithm, the added (subtracted) value of increasing (decreasing)
a quality attribute by performing SA refactoring pattern with regard to the refactoring goals for all affected quality
and sub-quality attributes is computed and added to the amount of W .

Algorithm 2: Calculating W for a specific goal

Function: CalculateSubW (Model, MetaModel, P, G, goal)
Data: Model we want to perform refactoring on, the MetaModel of the Model, P is the Architecture Refactoring

Pattern, G is the refactoring goals graph, goal is the quality we want to compute subW for
Result: Returns subW of the goal in graph G.
begin

subW = 0;
metricSum = 0;
foreach metric in goal.metrics do

metricSum = metricSum + EvalFormula(Model, MetaModel, P, metric.metricFormula) - EvalFormula(Model,
MetaModel, null, metric.metricFormula);

end
metricSum = metricSum/(#goal.metrics);
subW = metricSum * CalculateOveralQFactor (G, goal.node);
foreach subgoal in goal.subgoals do

subW = subW + CalculateSubW (Model, MetaModel, P, G, subgoal);
end
return subW;

end

Algorithm 3: W Calculation

Function: CalculateW (Model, MetaModel, P, G)
Data: Model we want to perform refactoring on, the MetaModel of the Model, P is the Architecture Refactoring

Pattern which we want to compute W for. G stands for refactoring goals.
Result: Returns W of Pattern P.
begin

W = 0;
foreach goal in P.Goal do

W = W + CalculateSubW(Model, MetaModel, P, G, goal);
end
return W;

end

3.4.2. Decision Making and Refactoring Component

Refactoring can be seen as a kind of model transformation. In this type of transformation, the source and
target models are the same. Some of the M2M languages such as ATL support this type of transformation. In the
refactoring case, the refining keyword should be used instead of the from keyword in the header form of the ATL
rules.

1 create OUT : S-Model refining IN : T-Model;

Unlike the transformation rules for which the input model is read-only and the output model is write-only, in
the refining mode the input and output models are identical and rules make inline changes to the input model.

In the previous section, we presented an algorithm for computing W based on refactoring goals and refactoring
patterns. As mentioned in that section, the value of W shows the priority of the corresponding refactoring pattern.

The rule priority is not implemented in the majority of M2M languages including the latest version (2010) of
ATL. We suggest an approach to overcome this problem. We convert every refactoring rule to a file and check its
applicability with the M2M standalone library. These files are sorted based on their calculated W values. The
refactoring process starts with the refactoring pattern having the highest W . If the pattern with the highest W is
not applicable, the next pattern with highest W is examined. If a refactoring pattern is matched and performed on
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the input model, the refactoring process starts again from the pattern with the highest W . This process continues
until no other refactoring pattern with W > 0 exists.

Algorithm 4, shows the refactoring process which is described in this paragraph. In Line 4-6, we form an array
(Wpat) to store the computed W for each pattern. The Wpat array is sorted by the value of the W for each pattern
(Line 8). We first perform the patterns with the highest W on the model. The while loop continues until no further
changes are applicable to the input model (Line 10). If the added value of performing a pattern is greater than zero
the pattern is performed on the model (Line 11). Find Pattern searches for refactoring profile instances by name
and returns the one found as the result (Line 12). Generate ATL method generates the ATL rule from a UML
profile instance (Line 12). Run ATL method in Line 13 runs the generated ATL script on a Model with regard to
the model MetaModel. If the Model and NewModel were not equal to each other (Line 15), we add the pattern to
the list of refactoring opportunities.

The approach of making an ATL file and executing that file by using ATL Java library and ATL VM is used in
some of the other tools such as AML [19].

Algorithm 4: Checking SA Refactoring Patterns on an Architecture Instance

Function: CheckRefactoring(Patterns, Goals, Model, MetaModel)
Data: Patterns: a list of refactoring patterns, Goals of refactoring, Model instances, MetaModels in Ecore which

specifies meta-model of the Model.
Result: List of refactoring opportunities.
begin

Array Wpat[];
Array Opportunities[];
foreach pattern in Patterns do

array WW = {pattern.name, CalculateW (pattern, Goals)};
Wpat[] = WW;

end
Wpat = Sort Array(Wpat);
while true do

foreach pattern in Wpat do
if pattern[1] ¿ 0 then

ATL = Generate ATL(Find Pattern(pattern[0]));
NewModel = Run ATL(ATL, Model, MetaModel);
if NewModel ¡¿ Model then

Opportunities[] = pattern[0];
end

end

end

end
return Opportunities;

end

4. Case Study

One of the methods of evaluating software engineering approaches is gauging their practicality in real environ-
ments [63]. In this section, a case of SA refactoring (which is described by ACME ADL) is shown.

4.1. Introducing the Case Study

Our goal in this case study is to perform refactoring on a system which is described by ACME ADL [20]. ACME
ADL is frequently used to model the architecture of software systems. One of the major goals in designing ACME
ADL is to provide an ADL to support interchangeability among ADLs.

User activities in our framework are divided into two levels: Expert level and Regular User level. The authors
of this paper perform the activities at the expert level, and the Online Music Distribution (OMD) developers and
stakeholders perform the activities in regular user level, including architecture description and specification of the
refactoring goals.

In the expert level of the case study, we model some of the SA refactoring patterns and bad smells. We try to
model the refactoring patterns and bad smells which are frequently performed on the ADLs. For this purpose, we
implement the rename refactoring and the merge refactoring which are two of the most used refactorings on the
software artifacts (according to [44]) in our case study. To show an example of implementing the bad smell using
our framework, we described the high coupling bad smell using our framework. The high coupling can decrease the
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maintainability of the software artifacts and increase their complexity [45]. By the way, the framework can also
describe larger and more complex patterns by using the structures introduced in it.

For evaluating the framework at the regular user level, we perform the activities at that level in a system
designed for delivering digital music content to the user, named OMD. We introduce the architecture of OMD, the
refactoring goal of OMD according to the need of the stakeholders, and the benefit of performing refactoring on
OMD in this case study. For measuring the effectiveness of the refactoring on the OMD project, we survey three
different change scenarios on it and evaluate each of them using some measure factors introduced in Section 4.5.
We also measure the time complexity of carrying out the refactoring patterns on the OMD project in Section 4.6.

4.2. Expert Level Parts

4.2.1. Defining ACME (Source) Meta-Model

The first step in refactoring architecture based on model transformation is the definition of the source meta-
model. The meta-model of the ACME ADL in EMF Ecore Tool [59] is shown in Figure 9. These meta-models
come from the definition of the ADL in [20]. The meta-model of the ACME ADL consists of 16 related classes.
The relations between classes are in the form of specialization and composition. The Element class is the heart of
this ADL. Almost every object in this ADL is specialized from this class. This class has a name attribute and has
composition relation to Property and Representation classes. In other words, every Element has a name and some
Property or Representation. The Property class attaches a name-value tuple to an Element in ACME ADL. The
properties in this language are used like tags in the UML model. The Binding class binds component ports from a
source component (compSrc) to a destination component (compDest). Another important class in ACME ADL is
the Attachment class. This class attaches a port, a connection, or a role to a component. For more investigation
on the ACME ADL, one can refer to ACME ADL documents [20].

The meta-model of ACME ADL is saved into a file named ACME.ecore.

Figure 9: ACME Meta-Model in EMF Ecore Tool [59]

4.2.2. Defining ACME UML Profile

The next step in applying our framework is defining a UML profile. In some domains such as the software
product line, a predefined UML profile exists (see e.g. [66]). We failed to find a suitable UML profile for ACME in
the literature. We, therefore, created our own UML profile to support ACME ADL. Figure 10 shows the designed
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<<profile>>

ACMEPROFILE

<<stereotype>>

Element

name : String
property : Property[*]
representations : Representation[*]

<<metaclass>>

Class

<<stereotype>>

Property

name : String
val : String

<<stereotype>>

Port

<<stereotype>>

Role

<<stereotype>>

Component

ports : Port[*]

<<stereotype>>

System

componentDeclaration : ComponentInstance[*]
connectorDeclaration : Connector[*]
bindings : Link[*]
attachments : Link[*]

<<stereotype>>

ACMEEntry

<<stereotype>>

ComponentType

extend : String

<<stereotype>>

ComponentInstance

instanceOf : String

<<stereotype>>

ACMEFile

entries : ACMEEntry[*]

<<stereotype>>

Type

<<stereotype>>

Representation

systems : System[*]

<<stereotype>>

Connector

roles : Role[*]
system : System

<<stereotype>>

Link

systemAttachment : System
systemBinding : System

<<stereotype>>

Binding

compSrc : String
portSrc : String
compDest : String
portDest : String

<<stereotype>>

Attachment

comp : String
port : String
con : String
role : String

Figure 10: Context UML Profile of the ACME ADL

UML profile. This UML profile has been created based on the ACME meta-model (Figure 9) and supports one to
one mapping of the elements between two models without losing any information during the transformation.

We designed this profile by using the four-step guideline explained in Section 3.2.1. The first step in the
guideline is the selection of the base meta-class. We select the class meta-class for supporting Element, Property,
Representation, Link, ACMEEntry, and ACMEFILE classes in ACME ADL (see Figure 9). That is because, the
class meta-model is the best matching and closest syntax meaning class in UML to that classes. Other classes in
ACME ADL are derived from these classes. We use the UML inheritance mechanism to support inheritance among
classes in the ACME ADL.

The second step in the guideline is determining the attributes of the selected classes (and types thereof). This
activity is trivial. We look at ACME ADL and add the required attributes to the designed classes.

In the third step, we check all constraints on the base (class meta-class) and designed class. There is no
contradiction among classes in our case study. There are no explicit or implicit contradictions in our designed UML
profile.

And finally we check the association between designed classes. The association relations between designed classes
are simple and have no contradictions with UML association rules.

The Ecore model of the UML profile is extracted by using EMF [59] and saved into a file named ACMEPro-
file.ecore.

4.2.3. Defining ATL Transformation Rules from Source Model to UML-Profile Model

Due to the one to one mapping of the elements between the ACME ADL and ACMEProfile, the mapping rules
are simple.

The ATL transformation rule converts each instance of the ACME ADL into an instance in the UML profile.
The ACME ADL meta-model which was defined in Section 4.2.2 and the ACME Profile meta-model which we
defined in Section 4.2.1 is used as input to our transformation rules. ATL uses these meta-models for performing
the transformation.

A part of the rules for transforming ACME into ACME Profile are as follows. In these rules, we map each
element of the ACME ADL to an element in the ACME Profile.

1 ...

2 create OUT : ACMEPROFILE from IN : ACME;
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3

4 rule Element2EelementProfile{

5 from m : ACME!Element

6 to a : ACMEPROFILE!Element (

7 name <- m.name

8 property <- prop

9 representations <- reps

10 ),

11 prop : distinct ACMEPROFILE!Property

12 foreach(p in m.property)(

13 name <- p.name ,

14 val <- p.val

15 ),

16 reps : distinct ACMEPROFILE!Representations

17 foreach(r in m.representations)(

18 systems <- r.systems

19 )

20 }

21 ...

In the code snippet above, each instance of Element in ACME is transformed to the Element class in ACMEPro-
file. Each Element in ACMEProfile has three parameters to set: name, property, and representations. The name
parameter can be set directly from the input element name (m.name). For assigning property and representations
we iterate on the instances of the property and representations in selected Element m. The full list of rules to
transform an instance of ACME ADL to ACMEProfile appears in A.

The elements used in designing ACME meta-model can support several types of ADLs [20]. In this case study,
we define a transformation from ACME to ACMEProfile. This transformation is one to one. However, it is possible
to transform other ADLs such as Wright and Rapide to the ACMEProfile. An approach for mapping elements of
the Wright and Rapide to the ACME by using the property mechanisms of the ACME is introduced by Garlan et
al. in [20]. As we mentioned before, by considering the properties of a specific domain and packing them into a
UML profile, we can support refactoring on a large number of ADLs in that domain.

4.2.4. Defining ATL Transformation Rules from UML Profile to Source Model

This step is similar to the one described in the previous section. As a result, We do not repeat the rules needed
for transforming from ACMEProfile instances to ACME ADL here.

4.2.5. Defining Architecture Refactoring Patterns

One of the most important steps in refactoring SA is defining refactoring patterns. The patterns include Bad
Smells, Design Patterns, and Architectural Styles. To define refactoring patterns one should apply the UML profile
designed to store the refactoring patterns’ information in our framework. Applying the UML profile can be done
by using tools such as EMF [59] and Papyrus [14].

In this section, we explain some of the refactoring rules in detail to show the applicability of our framework in
defining refactoring rules.

Rename Refactoring
One of the common refactorings performed on the models is rename refactoring. Rename refactoring is usually used
by other refactoring patterns. Renaming an element should be done by taking into consideration all relations of
the element to the other elements. Referring to the UML profile for ACME ADL, the name of an element is used
in the Element, Attachment, and Binding classes. Rename refactoring should modify these classes accordingly for
the renaming pattern to be free from side effects and conflicts. Figure 11 shows the rename refactoring rule.

Before introducing the rename refactorings’ ATL rule, we present two helpers, which are used in the refactoring
rule. These two helpers specify the element we want to rename, together with its new name. Other patterns can
use the rename refactoring pattern by changing the values of these helpers.

1 helper def : oldName : String = ’oldName ’;

2 helper def : newName : String = ’newName ’;

The ATL rule of the rename refactoring pattern with regard to ACMEPROFILE meta-model is as follows:

1 rule RenameElement (){

2 do {

3 thisModule.RenameElement1 ();

4 thisModule.RenameElement2 ();

5 thisModule.RenameElement3 ();}

6 }

7 lazy rule RenameElement1{

8 from
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<<modify>>
:Element

   name = oldname
Δ name = newname

<<modify>>
:Attachment

   comp = oldname
Δ comp = newname

   port = oldname
Δ port = newname

   con = oldname
Δ con = newname

   role = oldname
Δ role = newname

<<modify>>
:Binding

   compSrc = oldname
Δ compSrc = newname

   compDest = oldname
Δ compDest = newname

   portSrc = oldname
Δ portSrc = newname

   portDest = oldname
Δ portDest = newname

Rename Refactoring Rule

Figure 11: RenameElement Rule

9 e : ACMEPROFILE!Element (ACMEPROFILE!Element.AllInstances ()->select(h | h.name = thisModule.

oldName))

10 to

11 t : ACMEPROFILE!Element (t.name <- thisModule.newName ())

12 }

13 lazy rule RenameElement2{

14 from

15 a : ACMEPROFILE!Attachment (ACMEPROFILE!Attachment.AllInstances ()->select(h | h.comp =

thisModule.oldName | h.port = thisModule.oldName | h.con = thisModule.oldName | h.role =

thisModule.oldName))

16 to

17 t : ACMEPROFILE!Attachment (

18 if(a.comp = e.name.oldName ()) then t.comp <- thisModule.newName () or

19 if(a.port = e.name.oldName ()) then t.port <- thisModule.newName () or

20 if(a.con = e.name.oldName ()) then t.con <- thisModule.newName () or

21 if(a.role = e.name.oldName ()) then t.role <- thisModule.newName ())

22 }

23 lazy rule RenameElement3{

24 from

25 b : ACMEPROFILE!Binding (b.AllInstances ()->select(h | h.compSrc = thisModule.oldName | h.

compDest = thisModule.oldName | h.portSrc = thisModule.oldName | h.portDest = thisModule.

oldName))

26 to

27 t : ACMEPROFILE!Binding (

28 if(b.compSrc = e.name.oldName ()) then t.compSrc <- thisModule.newName () or

29 if(b.compDest = e.name.oldName ()) then t.compDest <- thisModule.newName () or

30 if(b.portSrc = e.name.oldName ()) then t.portSrc <- thisModule.newName () or

31 if(b.portDest = e.name.oldName ()) then t.portDest <- thisModule.newName ())

32 }

The type of this rule is call rule. This means that this rule is triggered by calling. RenameElement rule calls
three other lazy rules to rename an element. In the from block of the RenameElement1 rule, we find every element in
the ACMEProfile instance which has a name = oldName or related to the oldName in a way (For example, Binding
and Attachment class using the name attribute in their attributes). We also find the related classes in Binding
and Attachment by using RenameElement2 and RenameElement3 in the code fragment above. After selecting the
related article, we change the value of the attribute that contains the oldName to the newName.

The impact of this refactoring pattern on software quality attributes is determined by the type of the development
team and the development approach [3]. Rename refactoring in an incautious team may lead to increased complexity
and reduced understandability. In the ideal situation, rename refactoring should increase the readability and
understandability of software. Rename refactoring is usually used by other refactoring patterns and is rarely used
on its own. In the standalone usages of the rename refactoring pattern, the normal amount of Flesch-Kincaid Grade
Level (FCGL) [35] metric can be used. FCGL is a number from -3.40 to +100 [35] and shows the average readability
of the old and new name. We use the maximum and minimum amount of the FCGL to calculate the normal value
of this metric. The FCGL metric belongs to readability sub-quality attribute of the ISO 9126 standard.

Component Merge Refactoring
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One of the methods of decreasing design complexity is combining different structures. The merge pattern combines
two components and creates a new component with a new name. The connection between the merged components
has to be dropped in order to perform this refactoring pattern. The refactoring rule should create a new component
and bind the roles, the ports and the connections of the merged components to it. We use rename refactoring to
migrate the roles, ports and connections from the merged components to the new component. Figure 12 shows the
main activity in merging two components in ACME profile.

Merge Refactoring Rule

<<Preserve>>
:Connector

<<Delete>>
:Component

name = c1name

<<Delete>>
:Component

name = c2name

<<Preserve>>
:Connector

<<Preserve>>
:Role

<<delete>>

<<delete>>

<<Create>>
Component

name = mergName

<<create>>

<<create>>
<<delete>>

<<Preserve>>
:Role

<<delete>>

<<create>>

<<create>>

<<Preserve>>
:Port

<<Preserve>>
:Port

<<delete>>

<<delete>>

<<create>>

<<create>>

<<Preserve>>
:Property

<<delete>>

<<create>>

Figure 12: MergeComponent Rule

We utilize two helpers in the component merging process. These helpers aid in declaring the components which
we want to merge and provide a mechanism for using the merge pattern in the other patterns. The two helpers,
getC1Name and getC2Name, are as follows:

1 helper def : getC1Name : String = ’c1name ’;

2 helper def : getC2Name : String = ’c2name ’;

The ATL Rule of this pattern is as follows:

1 lazy rule MergeComponent{

2 from

3 c1 : ACMEPROFILE!Component (ACMEPROFILE!Component.AllInstances ()->select(e | e.name =

thisModule.getC1Name),

4 c2 : ACMEPROFILE!Component (ACMEPROFILE!Component.AllInstances ()->select(e | e.name =

thisModule.getC2Name),

5 con : ACMEPROFILE!Connector ,

6 attachment : ACMEPROFILE!Attachment

7 (ACMEPROFILE!Attachment.AllInstances -> select(e| e.con = conn.name and e.comp = c1.name) ->

select(e | e.con = conn.name and e.comp = c2.name)))

8 to

9 drop ,

10 c3 : ACMEPROFILE!Component (

11 c3.name <- c1.name + ’_’ + c2.name

12 c3.Port <- c1.Port ->union(c2.Port)

13 c3.property <- c1.property ->union(c2.property)

14 c3.representations <- c1.representations ->union(c2.representations)

15 )

16 do {

17 thisModule.oldName <- c1.name ;

18 thisModule.newName <- c3.name;

19 thisModule.RenameElement ();

20 thisModule.oldName <- c2.name;

21 thisModule.RenameElement ();}

22 }

The type of this rule is lazy. In the code snippet above, we first select two components which we want to merge
(Line 3-4) and then select the connection and attachment between them (Line 5-7). In order to perform the merge,
we create a new component with a new name (Line 9-14). The property and representations of the new component
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are the union of the property and representations of the two components we want to merge (Line 11-13). Finally,
we drop the two merged components and the relations between them (Line 15).

After merging two components, we call rename refactoring to rename every instance of the old component to
the new name (Line 17-21). For this purpose, we set the helpers and call the rename refactorer. Lines 19 and 21
call RenameElement rule.

Merge refactoring is not used on its own. The impact of the merge pattern on the quality attributes is determined
by the reason behind performing the merge operation. This refactoring is usually used to decrease the complexity,
and improve the performance of systems. Sometimes, merge refactoring is used to merge components with similar
functionality in a system. Because of that, in the description of this refactoring pattern, we do not specify any quality
attribute goals. In the next section, we introduce a pattern which uses this pattern to decrease the complexity of
software.

Removing High Coupling
High coupling is one of the well-known bad smells in designing software architecture. A large number of relations
between two components decreases performance, and increases design complexity drastically. This bad smell can
be avoided by defining a threshold on the number of the relations which can exist between two components. We
survey a simple case of the bad smells in design. In this case, if the amount of Coupling Between Object (CBO) [9]
exceeds a threshold, the HighCouplingBadSmell refactoring pattern is matched and the transformation rule can be
executed. This pattern uses the merge pattern, which we described in the previous section. The coupling threshold
defined in the helper named Threshold is as follows:

1 helper def : Threshold : Integer = 5;

The ATL Rules of the pattern are as follows:

1 rule HighCouplingBadSmell{

2 from

3 c1 : ACMEPROFILE!Component ,

4 c2 : ACMEPROFILE!Component ,

5 attachment : ACMEPROFILE!Attachment

6 (

7 ACMEPROFILE!Attachment.AllInstances ->select(a |

8 ACMEPROFILE!Connector.AllInstances ->select(con |

9 ACMEPROFILE!Attachment.AllInstances ->select(a2 |

10 c1.name != c2.name and

11 (a.comp = c1.name and a.con = con.name and a2.comp = c2.name and a2.con = con.name

12 or

13 a.comp = c2.name and a.con = con.name and a2.comp = c1.name and a2.con = con.name

14 )

15 ))))

16 to

17 if(attachment.Count > 2*Threshold) then (thisModule.getC1Name <- c1.name , thisModule.

getC2Name <- c2.name)

18 do {

19 thisModule.MergeComponent ();}

20 }

To find the component with high coupling, we need to do some join in the meta-model of the ACMEProfile. In
the code snippet above, we perform the join by multiple uses of the select function of the OCL. In line 7, we select
all instances of the attachment. In line 8, we add all instances of the connector. In line 9, we add all instances of
the attachment. Now we can select all instances of connector between two attachments which are located between
two components C1 and C2 (Line 11 and 13).

The code in line 3 to 15 is run for each pair of the components in the architecture. For each pair we see in line
17, we check the refactoring condition. If the condition is true, the helper for doing merge refactoring is set.

We use the CBO metric [9] to measure the complexity of software. The metric formula is A/N . A is the number
of connection between components and N is the number of components. We write this formula according to the
model meta-model as follows:

Attachment.AllInstances().Count

Component.AllInstances().Count ∗ 2

We simply divide the number of attachments in the Model by the number of the components that exists in it.
Because each connection between two components has two rows in the Attachment class, we divide the result by
two. We set metricMin of this metric to 10 and metricMax to zero. A Higher value of the CBO metric indicates
a higher rate of coupling between two components (Lower CBO value is better). This metric is a member of the
maintainability quality attributes.
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We use the postCondition variable to check the behavior preservation of the remove-high-coupling rule. As we
described before, postCondition can access the model before and after refactoring using Old and New input model.
These input models are provided by our framework as inputs of the postCondition variable. Remove high coupling
refactoring is behavior preserving if the refactoring rule merges two high coupled components and their relations
to the other components. In the code snippet below we check these conditions.

1 New!Component.AllInstances ->select(newcomp |

2 Old!Component.AllInstances ->select(c | c.name = newcomp.name)->isEmpty () and

3

4 Old!Component.AllInstances ->select(oldcomp |

5 New!Component.AllInstances ->select(c | c.name = oldcomp.name)->isEmpty () and

6

7 Old!Attachment.AllInstances ->select(a |

8 a.comp = oldcomp.name and

9 New!Attachment.AllInstances ->select(b | b.con = a.con and b.comp = newcomp.name)->notEmpty ()

10 ) and

11 newcomp.Port ->includesAll(oldcomp.Port) and

12 newcomp.property ->includesAll(oldcomp.property) and

13 newcomp.representations ->includesAll(oldcomp.representations)))->notEmpty ()

In the above code fragment, we first select the newly added component which did not exist in the Old model
(Lines 1-2). In Lines 4-5, we select the old removed components from the Old model. We then check the condition
of behavior preservation in Lines 7-13. The refactoring is behavior preserving if every connection in the Old model
is present in the New model (with new component names, Lines 7-10) and every Port, every Property, and every
Representation also exists in the New model (with new component names, Lines 11-13).

Figure 13 shows the application of refactoring pattern profile in Papyrus [14] for defining HighCouplingBadSmell
pattern.

Figure 13: Applying Refactoring Profile in Papyrus [14]

4.3. Regular User Level

In this section we describe an instance of the ACME ADL and the way we can perform refactoring on it using
our framework.

4.3.1. Introducing OMD Architecture

Figure 14 shows the architecture of the OMD which is described using ACME ADL notation. The purpose
of this project is to distribute online music to registered users. The project has a mobile app as well. In the
three-tier architecture of this system, data, logic, and presentation are separated. Based on the commonality of the
functionality of the UI controller, a component to support UI requests and events is considered in the architecture of
the system. The web-based application and the mobile app web service use this component. The relation between
the UI and BI controllers is higher than the normal and acceptable relation between two components. The tight
coupling between these two components creates some problems. For one, the maintainability of the BI controller
becomes harder. For another, a small modification of the BI controller component makes a huge impact on the UI
controller. Besides, adding new UI actions to the UI controller is not easy.

4.3.2. Refactoring Goals in OMD

As mentioned before, refactoring goals specify the amount of stakeholders’ satisfaction of improving each quality
attribute. In each project, based on the type of the project and its domain, a particular set of quality attributes
have become more important. An approach to prioritizing refactoring goals is suggested throughout this paper.
Each quality and sub-quality attribute of software are specified by a factor from 0 to 10. These factors are later
used in our decision-making algorithms to compute W for each refactoring pattern.

Maintainability has a large priority in the OMD system. The system is immature; therefore, many change
requests are received over time. The changes are mainly in the form of adding new functionality or fixing a bug.
Software usability and reliability are also important in this project. Finally, the project security should be at an
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Figure 14: The Architecture of a OMD Application.

appropriate level and the accuracy of the response to the user request should be at a high level. We illustrate the
refactoring goals using a graph in Figure 15. The values in the graph should be expressed using the Refactoring
Goals Context Profile. For this, we should apply the refactoring goal profile with the five quality attributes which
are represented in Figure 15 as qualities variable. This figure specifies the importanceFactor of each quality attribute
of the ACME architecture instance. The applied UML profile is stored in a file and is given as an input to the
framework later.
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Figure 15: Refactoring Goals of OMD

4.4. Tool Level

4.4.1. Choosing Refactoring Patterns and Performing Refactoring on Architecture

The final step in applying our framework is to perform refactoring on the architecture instances. For performing
refactoring on the SA architecture, we need to develop a tool to perform the designed algorithms on each instance
of the source ADL. Figure 16 shows the primary version of the designed tool to perform SA refactoring based on
model transformation1.

The first input of our tool is the source meta-model. The Ecore meta-model of ACME is available online and
we can use it in our case study. The second input is the designed UML profile meta-model. One can use tools like
EMF [59] to produce UML profiles in Ecore format. In our example, we used EMF [59] and exported the UML
profile meta-model to Ecore format. The transformation rule from source ADL to UML profile model and UML
profile model to the source ADL, are the next input of our tool. We present the complete list of the rules needed
to do the transformation from ACME to ACMEProfile in A. The ACMEProfile to ACME transformation rules
are similar to the one we represent in A. The next input in our tool is architecture refactoring patterns. The file
ACMEpatt.uml consists of several instances of the Refactoring Pattern profile we introduced before.

1A copy of ARiA implementation available at https://github.com/tanhaei/ARiA
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The first five inputs in our tool are at the Expert level. These inputs are the same for refactoring each instance
of the ACME ADL. In the final version of our tool, the regular users need to select their ADL language among the
provided ADLs. In this regard, the user faces one of the following scenarios:

- Enough material exists for supporting refactoring on the selected ADL.

- Some of the inputs required for performing refactoring (from the first five) are not available.

In the former case, the user can do the SA refactoring without engaging in the technical aspects of defining
refactoring patterns and other activities at the expert level. In the latter case, the user can do the task of experts
and provide the needed material using the approaches introduced in our framework or simply withdraw from
performing the refactoring.

The sixth input to our tool are the architecture instances we want to perform refactoring on. In our example,
the architecture of the OMD application in ACME is the sixth entry. The last input of the tool is refactoring goals.
The user should apply the Refactoring Goal profile to provide this input to our tool. The last two entries in our tool
are in regular user level. These entries may differ in every refactoring activity on a specific ADL instance. In the
final version of our tool, we will include an interactive tool to get the refactoring goals from users. Our interactive
tool translates the tree which is formed by the users, to some UML profile instances.

Figure 16: The ACME Architecture Instance in ARiA Framework.

When we complete the input needed for performing refactoring, the tool can list the refactoring opportunities.
Based on the definition of the HighCouplingBadSmell pattern and the specified threshold, the HighCoupling-
BadSmell pattern matches the ACME instance introduced in Figure 14. The computed W for the HighCoupling-
BadSmell pattern in this case study is:

W = 10
10+9+9+8+7*((6* 28/(8∗2)−10

0−10 - 3) - (6* 40/(9∗2)−10
0−10 - 3)) = 0.065 ¿ 0

which is a positive number. Figure 16 shows the refactoring opportunities which our refactoring tool finds in
the OMD architecture.

To perform the pattern on the architecture instance one should press the Do Refactoring button. By ordering
the refactoring, the refactoring pattern is applied by merging the UI Controller and BI Controller components,
which have a coupling ratio greater than the defined threshold. After performing refactoring activities including
merging and renaming some classes on the OMD architecture, our tool checks the post condition of the refactoring
to ensure the behavior preservation of the OMD architecture. Executing post condition of the remove high coupling
pattern on the Old and New architecture of the OMD returns true, meaning the pattern did not change the behavior
of the OMD architecture. As a result, our framework commits the changes performed by refactoring. Figure 17
shows the OMD architecture after performing refactoring on its architecture.

To perform merge refactoring on the OMD architecture, one needs to know about the traceability of the archi-
tecture to artifacts in other levels of abstraction. This is because by performing modifications on the SA, all related
artifacts at other levels of abstraction are affected. Figure 18 shows a mapping of the OMD architecture to lower
levels of abstraction such as design and code. By merging the UI Controller and BI Controller components, UI
Controller Class and BI Controller Class should be merged to keep the consistency between the architecture level
and the design level. In order to support modification done on these two classes, every class related to these classes
should also be investigated and may be modified to support changes done on these two classes. For example, classes
inherited from one of these two classes should now inherit from the merged class. By changing the classes in the
design level, code written to support these classes should also be modified. As one can see in Figure 18, even small
changes on the SA can impose large changes on the other levels of abstraction.

In Figure 18, some of the components of the architecture are external components and cannot be mapped to
lower levels of abstraction such as design and code. These types of components cannot simply be refactored in the
SA. For example, one cannot refactor Database component or merge it to other components of the OMD project.
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Figure 17: Architecture of the OMD after Refactoring

Table 2: Required effort to perform requirements in the original (ORG) and refactored (REF) version of the OMD

Requirement
TRP NOC NOA NOF LOC

ORG REF ORG REF ORG REF ORG REF ORG REF

Requirement 1 530h 440h 13 7 4 2 44 27 13k 7k
Requirement 2 213h 215h 5 5 6 4 68 53 4.5k 4k
Requirement 3 426h 441h 6 5 6 4 136 141 11.5k 12k

Average 389h 365h 8 5.6 6 3.3 82.6 73.6 9.6k 7.6k

4.5. Software Architecture Refactoring Effects on the OMD Project

In this section we want to evaluate the effect of architecture refactoring on the maintainability of the OMD
system. In order to measure maintainability improvement in the OMD project, we proposed three change scenarios
in the OMD system. We want to measure the effect of the SA refactoring on the speed and accuracy of performing
modifications on OMD. The developers of the OMD were asked to perform these changes on the OMD system:

- Requirement 1: Providing offline playback of the music for premium users.

- Requirement 2: Users be able to share their playlist with their friends.

- Requirement 3: Users be able to make their own radio station.

We measure these factors for evaluating the speed and accuracy of modification performed by the OMD devel-
opers team to implement the needed requirement:

• Time needed to perform requirement (TRP): For measuring this time we used the log of the project man-
agement system.

• Number of the changed classes (NOC): We measured NOC by analyzing project SVN data.

• Number of newly added classes (NOA): This value can be measured like NOC in OMD project.

• Number of faults found after release (NOF): We measured NOF by analyzing project bug-tracker data.
Bug-tracker data is logged by the OMD test group.

• Number of changed and added lines of code (LOC): We measured LOC by analyzing project SVN data.

In Table 2 we compare the required effort to perform needed requirements on the OMD before and after
performing refactoring on it. As one can see in Table 2, the majority of the factors we measured on the OMD
project are improved in the refactored version of the OMD.

As a result of decreasing coupling between components of the OMD, the number of classes, which should be
changed (NOC) and the number of new classes, which should be added to support new requirements (NOA) are
decreased. Decreases in the number of the changed and added classes also decrease the number of faults found after
release.
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Figure 18: Mapping of the OMD Architecture to the design and code levels
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Figure 19: The Result of Experimenting on the Number of Refactoring Patterns in the case of the OMD Architecture

The amount of improvements in performing requirement 1 are much stronger than the other two requirements.
This is because implementing requirement 1 strongly relyed on the two UI controller and BI controller components
in the OMD system. Implementing other two requirements needs performing modifications on the Models and App
Web Service components. Because we do not change this component, we do not expect much improvement in
performing these requirements on the OMD system.

However, our experimental evaluation of the OMD system shows that the time, the number of changed classes,
and the number of faults in the refactored version of the OMD are generally decreased. The amount of improvements
in the change scenarios that relate to the refactored location are much greater than others.

4.6. OMD Refactoring Performance

In this section, we want to evaluate the performance of our proposed approach. We want to measure the
performance of the approach in performing refactoring on the OMD which is described using ACME ADL. We use
the artifacts developed in Section 4.2 and 4.3 to conduct our experiments. We used a Macbook Pro Retina Mid
2013 with 8 GB of RAM utilizing a CPU clocked at 2.3 GHz to run our experimental tests. We want to measure
the performance of the proposed approach in these different conditions:

- When the number of refactoring patterns are varied.

- When the number of the pattern goals and the number of metrics in each pattern goal are varied.

Performance of the framework when the number of patterns are varied
We want to examine the performance of our approach in finding refactoring opportunities when 1, 10, 50,

and 100 refactoring patterns are defined in the framework. We replicate the Remove High Coupling Refactoring
pattern proposed in Section 4.2.3 zero, 9, 49, and 99 times and execute the framework using these replicated
patterns. Remove High Coupling Refactoring pattern only has one goal, which contains one metric. We executed
the proposed framework 10 times in each condition (one pattern, 10 patterns, and so on) and show the best, the
worst, and the mean execution time (in milliseconds). In Figure 19 the X-axis specifies the number of patterns used
to find refactoring opportunities and the Y-axis shows times that the proposed framework required to find the first
refactoring opportunities on the input models. The number of refactoring patterns on the SA rarely exceeds 20. As
one can see in Figure 19, the performance of our proposed framework in case of 10 and 50 patterns is acceptable.
We used a pattern containing only one goal and one metric in this experiment. In the next experiment, we varied
the number of goals and metrics and calculate time complexity in each condition.

Performance of the framework when number of metrics and goals are varied
In this section, we want to examine the performance of the proposed framework when we have a different number

of goals and metrics in each refactoring pattern. In this section, we use the Remove High Coupling Refactoring
pattern proposed in Section 4.2.3 with some modifications. For testing one goal and one metric condition, we use
the Remove High Coupling Refactoring pattern as is (It has one goal and one metric in its definition). For testing
one goal and five metrics, we replicate the metric used in the Remove High Coupling Refactoring four times. For
testing five goals and five metrics, we replicate the Remove High Coupling Refactoring goal four times. For testing
five goals and 10 metrics, we first replicate the metric in the goal one time, and then replicate the goal four times.
We finally replicate the proposed pattern (in each condition) 10 times and run the refactoring framework on it. We
executed the proposed framework 10 times in each condition and recorded the execution time. Figure 20 shows the
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Figure 20: The Result of Experimenting on the Number of Goals/Metrics in the case of the OMD Architecture

Figure 21: The effect of Using a Pivot-Model in the Amount of effort need to Describe the Refactoring Patterns

result of our experiment. As one can see in this figure the running time of the algorithm to find the first refactoring
opportunities depends on the total number of the metrics proposed in the patterns defined in it. This is because,
running time for the pattern with one goal and five metrics is approximately the same as the pattern with five
goals and five metrics. The complexity of the proposed framework is linear with regard to the number of patterns’
metrics defined in it.

4.7. The Usability of the Framework

At first glance, the suggested refactoring pattern may seem to be too complex to be really usable by architects.
But when one takes a closer look at this framework, one notices that a high amount of reuse is achieved using it.
Table 3 shows the number of times each part of the framework is created to perform SA refactoring on n architecture
instances. The majority of the tasks in this framework are done only once. For example, the source meta-model
is defined just once. After that, the meta-model of the source model can be reused many times. Having reusable
parts in the refactoring process creates an opportunity to form a refactoring repository for each source model.

4.7.1. The Usability From the Expert User Viewpoint

The expert users perform the majority of the works in our framework. They define the pivot-model, the M2M
scripts for transforming from a source model to the pivot-model and vice versa, and the refactoring patterns. In our
framework, we used a pivot-model to provide refactoring pattern reuse in a particular domain. We performed some
measurement on the amount of time needed for defining five and ten refactoring patterns in a domain containing
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Table 3: The number of refactoring artifacts builds used in performing the refactoring process on n architecture
instances.

Artifact Name #

The Source Meta-Model 1

The UML Profile and its corresponding Generated
Meta-Model

1

ATL Transformation Rule from Source to UML
Profile

1

Refactoring Patterns, Bad Smells and Architec-
ture Styles

1

Architecture Instances n

The Refactoring Goals n

ATL Transformation Rule from UML Profile to
Source

1

different number of ADLs. Our experiment shows that, by increasing the number of refactoring patterns and ADLs
in a domain, using a pivot-model becomes more economical. For example, Figure 21 shows that using a pivot-model
for describing five refactoring patterns in a domain becomes economical if the number of ADLs in that domain is
larger than two while describing ten refactoring patterns in that domain become economical if the number of ADLs
in that domain be greater than one. Our experiment also shows that using a pivot-model for describing a domain
with only one ADL is not economical.

4.7.2. The Usability From the Architect’s Viewpoint

From the architect’s viewpoint, our framework does not differs from other refactoring tools. The architect should
provide the architecture of the system she/he wants to refactor, and the goal of the refactoring by applying the
profile designed in our framework. The process of transforming the ADL to a pivot-model, checking the conditions
of each refactoring pattern, performing the refactoring activities defined in the refactoring pattern, checking the
post-conditions of the pattern, and converting the pivot-model to the original ADL are all done by the framework
in the background.

4.8. Precision and Recall of the Proposed Framework

The precision of a refactoring framework means the fraction of the correct refactoring opportunities the frame-
work finds, and the recall of a refactoring framework means the fraction of the refactoring opportunities the
framework finds. In case of low precision, the refactoring framework may suggest wrong refactoring opportunities
and in case of low recall, the refactoring framework may fail to find refactoring opportunities. In this research,
we proposed a UML profile for defining the refactoring patterns. This UML profile enables expert users to define
refactoring patterns using the ATL and OCL languages. ATL and OCL have no limitation on describing refactoring
patterns in detail. The precision and recall of the proposed framework directly depend on the details level of the
refactoring patterns defined in it. As a result, the precision and recall of the proposed framework directly depend
on the modeler of the refactoring patterns.

The amount of the precision and recall for every refactoring pattern can be calculated using the following for-
mulas:

Precision = #{{Relevant refactoring}∩{Founded refactoring}}
#{Founded refactoring}

Recall = #{{Relevant refactoring}∩{Founded refactoring}}
#{Relevant refactoring}

One can compute precision and recall for every refactoring pattern described in the proposed framework. For
an example, in the case of OMD refactoring, the precision of the Remove High Coupling Refactoring pattern is 100
percent because all refactoring opportunities found by this pattern are relevant. The amount of recall in this case
is also 100 percent because all merge refactoring opportunities were found by the pattern. For another example,
consider Folding Rule in Section 3.2.2. The precision of this rule is 100 percent, because all found refactoring
opportunities are true. The amount of recall in the case of Folding Rule is not 100 percent. This is because the
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pattern is not matched for methods without parameters. Folding Rule recall equals the amount of duplicated
methods that have parameters divided by all duplicated methods in a program.

The amount of precision and recall can reveal the implementation quality and effectiveness of the patterns.
However, the amount of precision and recall may vary from a project to another. While a low amount of precision
and recall for a pattern is a strong indicator of faulty description of that pattern, a high amount of precision and
recall cannot guarantee absolute correctness of that pattern in other refactoring situations.

5. Threats to Validity

Internal validity: Our findings in Section 4.5 show a relation between refactoring on the OMD and reduction
in the number of faults, release time, and changed/added LOC. It is possible that during performing refactoring
on the OMD other components and classes of the OMD change in such a way that facilitate performing required
changes on the OMD.

Construct validity: Construct validity issues arise when one makes errors in measurement. One of the
threats to validity in this regard is the correctness of the formulation of the refactoring patterns. The mistakes
in the description of the refactoring patterns can lead to an incorrect conclusion about whether or not to perform
refactoring on a part of the software architecture.

We collect the information about fault and development time from OMD local project management tool. It
is possible that a developer failed to log the end-time of performing a requirement correctly. It is also open to
consideration that some of the fault of the OMD were not logged in the OMD project management tool.

One may make errors in performing replication in Section 4.6. As a result, it is possible that a wrong number
of replications cause misinterpretation in this section.

External validity: We performed the refactoring activities on the OMD project (An instance of the ACME
ADL). Due to the commercial nature of this project, its artifacts cannot be accessed publicly. However, we supplied
major artifacts related to the OMD project in the case study. These artifacts can help in repeating the experiments
and validating it.

The result of Section 4.6 is obtained by performing replication on a pattern in our framework. The architecture
of the OMD is available in Figure 14. We provide the replicated pattern and the goals/metrics used in it in the
case study. We also provide an implementation of the proposed framework on the internet. As a result, we believe
that the experiments in Section 4.6 are replicable.

6. Discussion

Estimating in quantitative terms the benefit of refactoring is probably one of the biggest challenges in software
engineering. In this research, we proposed an algorithm to assess the impact of refactorings on the software quality.
However, this algorithm suffers from the lack of appropriate metrics. We need to develop new metrics to measure
the effects of SA changes on other levels of abstraction. Our refactoring framework can only use quantitative metrics
which may limit its usage in some situations.

Architecture refactoring only makes sense if it can be later mapped to source code and artifacts in other levels of
abstraction. The problem is that when we perform refactoring in architecture, we can easily violate many semantic
and type rules of programming languages. For example, we cannot move a method to a class that already has a
method with the same signature. As a result, these preconditions (traceability and consistency of the architecture
to code) should be checked before performing refactoring on the SA. The team that performs refactoring on the
architecture should use appropriate tools such as the one developed by Adersberger et al. [2] to ensure that the
refactoring does not raise problems such as inconsistency in the lower levels of abstraction. Adersberger et al.
introduced a UML-Based approach to check traceability and consistency of the architecture written in a specific
ADL to code [2]. They provide a UML profile to map each element of the architecture to code.

We defined our case study on the structure (Components and Connectors) of a simple software system (OMD).
However, our framework is not limited only to this software architecture viewpoint (Structural). One can use our
refactoring framework to refactor artifacts representing other viewpoints on the SA such as deployments, physical,
and behavioral viewpoints.

In this paper, we provide several examples of defining refactoring pattern conditions using OCL. A Large number
of patterns can be specified using the OCL language. Guennec et al. [24] suggest a guideline for specifying patterns
using OCL. They define several design patterns such as Observer, Composite, and Visitor in their work. In our
framework, expert users can use OCL alongside ATL to define refactoring patterns. However, it is possible that
some refactoring patterns cannot be specified using OCL.

Our framework helps in performing software architecture refactoring in two ways:
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Table 4: Comparison of the architecture and model refactoring frameworks

Metric Our framework Reimann [52] Rose [53] Ruhroth [54] Ivkovic [28] Moha [43]
Supported ADLs All ADLs All DSL, Mod-

els
All Models All BNF-Style

Languages
UML All Models

User can Define
refactoring pat-
terns?

Yes (Expert
Users)

Yes (DSL De-
signer)

Yes Yes Yes Not Specified

User can define
Refactoring Goals?

Yes No No No Yes No

Implementation
Tool

ATL, OCL EOL, Role
Model

Generic Pro-
gramming

Not Specified UML, OCL Kermeta,
Model Typing

Check Refactoring
Correctness?

Yes Yes but man-
ually (User
should add
constraints to
the model)

No Yes using after
templates

Yes but man-
ually (us-
ing post-
conditions)

No

Support Multiple
Architecture View?

No No No No No No

Graphical Repre-
sentation?

No Yes (Role Mod-
els)

No No No No

Metrics Type Quantitative Not Uses Met-
rics

Not Uses Met-
rics

Not Uses Met-
rics

Qualitative Not Uses Met-
rics

- Discovering refactoring opportunities on the software architecture: Enlargement of the software
architecture or the sophisticated nature of some of the software architecture patterns makes it difficult to check
refactoring conditions manually. In this regard, our framework facilitates finding refactoring opportunities on
the software architecture.

- Performing refactoring activities on the software architecture: Our framework also helps in per-
forming refactoring activities on the SA. We introduced merge refactoring on the OMD project in the case
study section; however, performing refactoring even on a seemingly simple refactoring pattern such as merge
refactoring is far from straightforward. One needs to modify the related classes to the merged components
including Ports, Attachments and Connections to do merge refactoring.

7. Related Work

Domain-Specific Languages provide the ability to define semantics and schemas in a specific domain. These
languages use a graphical or textual representation to avoid modeling complexity and increase ease of use. Graphical
representation decreases syntax errors and increases trust level over the models, and facilitates finding errors in the
models [56].

Different UML profiles for describing software architecture have been created. The definition of AADL [16]
contains a UML profile, which can describe real-time and embedded systems. Goulao et al. [22] suggest a profile
for ACME ADL. Amirat et al., describe the hardness of using the UML profile for architecture and define a UML
profile for describing software architecture in [48]. Oquendo et al., develop a UML profile to describe π-ADL [48].
π-ADL is a Formal Architecture Description Language. Several techniques for describing architecture using UML
are compared and the weaknesses and strengths of the techniques are surveyed in [4]. Giachetti et al., suggested
a method for automatically producing UML profiles for DSMLs [21]. Some instances of using a UML profile to
describe a specific domain can be found in the domain of software product line [66], real-time applications [5],
and software architecture description [31]. These instances show the strengths of using UML profiles in modeling
different domains.

The idea of using model transformation to investigate ADLs has appeared in the literature. Kim used model
transformation to describe and investigate patterns on the software design [34]. He used a role-based meta-modeling
language to define design patterns.

Reimann et al. [52] suggest a framework for reusing model refactoring across multiple domain-specific languages.
They used the role model to model refactoring rules and implement their framework in the EMF. Similar to our
framework, they used three levels of abstraction to model and perform refactoring on the DSL models. We compare
their framework to our framework in Table 4

Rose et al. [53] also used generic programming to define model-driven activities such as refactorings, animations,
transformations, etc. They used EOL (a language similar to OCL) to define manipulations on models. The idea of
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their work is to bring an approach into model management to raise the level of abstraction of the specification of
model manipulation. In general, we can divide the work in their framework into three levels similar to our framework:
tool level, designer level, and user level. However, because they aimed to manage every kind of manipulation on
the model, they failed to check special requirements of model refactoring such as checking behavior preservation
and refactoring goals.

A generic refactoring language for specification and execution named ReL is introduced by Ruhroth et al. [54].
The generic refactoring language can specify and run refactoring patterns on a given code. Before-template,
precondition, refactoring actions, and after-template can be specified using the ReL language. Moha et al. [43]
introduced a generic model refactoring approach. They used Kermeta, an extension of the MOF meta-model
standard, and Model Typing to specify refactoring patterns and to apply them on a domain of similar models.

Malavolta et al. [39] provide a tool named DUALLY to provide interchangeability among ADLs themselves as
well as UML. They used ATL to transform the models to each other. Similarly to our approach, they used a middle
model (UML profile) called A0 to maintain the source model information. The mapping between elements in source
and target model in their tools is specified by a graphical tool. The mapping rule in ATL is generated automatically
when the user specifies the mapping between two models. By the similarities and relations which actually exist
between our framework to DUALLY, the aims of the two frameworks are completely different. Our aim is to
provide an infrastructure to support software architecture refactoring while DUALLY is providing interoperability
among ADLs. For our purpose (SA refactoring), we provide a mechanism to specify SA refactoring patterns and
SA refactoring goals in our framework.

Stevens [50] used OCL to describe refactoring on the models. However, because OCL is free of side-effects and
cannot alter the models, he wrote his own Python based tool named SMW [49] to solve this problem. The SMW [49]
notation is very similar to the notation used in ATL transformation rules. In ATL transformation language, we
can use OCL constraints and ATL declaratives simultaneously. Guennec et al. [24] suggest an approach which can
be used to specify detailed description of the patterns. They use a modified version of UML and OCL to define
pattern constraints.

An applicable technique for describing design patterns using UML diagrams is proposed by Robert France2 et
al. [18]. They describe some of the design patterns (e.g. Observer-Visitor style) using the proposed technique.
Zdun et al. [65] use UML profiles to define architectural patterns. Commonalities of the software architecture are
defined by pattern primitives in their work. Pattern primitives are specified using UML Stereotypes. After that,
one defines a mapping between pattern primitives and architectural building blocks. EMF Diff Merge/Patterns [10]
is a proper tool that provides the definition, the alteration, and the evolution of the patterns in the EMF modeling
environment. Similar to our work, it uses OCL to define the pattern constraints. This tool can be simply integrated
into the EMF modeling tools. However, this tool in the current shape is not suitable for defining refactoring
patterns. That is because in establishing refactoring patterns we need to define conditions, the shape of the model
after refactoring and the actives needed to perform refactoring on the model. The main idea of using the UML
profile to store refactoring patterns comes from [28]. Ivkovic and Kontogiannis [28] introduce a UML profile to
capture software architecture refactoring patterns, and a UML profile called Conceptual Architecture View for
maintaining architectural information. However, they do not suggest how the refactoring should be implemented
or how the source architecture be transformed to their Conceptual Architecture View profile. Using a single UML
profile to store information presented in all types of architecture limits the applicability of their framework. A UML
profile to define pattern elements is proposed by Dong et al. [12]. They used UML Stereotypes and tagged values
to specify their UML profile. The relation of the pattern elements to each other is not considered in their pattern
specification.

Model refactoring can be seen as design evolution. Each refactoring pattern improves a part of the design.
PROGRES [51] is an environment for specifying graph rewriting rules and performing matched rules on the models.
Arendt et al. developed a tool for in-place EMF model transformations called Henshin [6]. Their work supports
endogenous transformation on the EMF models. As a case study, they explain several EMF model refactorings in
their work. They define refactoring patterns (and their conditions) in the meta-model of the model they want to
refactor. Our way of defining refactoring patterns on the ADLs is similar to the work of Arendt et al. [6]. We first
model the meta-model of the ADL by a middle model and then define the refactoring condition on the meta-model
of this middle model.

A catalogue of refactorings for model-to-model transformations using ATL is defined by Wimmer et al. [62].
They used ATL to represent a catalogue of refactorings on the models. This catalogue can facilitate the activity of
defining new refactoring rules in our framework.

2The late Founder and Editor-In-Chief of SoSyM
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8. Conclusion and Future Work

Performing refactoring on software artifacts is a good way to increase their quality attributes [17]. Performing
refactoring on code increases the maintainability and understandability of the code. The refactoring process is,
however, not limited to source code. Higher levels of software development such as software architecture can also
benefit from this process.

Performing refactoring on the SA is a good way to increase software quality before implementation. Identification
of software pitfalls before implementation decreases the cost of development drastically. Avoiding the known bad
smells in designing architecture and applying appropriate SA styles and patterns decreases the likelihood of project
failure and increases the satisfaction of the stakeholders. Based on the above mentioned benefits, performing
refactoring before going into implementation phase is quite advisable.

Performing refactoring after implementation may help in finding design bugs and can suggest styles and patterns
useful for increasing the quality of the software. Applying a refactoring pattern on an implemented system is a
hard task to do. This kind of process has to deal with the traceability of the architecture elements to the source
code and can lead to large modifications to the source code, huge changes in documentation and so on.

Applying refactoring at the SA level is not as simple as the code level. The first problem one faces when
performing refactoring on the SA is the lack of proper tools to support automatic or semi-automatic refactoring.
The diversity of the domains and viewpoints for describing the SA increase the number of ADLs and the ways in
which the SA can be described. One cannot realistically hope to design refactoring tools for all different ADLs. To
deal with the diversity of ADLs, in this paper we set out to convert every ADL to a middle model and define the
refactoring patterns and constraints of each pattern on that model.

While it is possible that more than one ADL describe one domain, the properties of each domain are independent
of the ADLs. Each of the ADLs with the same domain can be transformed to a UML profile (middle model) which
describes the properties of that domain. Using the patterns defined in that UML profile, the refactoring process
can then be performed on the SA.

The impact of SA refactoring on software qualities is wider than the impact of code refactoring. Each refactoring
pattern affects some of software quality and sub-quality attributes. In this paper, we introduce a way to define the
impact of each refactoring pattern on software quality and sub-quality attributes (S3). A metric is used to measure
the impact of refactoring patterns on each quality or sub-quality attribute. The fact that we do not have enough
metrics to measure software quality attributes is troublesome. One important future work is to define new metrics
to quantify different quality attributes.

Refactoring goals describe the aim of the refactoring process. Applying a refactoring pattern which increases
system security and decreases system performance where the refactoring goals prioritize performance increase, is not
a good choice. Refactoring goals specify the importance of each quality and sub-quality attribute of the software.
The refactoring goals should be taken into account when performing SA refactoring.

Each refactoring pattern has an added value to the project. We use W to specify this added value. This W is
calculated by considering refactoring goals and the effect of the refactoring patterns on software quality attributes.
The metrics measure the impacts of a refactoring pattern on a quality attribute. To homogenize the impact of each
metric in calculating the value of W , we introduce the concept of metric normalization. The normal values are
between -3 and 3. We assume that the values of the metrics grow linearly. This is not a good assumption for every
metric, because some metrics exhibit not-linear behavior.

The aim of this framework is to provide a tool for performing automatic refactoring on the SA. Despite all the
benefits that this framework provides, some critical challenges remain unsolved. Difficulties in describing patterns,
bad smells, and refactoring conditions using a particular language is the first challenge. The semantics of some
patterns is written in natural languages, and it is hard to describe them using known languages (such as OCL).
It is obvious that we should find a way to describe these patterns formally, if we want them in automatic analysis
tools. The second challenge is the heterogeneity of the metrics. Our suggestion to overcome the problem of metric
heterogeneities (normalization of the metrics) is not applicable in the case of non-linear metrics. In this situation
a mapping table (between the real and normalized values) can be used. One of the other challenges is the small
number of the metrics which can be used to measure the quality attributes with. The fourth challenge comes
from transformation languages such as QVT [23] and ATL [29]. These languages do not carry out priority rules.
Implementing the priority rules in the 3G languages (such as Java) decreases the flexibility and scalability and
increase complexity of developing tools.

The number of important refactoring patterns in each domain is not very large. Focusing on these important
refactoring patterns and defining them formally (using OCL) can lead to large improvements. Creating a repository
to store the meta-models of ADLs, meta-models of UML profiles for each domain, the description of the patterns
in each domain, and M2M transformation rules, is one of the future works of this research. Investigating the
architectural styles and finding their relation to software quality attributes is another possible future work.
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A. ATL Transformation Rules from ACME ADL to ACMEProfile

1 module ACME2ACMEPROFILE;

2 create OUT : ACMEPROFILE from IN : ACME;

3 rule Element2EelementProfile{

4 from m : ACME!Element

5 to a : ACMEPROFILE!Element (

6 name <- m.name

7 property <- prop

8 representations <- reps

9 ),

10 prop : distinct ACMEPROFILE!Property

11 foreach(p in m.property)(

12 name <- p.name ,

13 val <- p.val

14 ),

15 reps : distinct ACMEPROFILE!representations

16 foreach(r in m.representation)(

17 systems <- r.systems

18 )}

19 rule ACMEFile2ACMEFilePROFILE {

20 from m : ACME!ACMEFile

21 to a : ACMEPROFILE!ACMEFile (entries <- entry),

22 entry : distinct ACMEPROFILE!ACMEEntry

23 foreach(e in m.entries)(

24 --nothings

25 )}

26 rule PORT2PORT extends Element2EelementProfile{

27 from m : ACME!Port

28 to a : ACMEPROFILE!Port (

29 --nothing! inheritance do the job!)

30 }

31 rule Type2Type extends Element2EelementProfile{

32 from m : ACME!Type

33 to a : ACMEPROFILE!Type ()

34 }

35 rule ROLE2ROLE extends Element2EelementProfile{

36 from m : ACME!Role

37 to a : ACMEPROFILE!Role ()

38 }

39 rule COM2COM extends Element2EelementProfile{

40 from m : ACME!Component

41 to a : ACMEPROFILE!Component (

42 ports <- thisModule.resolveTemp(ACMEPROFILE!Port.allInstances () -> select(p | p.name in m.

ports ->collect(name))))

43 }

44 rule Conn2Conn extends Element2EelementProfile{

45 from m : ACME!Connector

46 to a : ACMEPROFILE!Connector (

47 roles <- thisModule.resolveTemp(ACMEPROFILE!Role.allInstances () -> select(r | r.name in m.

roles ->collect(name))),

48 system <- thisModule.resolveTemp(ACMEPROFILE!System.allInstances () -> select(r | r.name = m.

system)))

49 }

50 rule CT2PCT extends COM2COM , ACMEEntry{

51 from m : ACME!ComponentType

52 to a : ACMEPROFILE!ComponentType (extend <- m.extend)

53 }

54 rule CI2PCI extends COM2COM{

55 from m : ACME!ComponentInstance

56 to a : ACMEPROFILE!ComponentInstance (instanceOf <- m.instanceOf)}

57 rule REPS2REPS extends Element2EelementProfile{

58 from m : ACME!Representation

59 to a : ACMEPROFILE!Representations (

60 systems <- thisModule.resolveTemp(ACMEPROFILE!System.allInstances () -> select(s | s.name in m

.system ->collect(name))))}

61 rule SYS2SYS extends Element2EelementProfile{

62 from m : ACME!System

63 to a : ACMEPROFILE!System (

64 componentDeclaration <- thisModule.resolveTemp(ACMEPROFILE!Component.allInstances () -> select

(r | r.name in m.componentDeclaration ->collect(name)))

65 connectorDeclaration <- thisModule.resolveTemp(ACMEPROFILE!Connector.allInstances () -> select

(r | r.name in m.connectorDeclaration ->collect(name)))
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66 bindings <- bind

67 bindings <- attach

68 ),

69 bind : distinct ACMEPROFILE!Binding

70 foreach(b in m.bindings)(

71 compSrc <- b.compSrc ,

72 portSrc <- b.portSrc ,

73 compDest <- b.compDest ,

74 portDest <- b.portDest ,

75 systemBinding <- self

76 ),

77 attach : distinct ACMEPROFILE!Attachment

78 foreach(b in m.attachments)(

79 comp <- b.comp ,

80 port <- b.port ,

81 con <- b.con ,

82 role <- b.role ,

83 systemAttachment <- self

84 )}
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