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New criteria for the existence of a switching controller for output signal shaping 
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ABSTRACT:  Although numerous advanced and intelligent controllers have been invented during 
the last years, classical PID controllers are still of interest to many control engineers and promising 
candidates for industrial purposes. In this study, the authors study the issue of when a switching 
controller gains exist to asymptotically track a predefined output profile for second-order linear time-
invariant systems. This paper proposes several new criteria to ascertain the existence of the gains of PID 
controllers so that the output be in predefined values at special times. Since permitted output range is 
calculated for the nonzero initial values, we can switch between several PID gains in several steps to 
have a specific variation of output with time. In this way, several desired targets can be achieved without 
any compromising. It is the main goal of this paper. In fact, a scenario is considered for the output which 
determines its values in several times and these times generate time intervals over which variable gains 
are applied to the system. Requirements for tracking can be readily achieved with choosing the output 
value according to the criteria. It is evaluated by several simulation examples, which demonstrate that 
the proposed approach works well to obtain PID controller parameters in a guaranteed way.
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1- INTRODUCTION
Proportional-integral-derivative (PID) controllers 

have been the most popular and the most commonly used 
industrial controllers during the past years. The popularity 
and widespread use of PID controllers are primarily 
attributed to their simplicity and performance characteristics. 
PID controllers have been utilized to control varieties of 
dynamical systems ranging from the industrial processes to 
aircraft, robots and ship dynamics. [1-6]

Although fixed-gain PID controllers are usually adequate 
for controlling a physical process, the requirements for a 
better control performance with variations in the operating 
conditions or environmental parameters are often beyond the 
capabilities of simple PID controllers. In order to improve the 
performance of simple PID controllers, many approaches have 
been developed to increase the adaptability and robustness by 
adopting the self-tuning method, general predictive control, 
fuzzy logic, nonlinear PID and neural networks strategy, and 
other methods [7–15].

In adaptive methods, controller gains are founded based 
on the changes in system parameters, like the cases reported 
in [16]. However, in this paper, the PID controller gains for an 
invariable and specific system are determined such that the 
output has special values at predefined times.

Classical methods like Ziegler-Nichols try to tune suitable 
PID gains by studying the step response of the system [17]. 

Artificial intelligence algorithm tries to find the best gains 
of the PID controller based on an objective function. Some 
researchers can reach a better transient and steady state 
response by combing classical methods with intelligent ones 
[18]. In this paper, a different approach is considered with 
emphasis on the step response of the system over desired time 
intervals and PID gains are determined with a novel way such 
that for different intervals different gains are founded and 
applied to the system.

In classic control, the desired response is defined in terms 
of parameters such as maximum overshoot, settling time, 
rising time and steady-state error. However, in this paper, the 
desired response of the system is defined via specific output 
values at predefined times. It means that quantized output 
values are the only effective parameter in determining PID 
gains and the only target at this step is to set the output at time 
T at value y (T) determined by the designer. But the designer 
should know the admissible output range to make the right 
scenario. And it is proposed in several criteria in this paper.

Although the output profile between switched times 
is important, now it doesn’t matter in this paper; it can 
overshoot, undershoot, and so on. Control effort is not also 
considered current and will be the next problem. In this work, 
our focus is on point viewing to the output and the existence 
of the PID gains. After exploring the problem of existence of 
the gains, in Section 8 some important points in this regard 
will be discussed.
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Notice that results of this paper are true for a second order 
system or higher order system than can be approximated to a 
second order system. With appropriate choice of y (T) values; 
according to the presented criteria; PID gains will be achieved 
for sure (existence of the gains). 

Since the results are presented for nonzero initial values, it 
would be possible to determine variable gains at intervals such 
that the output is at specific values at predefined consecutive 
time spans. This is by considering the fact that, following-up 
the output from the predetermined scenario is the ultimate 
goal of this article.

These subjects are presented in Sections 2 to 6, where, the 
permissible output range is calculated for different types of the 
closed-loop system roots. For different cases of closed loop 
roots, examples are proposed that PID gains are calculated 
using Matlab functions, then closed-loop system Simulink is 
simulated, and the output and control signals are displayed. 
All of these examples confirm the correctness of the fact that 
the correct choice of y (T) will certainly lead us to the PID 
controller’s gains. Finally, as an example, a scenario is defined 
for a specific output and PID gains are tuned accordingly. 
Some important points about the output behavior between 
two switches is discussed in Section 8 and the paper is 
concluded in Section 9.

2- THE ARGUMENT
In this article, a second order system without zero in the 

form of 2
1 0

1
s a s a+ +  is considered. Input of the system is a step and 

initial value of the output and its derivative are 0y  and 0y . PID 
controller is considered in the practical form of 
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and is implemented as Fig. 1.

If three roots of the closed-loop are 1s , 2s  and 3s , the 
relations between roots and controller gains would be: 
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By partial fraction decomposition, the output equation at 

specific time T is: 
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To calculate signal f at the end of each step of switch which 
is used as an initial value for the start of the next switch, the 
below equation will be used.
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And the value of 1u at the end of each step of switch which 
is used as the initial value of the integrator part in the next 
step would be:
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Now it should be determined that at a definite time T 
for what value of the output the designer can be sure of the 
existence of PID gains. The answer is that if the output range 
is selected according to presented criteria, then there will be 
PID gains. These criteria will be discussed later in Sections 3 
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Figure 1- Block diagram of implemented PID controller  

 

  

Fig. 1. Block diagram of implemented PID controller
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to 5, and the output range will be obtained for different types 
of closed loop roots.

3- THREE CLOSED LOOP ROOTS ARE REAL AND 
WITH THE SAME SIGN

The difficulty of exploring the problem in three dimensions 
is simplified by examining the output in the discontinuities 
and the boundaries of the root zone.  Main discontinuities 
of the output for three same sign roots summarized in three 
cases:
Case A: ( )1 2 1 3 0 ,  0s s E s→ → ⇒

Case B: ( )1 2 2 3 2 3  ,  s s s s E s→ → ⇒

Case C: ( )1 2 3 3 3 0 ,  s s s E s→ → ⇒

In the following, the discontinuity expressions are 
calculated for different values of the same sign roots of the 
closed-loop system.

3.1. Three closed loop roots are real, distinct and negative
The discontinuity case A: in this case: 
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The discontinuity case B: in this case:
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 The discontinuity case C: in this case:
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By calculating other limits for two closed loop roots are 
the same, real and negative and the third one is real and 
negative and also for three closed loop roots are the same, real 
and negative, the following lemma will obtained. 

For all lemmas in this paper suppose a second order 
system without zero and with nonzero initial values that is 
controlled by a PID controller.

Lemma 1: If three negative closed loop roots are 
desired, the presence of the output in the range of 

( )( ) ( )( )min ,1,1 0 ,max ,1,1 0L LK f K f − −   at a specific time T 
guarantees the existence of the controller gains. If three roots 
are also equal, the output range must be ( ) ( )min ,1 ,max ,1L LK K  
. The occurrence of extreme in E1, E2 or E3 can enlarge upper 

or lower boundary.
It should be noted that in practice, the initial value of 

the derivative part i.e. ( )0f  must be 01 y−  in the first switch, 
and in the following switches, its value is determined using 
equation (3).

3.2. Three closed loop roots are distinct, real and positive
The discontinuity case A: in this case with respect to the 

great value of N:
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And to determine the sign of infM  roots, suppose that 
Root1 and Root2 are its roots. So,
	

( ) ( ) 1   2 0h h Rootsif Root T T or Root T T sign× > × > → >
	

( ) ( ) 1   2 0h h Rootsif Root T T or Root T T sign× < − × < − → <
	

    0 Rootselse sign =

The value of hT  can be determined by finding the 
number making hTe infinite. For example, if 8 32.9e e=  can be 
considered as an infinite number then hT is 8.

The sign of infM roots should be considered since 3s has 
positive value and it can affect the result only if the sign of 
greater roots of infM  is positive and the output range becomes
( ),∞ ∞− + . This is because of the change in sign of infM before 
and after this big root. Otherwise, the sign of the largest root 
power factor; that is ( )01 0y f− −  in this case of discontinuity; 
determines the output range.

The discontinuity case B: in this case:
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The discontinuity case C: in this case:
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By calculating limits for two closed loop roots are the 
same, real and positive and the third one is real and positive 
and also for three closed loop roots are the same, real and 
positive the following lemma will obtained. 

Lemma 2: If the desire is three positive closed-loop roots 
and if three roots are the same, the output range become
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( )( )( 01 3 0 , Lsign y f K∞ − × − − 
. Otherwise it would be:

𝑖𝑖𝑖𝑖    𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 0

→ {
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 2𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 3𝑓𝑓(0)) > 0 → 𝑦𝑦(𝑇𝑇) ∈ (−∞, 𝐾𝐾𝐿𝐿]
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 2𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 3𝑓𝑓(0)), < 0 → 𝑦𝑦(𝑇𝑇) ∈ [𝐾𝐾𝐿𝐿, +∞)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 → 𝑦𝑦(𝑇𝑇) ∈ (−∞, +∞)                                                                                                                           
 

𝑖𝑖𝑖𝑖    𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖) > 0 → 𝑦𝑦(𝑇𝑇) ∈ (−∞, +∞)  
4. Three closed loop roots are real and with different sign 
4.1. Three closed loop roots are real, distinct; two of them are negative and, one of 
them is positive 

Assume that 𝑠𝑠1 is positive and 𝑠𝑠2, 𝑠𝑠3 are negative. So, the output 
range is obtained for the following cases. 
Case A: 𝑠𝑠2 → 0 , 𝑠𝑠3 → 0     ⇒ 𝑍𝑍1(𝑠𝑠1) 
Case B: 𝑠𝑠2 → 𝑠𝑠3 , 𝑠𝑠3 → −𝑠𝑠1 ⇒ 𝑍𝑍2(𝑠𝑠1) 
Case C: 𝑠𝑠2 → 0 , 𝑠𝑠3 → −𝑠𝑠1   ⇒ 𝑍𝑍3(𝑠𝑠1) 

Case D: 𝑠𝑠2 → 0 , 𝑠𝑠1 → 0      ⇒ 𝑍𝑍4(𝑠𝑠3) 
Case E: 𝑠𝑠2 → 𝑠𝑠3 , 𝑠𝑠1 → −𝑠𝑠3 ⇒ 𝑍𝑍5(𝑠𝑠3) 
Case F: 𝑠𝑠1 → 0 , 𝑠𝑠2 → 𝑠𝑠3   ⇒ 𝑍𝑍6(𝑠𝑠3) 

We need to define: 

(5) 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠1
2(1 − 𝑦𝑦0 + 𝑓𝑓(0)) + 𝑠𝑠1(𝑎𝑎1 − 𝑦̇𝑦0 − 𝑎𝑎1𝑦𝑦0 − 𝑎𝑎1𝑓𝑓(0)) + 𝑎𝑎0 − 𝑢𝑢1(0) 

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠1
2(1 − 𝑦𝑦0) + 𝑠𝑠1(𝑎𝑎1 − 𝑦̇𝑦0 − 𝑎𝑎1𝑦𝑦0 − 𝑎𝑎1𝑓𝑓(0)) + 𝑎𝑎0 − 𝑢𝑢1(0) 

𝑁𝑁𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠1
2(1 − 𝑦𝑦0 + 𝑓𝑓(0)) + 𝑠𝑠1(−𝑎𝑎1 + 𝑦̇𝑦0 + 𝑎𝑎1𝑦𝑦0 + 𝑎𝑎1𝑓𝑓(0)) + 𝑎𝑎0 − 𝑢𝑢1(0) 

𝐿𝐿𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠1
2(1 − 𝑦𝑦0) − 𝑠𝑠1(𝑎𝑎1 − 𝑦̇𝑦0 − 𝑎𝑎1𝑦𝑦0 − 𝑎𝑎1𝑓𝑓(0)) + 𝑎𝑎0 − 𝑢𝑢1(0) 

And 𝑁𝑁𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖 are the same as  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 in which 𝑠𝑠1 
coefficient becomes negative.  
Lemma 3: If the desire is two real and negative closed-loop roots and one positive 
root, at specific time 𝑇𝑇 the output range is: 
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 0 & 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 0 &  𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 0 

{𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0),𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 + 𝑓𝑓(0)) > 0 ⇒ 𝑦𝑦(𝑇𝑇) ∈ (−∞, 𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑓𝑓(0), 1, 𝐾𝐾𝐿𝐿)] 
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0),𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 − 𝑓𝑓(0)), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑦𝑦0 + 𝑓𝑓(0)) < 0 ⇒ 𝑦𝑦(𝑇𝑇) ∈ [𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑓𝑓(0), 1, 𝐾𝐾𝐿𝐿) , +∞)

 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⇒  𝑦𝑦(𝑇𝑇) ∈ (−∞, +∞) 
By calculating limits for two closed loop roots are the same, negative and real; 
the third one is real and positive the following lemma will obtained. 
Lemma 4: If the desire is two similar and real and negative closed-loop roots and 
one positive root, at specific time 𝑇𝑇 the output range is: 

𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 0 → {𝑖𝑖𝑖𝑖 sign(1 − 𝑦𝑦0), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(0)) < 0 ⇒ 𝑦𝑦(𝑇𝑇) ∈ [min(𝐾𝐾𝐿𝐿, 1) , +∞) 
𝑖𝑖𝑖𝑖 sign(1 − 𝑦𝑦0), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(0)) > 0 ⇒ 𝑦𝑦(𝑇𝑇) ∈ (−∞, max(𝐾𝐾𝐿𝐿, 1)]

 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⇒  𝑦𝑦(𝑇𝑇) ∈ (−∞, +∞) 
4.2. Two closed loop roots are real, distinct and positive; the third one is real and 
negative 

Assume that 𝑠𝑠2 is negative and 𝑠𝑠1, 𝑠𝑠3 are positive. Therefore, the 
important output discontinuity cases are: 
Case A: 𝑠𝑠1 → 0 , 𝑠𝑠3 → 0     ⇒ 𝑍𝑍1(𝑠𝑠2) Case E: 𝑠𝑠2 → −𝑠𝑠3 , 𝑠𝑠1 → 𝑠𝑠3 ⇒ 𝑍𝑍5(𝑠𝑠3) 

( ) ( ) ( )    0 ,  Roots infif sign M y T ∞ ∞> → ∈ − +

4- THREE CLOSED LOOP ROOTS ARE REAL AND 
WITH DIFFERENT SIGN
4.1. Three closed loop roots are real, distinct; two of them are 
negative and, one of them is positive

Assume that 1s  is positive and 2 3,s s  are negative. So, the 
output range is obtained for the following cases.

Case A: ( )2 3 1 10 ,  0    s s Z s→ → ⇒    

Case B: ( )2 3 3 1 2 1  ,  s s s s Z s→ →− ⇒   

Case C: ( )2 3 1 3 1 0 ,    s s s Z s→ →− ⇒

Case D: ( )2 1 4 3 0 ,  0     s s Z s→ → ⇒

Case E: ( )2 3 1 3 5 3  ,  s s s s Z s→ →− ⇒

Case F: ( )1 2 3 6 3 0 ,    s s s Z s→ → ⇒

We need to define:

( )( ) ( )( ) ( )2
1 0 1 1 0 1 0 1 0 11 0 0 0infN s y f s a y a y a f a u= − + + − − − + − �

(5)

( ) ( )( ) ( )2
1 0 1 1 0 1 0 1 0 11 0 0infL s y s a y a y a f a u= − + − − − + −

( )( ) ( )( ) ( )2
1 0 1 1 0 1 0 1 0 11 0 0 0n infN s y f s a y a y a f a u− = − + + − + + + + −

( ) ( )( ) ( )2
1 0 1 1 0 1 0 1 0 11 0 0n infL s y s a y a y a f a u− = − − − − − + −

And n infN −  and n infL −  are the same as  infN  and infL  in which 
1s  coefficient becomes negative. 

Lemma 3: If the desire is two real and negative closed-
loop roots and one positive root, at specific time T  the output 
range is:

( ) ( ) ( ) 0 & 0 &  0Roots inf Roots inf Roots infif sign M sign N sign L≤ ≤ ≤

( ) ( )( ) ( )( ) ( ) ( )( )(
( ) ( )( ) ( )( ) ( ) ( )( ) )

0 0 0

0 0 0

 1 , 1 0 , 1 0 0 ,max 1 0 ,1 ,  

 1 , 1 0 , 1 0 0 min 1 0 ,1, ,

L

L

if sign y sign y f sign y f y T f K

if sign y sign y f sign y f y T f K

 − − − − + > ⇒ ∈ −∞ − 

 − − − − + < ⇒ ∈ − +∞

. 
	

( ) ( ) ,else y T ∞ ∞⇒ ∈ − +

By calculating limits for two closed loop roots are the 
same, negative and real; the third one is real and positive the 
following lemma will obtained.

Lemma 4: If the desire is two similar and real and negave 
closed-loop roots and one positive root, at specific time T  
the output range is:

	
( )

( ) ( )( ) ( ) ( ) )
( ) ( )( ) ( ) ( )(

0

0

 1 , 0 0 min ,1 ,  
 0

 1 , 0 0 ,max ,1

L
Roots inf

L

if sign y sign f y T K
if sign M

if sign y sign f y T K

∞

∞

 − < ⇒ ∈ + ≤ → 
 − > ⇒ ∈ − 	

( ) ( ) ,else y T ∞ ∞⇒ ∈ − +

4.2. Two closed loop roots are real, distinct and positive; the 
third one is real and negative

Assume that 2s  is negative and 1 3,s s  are positive. 
Therefore, the important output discontinuity cases are:

Case A: ( )1 3 1 20 ,  0    s s Z s→ → ⇒   

Case B: ( )1 3 3 2 2 2  ,  s s s s Z s→ →− ⇒  

Case C: ( )1 3 2 3 2 0 ,   s s s Z s→ →− ⇒   

Case D: ( )2 1 4 3 0 ,  0     s s z s→ → ⇒

Case E: ( )2 3 1 3 5 3  ,  s s s s Z s→− → ⇒

 Case F: ( )1 2 3 6 3 0 ,   ns s s Z s→ →− ⇒

Case G: ( )2 3 1 7 1 0 ,   s s s Z s→ → ⇒

By calculating limits for this case following lemma will 
obtained:

Lemma 5: If the desire is two distinct and real and 
positive closed-loop roots and one negative root, at specific 
time T  the output range is:

( ) ( ) 0 &  0Roots inf Roots infif sign M sign L≤ ≤

	

( ) ( )( )
( )( )

( ) ( )( )(
( ) ( )( )

( )( )
( ) ( )( ) )

0 0

0

0 0

0

 1 , 1 0 ,

1 2 0 0

,max 1 0 ,  

 1 , 1 0 ,

1 2 0 0

min 1 0 , ,

L

L

if sign y sign y f

sign y f

y T f K

if sign y sign y f

sign y f

y T f K

 − − −

 − − > ⇒
 ∈ −∞ − 


− − −

 − − < ⇒

 ∈ − +∞

	 ( ) ( ) ,else y T ∞ ∞⇒ ∈ − +

By calculating limits for two closed loop roots are the 
same, positive and real; the third one is real and negative and 
considering infO  as below following lemma will obtained.

( )( )
( )( ) ( )

2
0

1 1 0 1 1 0 0 1

1 2 0

0 0 , 1, 2,3
inf iO s y f

s a y a f a y a u i

= − − +

− − − + − =

�

(6)
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Lemma 6: If the desire is two similar, real and positive 
closed-loop roots and one negative root, at specific time T  
the output range is:

( )

( )( ) ( )( )
( ) ( )( ) )

( )( ) ( )( )
( ) ( )( )(

0

0

 0 , 1 2 0 0 

min 1 0 , ,  
 0 &

 0 , 1 2 0 0  

,max 1 0 ,

L

Roots inf

L

if sign f sign y f

y T f K
if sign O

if sign f sign y f

y T f K

 − − < ⇒
 ∈ − +∞ ≤ 
 − − > ⇒

 ∈ −∞ − 

( ) ( ) ,else y T⇒ ∈ −∞ +∞

5- TWO CLOSED LOOP ROOTS ARE COMPLEX AND 
WITH NEGATIVE REAL PART
5.1. Third root is real and negative

Assume that the two roots 1s  and 2s  are iσ ω±  and 3s  is 
another root. Starting from equation (7):

( ) ( )( ) ( ) ( )( ) ( )
( )

( )( )
( ) ( )( ) ( ) ( )( ) ( )

3

2
3 0 3 0 1 0 1 1 0 1

2 2
3

2
3 3 32 2

3

1 0 0 2 0 0
1

cos

s T

T

s y f s y a y a a f f a u
y T e

s

sin Te s T s y T
s

σ

σ

σ ω

ω
σ α ω β ω σ β α

ωσ ω

− + + + − + + − +
= +

− +

 
− − − + − + = 

− +  



�

(7)

Where,

( ) ( )

( ) ( ) ( )

2 2
0 0

0 1 0 1 0

1 3 1

1 1

0 2 0

y y
y a y a a

u s a f

σ ω

α σ σ σ

σ σ

 − + − +
 

= + − − + 
 + + + 



�

(8)

( ) ( )( ) ( )0 0 1 0 1 32 2 1 0 0y y a y a f s fβ σ σ= + + − + − +

And the relation between the roots and the controller’s 
gains is as:

( )

3 1
2 2

3

2 2
3

2    
2   

      

D

P

I

K s a
K s

K s

σ
σ ω σ

σ ω

 = − − − = + +
 = − +

So,

( ) ( )3 40
lim y T y T
ω→

=
�

(9)

And,

	
( )

( ) ( ) ( )

2
0 0 1 0 1

0
0 1 3 1

1

0 2 0

y y a y a

a u s a f

σ σ σ σ
α

σ σ

 − + + −
=   − + + + + 



	 ( )
3

4

 0   
lim  

 1 

L

s

if K
y T

if
σ

σ

σ
→

 → ⇒→
 → −∞⇒

( ) ( )
3

3 5lim
s

y T y T
σ→

=
�  

(10)

	 ( )( )2
0

1 0 1 2 2 1
2

 0   
 

 1         

T

L

if e T T y

if K

if

σω β α

σ

σ

→ ⇒ + + + − →

 → ⇒

 → −∞⇒

	 ( )( )

( )( ) [ ]

0

0 0 0

 1 cos 1  

 0 1 cos 1  2 ,
  

 1                                                     

Tif e T y

if T y y y

if

σω ∞ ω

σ ω

σ

→ + ⇒ − − →

 → ⇒ − − ∈ −

 → −∞⇒

Lemma 7: If the desire is two complex roots with negative 
real part and one negative real root, at specific time T  the 
output range is:

( ) ( )0 0 0 0min ,1, 2 , , max ,1, 2 ,L LK y y K y y − − 
By calculating limits for Third root is real and positive the 

following lemma will obtained.
Lemma 8: If the desire is two complex roots with negative 

real part and one positive real root, at specific time T  the 
output range is:

	

( ) ( ) ( ) 0 ,  Root n infif sign N y T− ≤ ⇒ ∈ −∞ +∞

	

( )
( )( )

( ) ( ) )
( )( )

( ) ( )(

0

0 0

0

0 0

 0

 1 0 0

min ,2 , ,1 ,
 

 1 0 0

,max ,2 , ,1

Root n inf

L

L

if sign N

if sign y f

y T K y y

if sign y f

y T K y y

− ≥ ⇒

 − + < →

 ∈ − +∞ 


− + > →


∈ −∞ − 

By calculating limits for two closed loop roots are complex 
and with positive real part the following lemma will obtained.

Lemma 9: If the desire is two complex roots with positive 
real part and one real root. Output can take any value which 
lead us to PID gains.

6- CALCULATION OF ( )y T
It is necessary to specify the value of the output derivative 

at the end of each interval to be the initial value of the output 
derivative or 0y  for the next time interval. So:

( ) 31 2
1 2 3

s Ts T s Ty T A e A e A e= + +

�
(11)

Where:

( )( ) ( )

( )( )

2
0 1 0 0 10 0

 

, , 1, 2,3

I
i i D D P

i
i

i j i k

Ks y s a y y K K f K u
sA

s s s s

j k i

+ + + − + + +
=

− −

≠ =



Also, according to lemmas, there are some constraints that 
the designer has to notice and steps should be taken one after 
the other according to the lemmas. The following example is 
a sample of this design.
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Example- Suppose that second order system is 2
1

9 2.1s s+ −  , 
and initial values are zero. So what would be the values of PID 
gains such that the output values are [ ] 0.7,0.9,1.1,0.99,1  at times
[ ]1.2,1.5,3,5,6 ? In the first, third and fifth intervals three roots are 
distinct and negative. And in second and fourth intervals two 
roots are complex with a negative real part and, the other root 
is negative and real.

Answer: Roots ( )3 2 1, ,s s s  in the first, second, third, fourth 
and fifth intervals are calculated to be ( )0.67, 0.075, 14.4− − − ,   
( )1.87 0.27 , 1.25j− ± − , ( )2.28, 2.31, 2.34− − − , ( )64.33 3.5 10 , 1.97j−− ± × −    
( )4.146, 4.143, 4.089− − −  respectively. 

PK  gains at consecutive intervals [ ]5 4 3 2 1, , , ,T T T T T  are 
[ ]53.17,37.97,18.1,10.37,12.94 , IK  gains are [ ]70.24,37.05,4.48,4.48,0.73  
and 

DK  gains are [ ]3.37,1.64, 2.06, 4,6.2− − .
The value of the output derivative at consecutive 

intervals take the value of [ ]0.00013,0.003, 0.11,0.77,0.4− . the 
value of 1u  are [ ] 2.09, 2.1, 1.21,0.83,0.55− − − . The value of f  are

9 1.3 10 ,0.0018, 0.10.1,0.3− × −  . 
The admissible range of the output for case 1, 2, 3, 4 and 5 

are [ ]0,1.512  ,[ ]0.7,1.3  , [ ]0.9,5.35 , [ ]0.9,2.64  and [ ]0.98,1  respectively. 
Output and control signal are obtained as illustrated in Fig. 2.

As shown in the above example, since the last controller 
was stable, the closed-loop system becomes and remains 
stable. In this regard, the following theorem is necessary.

Stability theorem: The necessary and sufficient condition 
for the stability of this method is the stability of the last 
controller. 

Proof: A time-invariant linear system without initial 
conditions will be BIBO stable if the output of any bounded 
input is bounded and finite. Since in designing the scenario 
the output values at mid-point times are imposed by the 
designer, they are limited. So, the only problem is that what 
happens to the output after the last imposition. The stability 
of final controller which makes the output bounded and finite 
can address this concern. It means that the given condition 
is sufficient. On the other hand, it is clear that if the final 
controller is unstable, there would be an input which can 
make the output infinite.

7- ADMISSIBLE OUTPUT RANGE WITH 
LIMITATION ON DOMAIN OF CONTROL SIGNAL 

Lemmas 1-9 get admissible output range in several cases of 
closed-loop roots. Output ranges obtained without regarding 
any limitation in control effort. But in real applications control 
effort must be limited, for example because of the limitation 
of actuator inputs. If we consider a saturation block after 
controller block then the admissible output range would be 
the subset of ranges states in lemmas. To find this subset for 
each switch we can check it in initial and final time of each 
switch. If we consider ( ) mu t U<  we must check:

( )( ) ( )0 01P D mK y t K y t U− − <

( )( ) ( )
( ) ( )( )0

1

1

P f D f

m

I f f

K y T K y T
U

K T t y T

− − +
<

− −



�

(12)

In above inequalities ( )0y t  and ( )0y t  are known in each 
switch. When ( )fy T  have specific value, system roots are 
calculated and the value of ( )fy T  and three controller gains 
will be determined. 

Assume that [ ],ψ η  is the admissible output range for a 
special system that is obtained using lemmas in this paper. 
To start finding admissible subset of this range in present of 
actuator saturation in a special switch 0 , ft T  we must consider 
lower limit ψ  and increase it step by step until inequalities (12) 
be satisfied (i.e. ( )fy T ψ= ). So new lower limit 

´
ψ  will be found. 

Then increase 
´
ψ  until inequalities (12) aren’t satisfied. So the 

upper limit 
´
η  will be found. In this way, subset of admissible 

output range in the present of saturation is
´ ´
,ψ η 

   . And this new 
subset should be considered during design phase.

8- COMPARISON WITH OTHER TUNING METHODS
Among lots of PID tuning methods, we can compare 

our method with those which are suitable for second order 
systems and in time domain. We select two methods. First one 
is a method that Haeri presented in [19] and, first, normalized 

  
Figure 2- the output and control signal of example. 
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PID parameters for under damped systems using a curve-
fitting algorithm are obtained. Then, PID gains formulas are 
given with these normalized parameters. In [20] other method 
is presented by Furkan and PID design is implemented by a 
multiple pole placement strategy which enforces the control 
system had real poles with a desired time constant specification. 
These two methods have analytic solution but our method 
has numeric solution. Haeri method are suitable only for 
under damped second order systems and Furkan method 
only consider time constant specification while our method 
is so general by point viewing to output value in time T. These 
methods cannot be used for switching PID but our method 
special application is for switching PID to give several desired 
specification simultaneously. To compare our method with 
these two methods an under damped system like simulation 2 
in [19] is considered. This system is ( ) 2

3
3

G s
s s

=
+ +

. We consider 
0.1τ =  for Furkan method and high stability margin in Haeri 

method. For better comparison, we use our method in two 
scenario. First scenario is ( )2 0.878y =  which is obtained from 
Haeri method output and second scenario is ( )0.3 1.2y =  which 
is obtained from Furkan method. PID parameters in Haeri 
method are 8.38PK = , 0.992IK =  and 7.78DK =  and in our first 
scenario are 2.16PK = , 1IK =  and 2.16DK = . As shown in Fig. 
3, our method result with first scenario is very similar to 
Haeri method result. PID parameters in Furkan method are

98.99PK = , 333.3IK =  and 9.66DK =  and in our second scenario 
are 157PK = , 553.2IK =  and 12.94DK = . As shown in Fig. 3, our 
second scenario result are very similar to Furkan method 
result. Although our method is solved numerically, it is so 
general and can lead us to PID gains for every scenario that 
you want. In addition, considering initial state values in this 
paper formulas make our method suitable for switching PID 
design. 

9- IMPORTANT POINTS
Point 1- According to lemmas, it may be concluded that if 

there are two complex roots with a positive real part, then there 

will be PID gains for each amount of the output. Therefore, 
the other cases of lemmas would not be valuable. However, 
what is overlooked in this point of view is that although 
the focus of this study is on point viewing to the output, its 
behavior is also important at times between two switches. The 
existence of complex roots means that there are oscillations in 
the output profile. Therefore, due to the constraints on control 
efforts in the real system, these behaviors between the two 
switches may not be desirable. So, when the designer refers to 
lemmas, should notice the behavior of the output between the 
two switches in addition to the existence of PID gains. Each 
kind of roots will create a type of output behavior and, this 
is the value of each cases of lemmas. Also, in the last switch, 
there must be three stable roots.

As an example, as shown in Fig. 5, for four different 
combinations of closed loop roots, four different behaviors 
are seen in the interval between two switches. In the fourth 
case (two complex roots with positive real part and a positive 
root), the output has a high overshoot, but the second case 
(two complex roots with negative real part and a positive root) 
and the third one (two complex roots with positive real part 
and a negative root) have no overshoot. The first case (two 
complex roots with a negative real part and a negative root) 
has also a slight overshoot. The designer may prefer to one of 
these four cases for a particular study.

Point 2- The final values of ( )y T , ( )f T and ( )1u T  are used 
as the initial values 0y , ( )0f and ( )1 0u in the next switch which 
help to the smoothing of the output signal, the control signal 
of the derivative part and the control signal of the integrator 
part at the moment of switching respectively.

Point 3- The result of load disturbance and even system 
parameters uncertainty is that the output at final time of a 
switch is not exactly in its expected value. So we can change 
PID gains or next switch plans to concur this problem. If we 
know that disturbance occurs after last switch, we can design 
last PID scenario based on good disturbance rejection. Also, 
if we doesn’t know the exact value of system parameters but 

 
Figure 3- Output signal of a second order system with PID gains of several methods. 
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Fig. 3. Output signal of a second order system with PID gains of several methods.
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know the bound of variations, we can change output admissible 
range by considering low or high limit of parameters bound. 
It can be done because admissible output range in lemmas are 
stated in parametric forms.

10- CONCLUSION
In this paper, the permissible output range of system with 

switching PID controller which can be approximated by a 
non-zero second-order system has been calculated. The main 
output of this paper is that it is possible to set a specific profile 
for the output in the time domain based on the switching steps 
and changing the control gain because the admissible range of 
the output calculated for nonzero initial condition. It means 
that if a scenario is arranged for the output determining its 
value at a few moments, then these moments form the time 
intervals over which switched gains can be obtained using our 
proposed method.

Several lemmas has been proposed that a designer can 
shape the output signal with confidence if consider them. So, 
simultaneous achievement to several desired targets become 
possible and switching controller makes it. 
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