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ABSTRACT:  Louvers are powerful devices for the thermal management of satellites. Nevertheless, 
the high mass and power consumption and the low reliability of servomotors serving as the actuators 
of louvers, make the space applications of these technologies very restricted. To tackle this problem, 
this paper utilizes a shape memory alloy to build a smart servomotor for use in a laboratory louver. 
The major bottleneck of the use of thermal shape memory alloys is the existence of complex nonlinear 
hysteretic characteristics in the behavior of these materials. In this paper, a nonlinear autoregressive 
exogenous model is proposed to predict the nonlinear hysteric behavior of a shape memory alloy. This 
model is based on a dynamic neural network that its fine function is achieved by a suitable selection of 
the architecture and the transfer functions of the output and hidden layers. The proposed model is first 
trained with a batch of test data at the frequency of 0.01 Hz and then validated with another batch of 
data at the frequency of 0.008 Hz. The training and validation data are obtained from a laboratory louver 
equipped with a spring of shape memory alloy as the opening actuator of blades. The mean square error 
of the proposed model for the training and validation data is 1.0325 and 1.0835 degrees, respectively.
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1. INTRODUCTION
Due to high strain, high power to weight ratio, and easy 

compatibility with structures, Shape Memory Alloys (SMAs) 
are considered as one of the most attractive actuators in the 
field of smart systems and have attracted the attention of re-
searchers in various fields of engineering including medical, 
robotics, space and vehicles [1]. These materials are used as 
an alternative to classic operators such as DC or servo- mo-
tors. This fact motivates one to utilize SMAs for satellite ther-
mal control louvers wherein servomotors are the main bot-
tleneck because of their high mass and power consumption 
and low reliability (due to using many parts). These disad-
vantages limit considerably the space applications of louvers 
despite their noticeable beneficiaries for thermal management 
systems. Therefore, the employment of SMAs for louvers as 
the substitution of traditional servomotors is an interesting 
idea raised in this paper and will be carefully investigated.  

The major challenge of these materials when they are 
used as servo actuators is their complex nonlinear behavior 
and hysteric characteristics. The hysteresis phenomenon is a 
usual feature of many smart materials including piezoelectric, 
magnetostrictive, shape memory polymers, and magnetic 
shape memory alloys [2]. Despite the attractive features of 
smart materials, hysteresis restricts the use of these materi-
als particularly for control applications. Therefore, one of 
the research areas in smart materials, especially SMAs, is 

the behavioral modeling of them to predict the performance 
and design model-based controllers for the systems equipped 
with these actuators. The modeling can be useful for decreas-
ing cost and time in behavioral investigation and designing a 
good controller. Therefore, many researchers try to propose 
novel behavioral models for SMAs to develop their applica-
tions [3-5]. 	

For modeling hysteresis in smart materials, there are three 
major categories, which include behavioral physics [6], phe-
nomenological mathematical models [7, 8], and neural net-
works [9, 10]. In behavioral physics-based methods, the re-
searchers focus on the interactions of the inherent behavior of 
the material with a material science point of view [11]. Also, 
phenomenological mathematical models such as Preisach, 
Krasnoselskii-Pokrovskii, and Prandtl-Ishlinskii [12] are ca-
pable to describe a part of the behavior of these materials 
[13]. In the neural network approach, the behavioral descrip-
tion of the material is established by considering the inherent 
property of hysteresis and dynamics for the network [14]. 

Among the three mentioned methods, a behavioral phys-
ics-based method is not suitable for control applications due 
to its complexity. While both neural network and phenom-
enological methods can provide a model to describe the be-
havior of smart materials regardless of the system’s complete 
dynamics and only concerning the input and output results. 
Therefore, the extracted models eliminate unnecessary com-
plexities and would be suitable for control applications.  Be-
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sides, the dynamic neural network method, due to its ability to 
consider system delay dynamics, shows the ability to predict 
historic behavior better than phenomenological models [15]. 
Therefore, regarding the specific characteristics of SMAs, the 
dynamic neural network is the most preferable method for the 
modeling of these actuators. 

The system scrutinized here is a satellite thermal control 
louver in which an SMA is served as a smart servomotor. This 
actuator is responsible for opening and closing the blades in 
accordance with the thermal situations of the orbit wherein 
the satellite operates. Therefore, the function of the system 
is considerably impacted by the hysteresis phenomenon. Re-
garding the above issues, a dynamic neural network model 
should be employed for the function prediction of the system 
to get reasonable performance.  

There are various approaches to the dynamic neural net-
work applied for systems modeling and identification. The 
approaches utilized depend deeply on the behavior of the 
system and so are exclusive to the system identified. For the 
system presented here, these approaches are never examined 
until now. Hence, a novel approach based on the dynamic 
neural network is proposed in this paper to predict the sys-
tem’s complex behavior.

The idea of ​​the authors is to provide a Nonlinear AutoRe-
gressive eXogenous (NARX) model based on a dynamic neu-
ral network to describe the complex hysteresis behaviors in 
the smart servo motor of the louver. This model can predict 
the complex behavior of the smart servo motor in the shortest 
time and using a simple model. Paper innovations are sum-
marized as follows:
•	 Selection and implementation of shape memory alloys as 

a proper actuator in a laboratory louver instead of tradi-
tional servomotor

•	  Proposing a new neural network-based model to predict 
the thermal louver behavior equipped with an SMA spring
Section 2 explains the problem description by introducing 

a hysteresis phenomenon. In the third part of the article, the 
proposed model formulas and descriptions of its features are 
discussed. In section 4, the testbed and block diagram used 
for laboratory tests are indicated. The fifth part deals with the 
results of the trained model and its validation, and the last 
part is related to the conclusion of the research.

2. PROBLEM DESCRIPTION
Many smart materials, such as piezoelectric [16], magne-

tostrictive [17], magnet-based systems [18], and SMAs [3], 
have a phenomenon called hysteresis. Hysteresis refers to a 
loss between inputs and outputs of a system as shown in Fig. 
1(a).

The presence of hysteresis in smart materials behavior 
complicates control applications of these materials. When 
the desired path is given to be tracked to such systems, due 
to the nonlinear behavior and delay caused by the hysteresis 
phenomenon, they cannot be controlled with common linear 
controllers such as PIDs (Fig. 1(b)). Therefore, behavioral 
modeling of these materials is of particular importance to re-
searchers in the field of smart materials for identifying the 

effects of different parameters and designing model-based 
controllers.

There are two transition temperatures in SMAs: martens-
ite or low temperature and austenite or activation temperature. 
When the temperature of the SMA element is increased by 
heat and reaches austenite, it tries to recover its defined shape 
if the SMA element is in a shape other than its defined shape. 
SMAs, like many smart materials, have a one-directional be-
havior, meaning they can only return to their defined shape 
when their temperature is increased. While sweep function is 
usually required in practical application. Return function is 
done in SMAs with different mechanisms, one of which is the 
use of conventional passive springs.

When heating an SMA element is interrupted, the ele-
ment’s temperature is lowered in interaction with the sur-
rounding environment. In this case, the conventional passive 
spring can overcome the SMA-based spring force and return 
the SMA spring to its original position. This method can be 
considered to make a sweep behavior for the SMA-based ac-
tuator resulting in a smart servomotor (Fig. 2).

Fig. 2 shows that the louver blades are closed when the 
smart spring was stretched and the passive spring is at rest 
position. When the smart spring is heated, it overcomes the 
passive spring force and decreases its length. The blades are 
opened as the smart spring is retracted to achieve its defined 
shape. When the electric current is cut off, the passive spring 
overcomes the smart spring force and the blades are closed.

3. NARX NONLINEAR MODEL
NARX is a model based on the ARX linear model, which 

is commonly used in time series modeling. The characteristic 
equation for the NARX dynamic model is as follows [19]:

In this model, the output values ​​of each time step are 
calculated based on the input of that instant time step and the 
inputs and outputs of the previous time steps that makes a 
dynamic structure. In Eq. (1),  f,  u(t) and y(t) are a nonlinear 
function, input, and the network output at time t, respectively. 

un  and yn  are the input and output orders, which determine 
the system dynamics degree. In the NARX structure, the 
goal is to find a nonlinear function to describe the complex 
behavior of hysteresis.

For an approximation of the function, we can use various 
functions and methods such as fuzzy, neuro-fuzzy, neural 
network, polynomial functions, etc. The neural network is 
used to characterize SMAs behavior due to its high capability 
and flexibility in describing complex behaviors. In this 
research, a two-layer neural network model of NARX is 
considered. The first and second layers are known as hidden 
and output layers, respectively, as shown in Fig. 3.

In Fig. 3(a), a general block diagram of the NARX model 
is shown in which the output of the NARX model is derived 

( ) ( ( 1), ( 1),..., ( ), ( ),
( 1),..., ( ))

y

u

y t f y t y t y t n u t
u t u t n
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Fig. 1. (a) Hysteresis phenomenon between input and output (b) Complexity in control application

Fig. 3. (a) general General structure of NARX model b) NARX model based on neural network

Fig. 2. (a) Close and (b)open situations for blades in louver
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(b)(a)

(c)(b)(a)

Fig. 4. Different situations of blades of thermal control louver (a) closed (b) starting to open (c) 
open

Fig. 5. (a) Block diagram of testbed equipment connections (b)Lab setup and related equipment
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from the input in the same iteration and the previous inputs 
and outputs. Fig. 3(b) illustrates the NARX model based on 
a neural network that determines the nonlinear function f . 

In this figure, u, y, hf  and of  are input, output, the hidden 
layer function and the output layer function, respectively. 

Parameters ihw , iow , z, hb  and ob  are the hidden layer 
weights, the output layer weights, the delay element, the 
hidden layer bias values, and the output layer bias values, 
respectively. The use of the neural network provides a NARX 
model with flexibility and capability to describe the hysteresis 

complexities of shape memory alloys, and the choice of two 
layers for it reduces the cost of computation.

4. EXPERIMENTAL TEST-BED
In this study, an SMA-based spring is used to construct a 

smart servomotor to open and close the blades of a thermal 
control louver of the satellite due to their lightness and high 
adaptability. Fig. 4 shows how the blade works with SMA-
based servomotor.

This smart servo motor, due to its high resistance to 
corrosion and adaptability to temperature variations, is a 

 

 

 



5

S. Shakiba et al., AUT J. Mech. Eng., 5(1) (2021) 3-12, DOI: ﻿ 10.22060/ajme.2020.16517.5822

DescriptionCharacteristic
The louver is equipped with an SMA spring and a passive 

spring for opening and closing the blades, respectively
Experimental setup

Potentiometer 1-kilo ohm with 10 turnsProtractor
Dual-core computer, 2 GHz processor, 2 gigabytes of RAMProcessing system

LabVIEW 2013Software
Arduino UNO R3DAQ system

Electronic interface board for launching mainboard (blue pill), 
the mainboard 

Electronic boards

good alternative to replace traditional actuators. In this study, 
the test data is obtained using the laboratory louver sample. 
The used equipment is shown in Fig. 5.

In this laboratory test-bed, the input signal is transmitted 
through the LabVIEW software (PC) into the electronic 
board, which is the interface between the computer and the 
mainboard of the SMA-based spring. The mainboard applies 
the appropriate input using the power supply to the smart 
spring. By applying the voltage to the smart spring, the spring 
is warmed up because of an applied electric current. Heating 
causes the smart spring to be entered into its active phase 
and then the spring tries to reach its defined shape. Finally, 
the position of the blade changes and the blades are opened. 
When the harmonic voltage decreases, the passive spring 
used as a return mechanism overcomes the generated force 
of SMA-based spring. Consequently, the blades are closed 
because of the force of passive spring. The panel blade angle 
is calculated using a potentiometer, transferred by an Arduino 
board, and stored in PC. The specifications of the equipment 
used are shown in Error! Reference source not found..

The smart spring specifications used to build the smart 
servo motor are shown in Error! Reference source not found..

To generate training and validation data, two harmonic 
inputs are applied to the smart servomotor at frequencies 
of 0.008 and 0.01 Hz, and the change of the blades angle 
is obtained by the potentiometer due to the applied input 
voltage. The main electronic board is designed for activation 
of the smart spring. The initial status of the panel is in a closed 

state. When the voltage rises, the smart spring that opens the 
panel is activated and the panel starts to be opened. This 
opening will continue until the input reaches its maximum 
range called a heating cycle. By reducing the input voltage 
amplitude, while the temperature of the smart spring starts 
to be decreased because of heat transfer with the surrounding 
environment, the passive spring force overcomes the smart 
spring force and the panel starts to be closed. The inputs and 
outputs of the training data and model validation are shown 
in Fig. 6.

Fig. 6 (c) shows that between the input and output in the 
heating and cooling cycle, there are loops that are known as 
hysteresis and are caused by the loss of thermomechanical 
behavior of smart material. This figure shows that by increasing 
the input frequency, the hysteresis loops between the input 
and the output of the smart servomotor are reduced, which 
is the opposite of the behavior of shape memory alloy wires 
[20]. When the frequency is increased, the heating time of the 
spring to complete the martensitic to austenite transformation 
will be decreased. Since part of the material loss is related 
to the phase transformation, the hysteresis will be reduced. 
Therefore, reducing losses in the phase transformation leads 
to the reduction of hysteresis loops width. 

5. RESUTLS AND DISCUSSION
In this study, two categories of data have been used: for 

training and validation of the proposed model. For the learning 
of the proposed network weights, the gradient descent method 

Table 1. specifications of test-bed equipment

Table 2. smart spring specification of  laboratory test-bed

Unit Value Parameter Characteristic 
mm 5 id   Inner diameter 
mm 0.2 t  Spring wire diameter  
mm 35 l   Total length of spring  

mm 100 tl  Maximum active spring length 

℃  50 sM    Martensite start temperature 

℃  55 fM  Martensite final temperature 

℃  70 sA  Austenite start temperature 

℃  90 fA  Austenite final temperature 
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ValueParameterProperty
2IDOrder of input dynamic (delay in input)
2ODOrder of output dynamic (delay in output)
3S1First layer size
1S2Second layer size

“tansig”TF1Transfer function of the hidden layer
“tansig”TF2Transfer function of the output layer

“trainoss”BTFBackpropagation network training function
“learngdm”BLFBackpropagation weight/bias learning function

0.01lrLearning rate
0.9mcMomentum constant

“mse”PFNetwork performance cost function

(c)

(b)

Fig. 6. (a) Input and (b) output of training and validation data (c) Hysteresis loops between input 
and output of training and validation data

(a)

Table 3. Specification of proposed NARX model

  

 

 

0 100 200 300 400
30

35

40

45

50

Time (s)

In
pu

t V
ol

ta
ge

 (V
)

 

 

Fr=0.01 Hz(Training) Fr=0.008 Hz(Validation)

0 100 200 300 400
0

10

20

30

40

50

60

Time (s)

Ro
ta

tio
n 

(d
eg

)

 

 

Fr=0.01 Hz(Training) Fr=0.008 Hz(Validation)

 

30 35 40 45 50
0

10

20

30

40

50

60

Input Voltage (V)

Ro
ta

tio
n 

(d
eg

)

 

 

Fr=0.01 Hz(Training) Fr=0.008 Hz(Validation)



7

S. Shakiba et al., AUT J. Mech. Eng., 5(1) (2021) 3-12, DOI: ﻿ 10.22060/ajme.2020.16517.5822

Value (deg)Data type
1.0325Training 
1.0835Validation

(b)(a)

(d)(c)

Fig. 7: . Comparison between the outputs of the proposed model and the smart servomotor based on training process: ((a) Voltage-
time,(b)Voltage-Rotation( hysteresis loops)) and validation process: ((c) Voltage-time,(d)Voltage-Rotation( hysteresis loops))

Table 4. LSE of the proposed model for training and validation data

  

 
 

 

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Time (s)

Ro
ta

tio
n 

(d
eg

)

Training Data

 

 
Proposed Model
Experiment
Error

30 35 40 45 50
0

10

20

30

40

50

60

Input Voltage (V)

Ro
ta

tio
n 

(d
eg

)

Training Data

 

 
Proposed Model
Experiment
Error

0 100 200 300 400
0

10

20

30

40

50

60

Time (s)

Ro
ta

tio
n 

(d
eg

)

Validation Data

 

 
Proposed Model
Experiment
Error

30 35 40 45 50
0

10

20

30

40

50

60

Input Voltage (V)

Ro
ta

tio
n 

(d
eg

)

Validation Data

 

 
Proposed Model
Experiment
Error

has been used which leads to an increase in the convergence 
rate of the feedforwarded networks. The momentum used in 
this approach, allows the network to respond to local changes 
and recent tendencies of the error plane. Like a low-pass filter, 
momentum allows the network to ignore small features on the 

error plane. Without momentum, a network may be limited 
to a local minimum and cannot determine the appropriate 
coefficients. Via momentum, the ability of the network 
to move to the other lowest points would be possible. The 
“learningd” function calculates the weight changes of the 
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Fig. 8: . the The correlation of the proposed model error for the validation process

given neuron from the input, neuron error, weight (or bias), 
learning rate, and the momentum constant on the gradient 
descent with the momentum, as shown in Eq.(2).

(2)

In this equation, 
1kWd
+

 is the weight changes, cm  is the 

momentum constant, 
kWd  is the previous weight changes, 

rl  is the learning rate and wg  is the gradient with respect to 
performance. In this research, the “trainoss” method is used to 
train the network. This method can train any network as long 
as there are weight derivatives, network input, and transfer 
functions. The “backprop” method is utilized to compute the 
derivative of the cost function relative to the weight and bias 
variables. Each variable is calculated by Eq. (3):

     (3)

In Eq. (3), dX depicts the direction of the search and 
parameter a is selected to minimize the goal function along 

the search direction. The initial direction of the search is 
determined by the gradient descent of the goal function. In 
successive iterations, the search direction is calculated from 
the new gradient and the previous steps and gradients that are 
shown in Eq. (4):

     (4)

In Eq. (4), xg , Xstep, and 
Xgd  are gradient, change on 

the weights in the previous repetition, and the change in 

the gradient of the last iteration, respectively. cA  and cB  
are constant coefficients of the formula. Properties of the 
proposed NARX model are shown in Error! Reference source 
not found..

In the proposed model, a tangent function is used as 
transfer functions of the hidden and output layer, because 
the function is appropriate due to its proportionality with the 
behavioral properties of the shape memory alloys [7]. The 
results of the proposed model training are shown in Fig. 7 
(a,b). As it is clear from the results of the training, the authors 
have been able to offer a model with the ability to describe 

 

-3000 -2000 -1000 0 1000 2000 3000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

Co
rr

el
at

io
n

1
(1 )

k kW c W c r wd m d m l g
+
= + −

XX X ad= +

XX X c step c gd g A X B d= − + +



9

S. Shakiba et al., AUT J. Mech. Eng., 5(1) (2021) 3-12, DOI: ﻿ 10.22060/ajme.2020.16517.5822

the complex behavior of hysteresis, with a presentation 
of suitable network architecture, appropriate teaching and 
learning functions, and selection of exact transfer functions. 
In order to examine the performance of the trained model, 
it must have the ability to describe this behavior with new 
given data as validation. The results of the validation of the 
proposed model are shown in Fig. 7 (c,d).

based on the validation results of the proposed model, it is 
well able to describe the hysteresis behavior in an SMA-based 
smart servomotor. The Least Squares of the Error (LSE) for 
the two categories of training and validation data are shown 
in Error! Reference source not found..

Statistical analysis of the proposed model error is a 
good way to show the correctness of the proposed model. 
In this manner, a good prediction of the model obtains an 
estimation error similar to the white noise. In other words, 
the more accurate model can be achieved the more similarity 
to white noise. Therefore, in addition to comparing measured 
experimental data and the estimated results by the proposed 
model in the validation process, a statistical test has also 
been investigated on the estimated output error that is called 
the autocorrelation test. An estimate of autocorrelation is 
calculated as follows:

     (5)

where N indicates the number of data samples and t shows 
the time shift parameter. If we have more data samples, 
we will have more accurate for the above function. In this 
model evaluation test, the autocorrelation of the proposed 
model output error is computed and compared with the white 
noise autocorrelation function. White noise has a non-zero 
autocorrelation value at zero lag and zero value at any other 
lags. 

It means if the estimation error ε(t) is white noise, then its 
covariance function is zero except at zero lag. Consequently, 
if N is large enough and estimation error autocorrelation has 
a relatively low value at other lags, therefore, ε(t) is white 
noise and it is figured out that the estimation error is mostly 
concerned with data acquisition noise, not model inaccuracy. 
Normalized autocorrelation of the estimation error of the 
validation dataset is shown in Fig. 8.

Fig. 8 shows that the autocorrelation function of the 
proposed model error is maximum at zero lag and has a small 
value at other lags. Most of the autocorrelation function lies 
inside the range of [-0.2,0.2]. Therefore, it is figured out that 
the estimation error is similar to white noise which indicates 
the model correctness. In other words, the estimation error 
is mostly caused by measurement devices and ambient noise 
but not from model inaccuracy.

 It should be noted that the autocorrelation function of 
white noise is obtained with the assumption of a very large 
number of data samples. It means if the number of data 
samples is increased, the autocorrelation function described 
in Eq. (5) becomes more accurate. Therefore, estimation error 
and white noise autocorrelation functions cannot be exactly 
the same in this case while the number of data samples is 

limited. 
Also, one point should be taken into account that the 

proposed model cannot exactly characterize the hysteresis 
behavior of the servomotor actuator. However, this manner 
used in this study is a very suitable and relatively high 
precision model which turns it into one of the best manners to 
predict smart structures hysteresis.

6. CONCLUSIONS
 Considering the attractive attributes of shape memory 

alloys in this research, an SMA-based servo motor was used 
as an actuator to open and close the thermal control louver 
of a satellite. The authors modeled the complex hysteresis 
behavior in the smart servo motor by a proposed NARX model 
based on a neural network. Two data sets were generated 
from the experimental test-bed of the thermal control louver 
for training and validation of the proposed model. In the first 
step, for the proposed model, suitable network architecture 
was designed and suitable training and learning algorithms, 
as well as accurate transfer functions, were considered. 
The proposed model was trained with an experimental data 
set. the results of training demonstrated the ability of the 
proposed model to describe the complex behavior of the 
smart servomotor. To validate the model, another data set 
was used for the investigation of the model performance. 
In the validation process, the model could predict hysteresis 
complex behavior well. Therefore, the proposed model 
could be used to describe the complex behavior of a smart 
servomotor.
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