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ABSTRACT: The main aim of the current article is to find the solution for Newell-
Whitehead-Segel equations with constant coefficients containing Caputo-Prabhakar
fractional derivative using the homotopy perturbation transform method. The con-
vergence analysis of the obtained solution for the proposed fractional order model is
presented. Four examples are presented to illustrate the efficiency and applicability
and accurateness of the proposed numerical technique.
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1. Introduction

Fractional calculus (FC) is as good instrument to explain the hereditary, physical phenomena, diffusion problems,
applied mathematics, sciences, nonlinear phenomenas and engineering [30, 23, 11]. Fractional differential operators
is as extensions of classical differential operators of integer that they play an important role due to their wide spread
applications in science, engineering, nonlinear optics, viscoelasticity, fluid flow, model various physical processes ,
biology, telecommunication, quantum mechanic, signal processing and other areas [14, 17, 19, 21, 22, 23, 30, 31,
32, 5, 6, 7, 8, 9]. In the recent years, much notice and attempt have been given to nonlinear fractional differential
equations containing different fractional operators such as the Riemann-Liouville integral, the Caputo and the
Riemann-Liouville derivatives because of their advantage to model anomalous phenomena of differential equations
in many scientific and engineering fields and also, most of the models in different research domain of science and
engineering applications are nonlinear. The analytical solution of the nonlinear fractional differential equations
are usually impossible or difficult. For this reason, we have to solve fractional differential equations by appling
various kinds of analytical such as, the variational iteration method [1, 27], the homotopy analysis method [37],
the homotopy analysis Sumudu transform method [28], the homotopy perturbation method [38, 29], the Laplace
transform method and the Adomian decomposition method(ADM) [20, 4]. The Newell-Whitehead-Segel equation
is one of the significant concepts pattern formation theory. It describes the occurrence of stationary spatial stripe
samples in a two-dimensional equation also the dynamic behavior near the bifurcation point of the Rayleigh-Benard
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convection of binary fluid mixtures [33]. Frequently two types of patterns are considered: First is the roll pattern in
which cylinders form by fluid stream lines that these cylinders may be bend and form spiral like patterns. Second
pattern is the hexagonal in which liquid flow is divided into honey comb cells. For instance, stripes patterns can be
considered in human fingerprints, on zebra skin and in a visual cortex. Also, another pattern is Hexagonal pattern
which obtained from the propagation of laser beams through a non-linear medium and in systems with chemical
reaction and diffusion species [18]. In this paper, consider the time-fractional Newell-Whitehead-Segel equations as:

CDγρ,µ,ω,0+u(x, t) = kuxx + au− buq, 0 < µ ≤ 1,

u(x, 0) = u0(x), (1)

where a, b are real numbers and k, q are positive integers and CDγρ,µ,ω,0+ denotes the Caputo-Prabhakar fractional
derivative of order µ and it is defined as follows:

CDγρ,µ,ω,0+u(x, t) =

∫ t

0

(t− τ)−µE−γρ,1−µ(ω(t− τ)ρ)u̇(x, τ)dτ

= E−γρ,1−µ,ω,0+
d

dt
u(x, t), 0 < µ ≤ 1. (2)

Here, E is given by:

(Eγ
ρ,µ,ω,0+u)(x, t) =

∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)u(x, τ)dτ, (3)

where Eγρ,µ denotes the three-parameter Mittag-Leffler function [26] and which is as follows:

Eγρ,µ(t) =

∞∑
n=0

(
γ
)
n

n!Γ(ρn+ µ)
tn, <(ρ),<(µ) > 0, γ > 0, t ∈ C. (4)

and symbolize
(
γ
)
n

denotes the Pochhammer symbol and presented as follows[16]:(
γ
)
0

= 1,
(
γ
)
n

= γ(γ + 1) . . . (γ + n− 1), n ∈ N. (5)

Most of our interest in studying three-parameter Mittag-Leffler functions are related to their importance in diverse
areas of a model of complex susceptibility in the response of disordered materials and heterogeneous systems
[25], response in anomalous dielectrics of Havriliak-Negami type [14, 34], in fractional viscoelasticity [12], in the
discuss of stochastic processes [10], in probability theory [13], in the description of dynamical models of spherical
stellar systems [3],fractional Poisson process [2] and fractional or integral differential equations [24, 5, 6, 7, 8, 9].
Furthermore, in Eq. (1), CDγρ,µ,ω,0+u(x, t) is the variation of u(x, t) with respect to temporal variable t at a

set position and kuxx display the variation of u(x, t) with respect to spatial variable x at a specific time t and
au − buq is a nonlinear source term for q > 1. Here, symbolize the unknown function u(x, t) can be supposed
to be the nonlinear distribution of temperature in a thin and infinitely long rod or the velocity of fluid flow in a
tube of unlimited length with a small diameter. In this paper, we consider an approximation method based on the
homotopy perturbation transform method(HPTM) which is the combination of two remarkably powerful methods,
namely, the Laplace transform method and the homotopy analysis method and it investigated in [32, 36]. In the
present investigation, we apply HPTM including Caputo-Prabhakar fractional derivative for solving Eq. (1) with
0 < µ ≤ 1. For this purpose, this paper is organized as follows. Some necessary definitions and mathematical
preliminaries of the fractional calculus are introduced in Section 2. In Section 3, we introduce an approximation
method based on the HPTM, also, in this section, the sufficient conditions for the convergence of the proposed
method and its error estimate is introduced. In Section 4, the proposed methods are applied to some numerical
test examples to verify the validity and applicability of the suggested method.

2. Preliminaries

In this section, we study some important and basic properties of fractional calculus theory such as Laplace
transform , definitions and lemmas which are applied in the next sections.

Definition 2.1. [23, 30]. Let 0 < α ≤ 1, u ∈ L1[a, b] and 0 < t < b ≤ ∞. Then the left-sided and the right-sided
Riemann-Liouville fractional integrals and derivatives of order α are defined as:

Iαa+u(x, t) =
1

Γ(α)

∫ t

a

u(x, τ)(t− τ)α−1dτ, (6)

Iαb−u(x, t) =
1

Γ(α)

∫ b

t

u(x, τ)(τ − t)α−1dτ. (7)
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Lemma 2.2. Let ρ, µ, ω, γ ∈ C and <(µ) > 0,<(ρ) > 0. Then the Laplace transform of Eq. (2) for m−1 < µ ≤ m
is given by [9]:

L
(
CDγρ,µ,ω,0+u(x, t); s

)
= sµ(1− ωs−ρ)γU(x, s)−

m−1∑
k=0

sµ−k−1(1− ωs−ρ)γu(k)(0+), (8)

where U(s) =
∫∞
0
e−stu(t)dt. Also, the Laplace transformation of the three-parameter Mittag-Leffler function which

is defined by Eq. (4), is given by [17, 16]:

L
(
tµ−1Eγρ,µ(ωtρ); s

)
= s−µ(1− ωs−ρ)−γ . (9)

Lemma 2.3. [23]. Let ρ, µ, ω, γ ∈ C and <(µ) > 0,<(ρ) > 0. Then∫ t

0

(t− y)µ−1Eγρ,µ(ω(t− y)ρ)yν−1dy = Γ(ν)tµ+ν−1Eγρ,µ+ν(ωtρ). (10)

Lemma 2.4. [23]. Let ρ, µ, ν, ω, σ, γ ∈ C and <(µ) > 0,<(ρ) > 0,<(ν) > 0. Then the following relation is hold
for any summable function u ∈ L(a, b):

Eγ
ρ,µ,ω,0+Eσ

ρ,ν,ω,0+u = Eγ+σ
ρ,µ+ν,ω,0+u. (11)

Also, by substituting σ = −γ, in Eq. (11) the following relation is obtained:

Eγ
ρ,µ,ω,0+E−γρ,ν,ω,0+u = E0

ρ,µ+ν,ω,0+u = Iµ+ν0+ u. (12)

3. The HPTM to solve nonlinear fractional order differential equations

The purpose of this section is to obtain an approximation method based on the HPTM for obtaining the solutions
of the fractional differential equations as:

CDγρ,µ,ω,0+u(x, t) + Au(x, t) + Nu(x, t) = h(x, t),

u(x, 0) = u0, (13)

where Au(x, t) is a linear operator and the notation Nu(x, t) is a nonlinear operator and h(x, t) is a continuous
function. For this aim, using Eq. (8) for m = 1 and taking the Laplace transform on both sides of Eq. (13), we
obtain:

L
(
CDγρ,µ,ω,0+u(x, t) + Au(x, t) + Nu(x, t)− h(x, t); s

)
= 0,

sµ(1− ωs−ρ)γU(x, s)− sµ−1(1− ωs−ρ)γu(0+) + L
(
Au(x, t) + Nu(x, t); s

)
= H(x, s),

U(x, s) = s−µ(1− ωs−ρ)−γH(x, s) +
1

s
u(0)− (s−µ(1− ωs−ρ)−γ)×

[
L
(
Au(x, t) + Nu(x, t); s

)]
. (14)

Applying the Laplace inverse transform on Eq. (14), we obtain:

u(x, t) = L−1
[
s−µ(1− ωs−ρ)−γH(x, s) +

1

s
u(0); t

]
− L−1

[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Au(x, t) + Nu(x, t); s

)]
; t
]
,

(15)

using the HPTM for obtaining the solution of Eq. (15). To obtain the solution of Eq. (15), we assuming that the
solution of Eq. (1) is u(t) which can be expressed as the following infinite series:

u(x, t) =

∞∑
n=0

pnun(x, t), (16)

where un(x, t) for n = 0, 1, 2, . . . are known functions. Also, the nonlinear part Nu(x, t) can be represented as the
infinite series as follows:

Nu(x, t) =

∞∑
n=0

pnHn(u(x, t)), (17)
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where Hn(u(x, t)) =
{

1
n!

∂n

∂pn

[
N
(∑∞

i=0 p
iui

)]
p=0

}
are the Adomian polynomials [15]. Now, substituting Eqs. (16)

and (17) into Eq. (15), we obtain:

∞∑
n=0

pnun(x, t) = H(x, t)− L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
A

∞∑
n=0

pnun(x, t) + N

∞∑
n=0

pnun(x, t); s
)]

; t
]

= H(x, t)− L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
A

∞∑
n=0

pnun(x, t) +

∞∑
n=0

pnHn(u(x, t)); s
)]

; t
]
, (18)

where H(x, t) = L−1
[
s−µ(1− ωs−ρ)−γH(x, s) + 1

su(0); t
]
. By equalling the coefficients on powers of p on the both

sides of Eq. (18), we obtain the series solution as follows:

p0 : u0(x, t) = H(x, t),

p1 : u1(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Au0(x, t) + H0(u(x, t)); s

)]
; t
]
,

p2 : u2(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Au1(x, t) + H1(u(x, t)); s

)]
; t
]
,

...

pn+1 : un+1(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Aun(x, t) + Hn(u(x, t)); s

)]
; t
]
. (19)

Then the solution of Eq. (1) can be written as follows:

u(x, t) =

∞∑
n=0

un(x, t). (20)

Now, we focus on the convergence of the proposed approximation method applied to Eq. (1).

Theorem 3.1. [35] (Banach’s fixed point theorem). Let X be a Banach space and A : X → X is a nonlinear
operator such that ‖ A(u) − A(v) ‖≤ % ‖ u − v ‖, u, v ∈ X for some % < 1. Then A has a unique fixed point. The
sequence is defined by:

un+1 = A(un),

with an arbitrary choice of u0 ∈ X, converges to the fixed point of X and

‖ un − um ‖≤‖ u1 − u0 ‖
n−2∑

i=m−1
%i.

Theorem 3.2. Suppose u(x, t) be the exact solutions of Eq. (1). If there exists a constant % ∈ (0, 1) such that
‖ un+1(x, t) ‖≤ % ‖ un(x, t) ‖ for each n ∈ N

⋃
{0}. Then, the series solution defined in Eq. (20) is convergent to

u(x, t).

Proof. The Theorem 3.1 is a sufficient condition to discussion the convergence of HPTM for some partial
differential equations. Then we define the following sequence {Sn}∞n=0:

S0 = u0(x, t),

S1 = u0(x, t) + u1(x, t),

S2 = u0(x, t) + u1(x, t) + u2(x, t), (21)

...

Sn = u0(x, t) + u1(x, t) + u2(x, t) + . . .+ un(x, t).

To prove convergence, we show that the sequence {Sn}∞n=0 is a Cauchy sequence in the Banach space X. So, for
each n ∈ N

⋃
{0}, from ‖ un+1(x, t) ‖≤ % ‖ un(x, t) ‖ we have:

‖ u1(x, t) ‖ ≤ % ‖ u0(x, t) ‖= % ‖ u0(x) ‖,
‖ u2(x, t) ‖ ≤ % ‖ u1(x, t) ‖≤ %% ‖ u0(x) ‖,

...

‖ un+1(x, t) ‖ ≤ % ‖ un(x, t) ‖≤ %n+1 ‖ u0(x) ‖ . (22)
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Then from Eq. (22), the following inequality is obtained:

‖ Sn+1(x, t)− Sn(x, t) ‖=‖ un+1(x, t) ‖≤ %n+1 ‖ u0(x) ‖, (23)

then for n ≥ m, m, n ∈ N, we have:

‖ Sn(x, t)− Sm(x, t) ‖ =‖ (Sn(x, t)− Sn−1(x, t)) + (Sn−1(x, t)− Sn−2(x, t)) + . . .+ (Sm+1(x, t)− Sm(x, t)) ‖
≤‖ Sn(x, t)− Sn−1(x, t) ‖ + ‖ Sn−1(x, t)− Sn−2(x, t) ‖ + . . .+ ‖ Sm+1(x, t)− Sm(x, t) ‖
≤ %n ‖ u0(x, t) ‖ +%n−1 ‖ u0(x, t) ‖ + . . .+ %m+1 ‖ u0(x, t) ‖

≤ %m+1(1− %n−m)

1− %
‖ u0(x, t) ‖ . (24)

Therefore, ‖ Sn(x, t) − Sm(x, t) ‖→ 0 when m,n → ∞. So, the sequence {Sn}∞n=0 is a Cauchy sequence in the
Banach space X and it results that the series u(x, t) =

∑∞
i=0 ui(x, t) is converges.

�

Theorem 3.3. Suppose u(x, t) be the exact solutions of Eq. (1) and the series introduced in Eq. (20) is convergent
to the solution u(x, t). If the truncated series Sm(x, t) =

∑m
i=0 ui(x, t) is used as an approximation to the solution

of Eq. (20). Then the maximum error is calculated as follows:

‖ u(x, t)−
m∑
i=0

ui(x, t) ‖≤
%m+1

1− %
‖ u0(x) ‖ .

Proof. From Eq. (24) for n ≥ m, we have:

‖ Sn(x, t)− Sm(x, t) ‖≤ %m+1(1− %n−m)

1− %
‖ u0(x, t) ‖, (25)

as n→∞, 0 < % < 1, then limn→∞ Sn(x, t) = u(x, t), from Eq. (25) is obtained:

‖ u(x, t)−
m∑
i=0

ui(x, t) ‖ ≤
%m+1(1− %n−m)

1− %
‖ u0(x, t) ‖

≤ %m+1

1− %
‖ u0(x, t) ‖, 1− %n−m < 1, (26)

which completes the proof.

�

Table 1: The absolute errors for various values of µ and k = 1, ρ = 0.5, ω = 1, γ = 0.75 for Example 4.1.

x µ = 0.5 µ = 0.75 µ = 0.85 µ = 0.95 µ = 0.99
0.0 4.3581× 10−10 1.8395× 10−10 1.0111× 10−10 3.0494× 10−11 5.8377× 10−12

0.05 4.5815× 10−10 1.9338× 10−10 1.0629× 10−10 3.2057× 10−11 6.1370× 10−12

0.1 4.8164× 10−10 2.0329× 10−10 1.1174× 10−10 3.3701× 10−11 6.4516× 10−12

0.15 5.0633× 10−10 2.1372× 10−10 1.1747× 10−10 3.5429× 10−11 6.7824× 10−12

0.2 5.3230× 10−10 2.2467× 10−10 1.2349× 10−10 3.7245× 10−11 7.1301× 10−12

0.25 5.5959× 10−10 2.3619× 10−10 1.2982× 10−10 3.9155× 10−11 7.4957× 10−12

0.3 5.8828× 10−10 2.4830× 10−10 1.3648× 10−10 4.1162× 10−11 7.8800× 10−12

0.35 6.1844× 10−10 2.6103× 10−10 1.4348× 10−10 4.3273× 10−11 8.2840× 10−12

0.4 6.5015× 10−10 2.7442× 10−10 1.5083× 10−10 4.5491× 10−11 8.7088× 10−12

0.5 6.8348× 10−10 2.8849× 10−10 1.5857× 10−10 4.7824× 10−11 9.1553× 10−12
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Figure 1: Graphs of approximation solution for Example 4.1.
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Figure 2: Plots of the exact solutions u(x, t0) and the approximate solutions un(x, t0) for t0 = 0.5 at various values
of µ = 0.25, 0.5, 0.75, 0.85, 0.95, 0.99, 1 and k = 1, n = 4 for Example 4.1.
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Figure 3: The analysis of absolute errors by the HPTM for Example 4.1.
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4. Numerical Results

In this section, we are applying the HPTM to solve some test examples by considering Au(x, t) = −(kuxx +
au),Nu(x, t) = buq in Eq. (1) in order to show the application and effectiveness of the presented technique.

Example 4.1. In this Example, we consider the following 2-dimensional linear time-fractional Newell-Whitehead-
Segel equation of order 0 < µ ≤ 1:

CDγρ,µ,ω,0+u(x, t) = kuxx − 2u, 0 < µ ≤ 1,

u(x, 0) = ex, (27)

for µ = 1 the analytical solution of this equation is given by u(x, t) = ex−t. Thus we solve the current test problem
with the HPTM to find the solution of this kind of Eq. (27), then we have:

p0 : u0(x, t) = L−1
[
s−µ(1− ωs−ρ)−γ × 0 +

1

s
u(0); t

]
= ex,

p1 : u1(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
− k(u0(x, t))xx + 2u0(x, t) + u20; s

)]
; t
]

=
(

(k − 2)ex − e2x
)
L−1

[ (s−µ(1− ωs−ρ)−γ)

s

]
=
(

(k − 2)ex − e2x
)
tµEγρ,1+µ(ωtρ),

p2 : u2(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
− k(u1(x, t))xx + 2u1(x, t) + 2u0u1); s

)]
; t
]

(28)

=
[
(k − 2)2ex − 2(3k − 2)e2x + 3e3x

]
t2µEγρ,1+2µ(ωtρ),

p3 : u3(x, t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
− k(u2(x, t))xx + u21(x, t) + 2u0u2); s

)]
; t
]
,

...

We use Eq. (9) on Eq. (28) and L−1
[
(s−µ(1−ωs−ρ)−γ)

s

]
is obtained as:

L−1
[ (s−µ(1− ωs−ρ)−γ)

s

]
= tµEγρ,1+µ(ωtρ).

Finally, the solution of Eq. (27) are expressed by:

u(x, t) =

∞∑
n=0

un(x, t). (29)

The approximation solution is expressed in Figure 1 for different values of µ where µ = 0.25, 0.5, 0.75, 0.85, 0.99, 1.
Figure 2 shows the behavior of the analytical solution u(x, t0) and approximation solution un(x, t0) at different
values of µ. Also, Figure 3 presents the absolute error between the exact solution and the approximation solution
by the HPTM for Example 4.1. In Table 1 the absolute errors is showed for various values µ.

Table 2: The absolute errors for various values of µ and k = 1, ρ = 0.5, ω = 1, γ = 0.75 for Example 4.2.

x µ = 0.5 µ = 0.75 µ = 0.85 µ = 0.95 µ = 0.99
0.05 3.5197× 10−9 2.2526× 10−9 1.8138× 10−9 1.4375× 10−9 1.3049× 10−9

0.1 2.9282× 10−9 2.1640× 10−9 1.8546× 10−9 1.5671× 10−9 1.4600× 10−9

0.15 2.7308× 10−9 2.1790× 10−9 1.9321× 10−9 1.6910× 10−9 1.5981× 10−9

0.2 2.6568× 10−9 2.2280× 10−9 2.0207× 10−9 1.8103× 10−9 1.7273× 10−9

0.25 2.6397× 10−9 2.2935× 10−9 2.1144× 10−9 1.9269× 10−9 1.8514× 10−9

0.3 2.6546× 10−9 2.3689× 10−9 2.2114× 10−9 2.0421× 10−9 1.9727× 10−9

0.35 2.6902× 10−9 2.4512× 10−9 2.3112× 10−9 2.1569× 10−9 2.0927× 10−9

0.4 2.7403× 10−9 2.5390× 10−9 2.4137× 10−9 2.2723× 10−9 2.2126× 10−9

0.5 2.8017× 10−9 2.6318× 10−9 2.5191× 10−9 2.3889× 10−9 2.3332× 10−9
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Figure 4: Graphs of approximation solution for Example 4.2.
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Figure 5: Plots of the exact solutions u(x, t0) and the approximate solutions un(x, t0) for t0 = 0.5 at various values
of µ = 0.25, 0.5, 0.75, 0.85, 0.95, 0.99, 1 and λ = 1, n = 4 for Example 4.2.
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Example 4.2. In this Example we express the following nonlinear time-fractional Newell-Whitehead-Segel equation
of order 0 < µ ≤ 1:

CDγρ,µ,ω,0+u(x, t) = uxx + 2u− 3u2,

u(x, 0) = λ, (30)

for µ = 1 the analytical solution for the corresponding conditions is u(x, t) =
−2
3 λe2t

−2
3 +λ−λe2t . We solve the current test

problem with the same manner presented in Example 4.1. The approximation solution is expressed in Figure 4 for
different values of µ where µ = 0.25, 0.5, 0.75, 0.85, 0.99, 1. Figure 5 shows the behavior of the analytical solution
u(x, t0) , approximation solution un(x, t0) at different values of µ. In Table 2 the absolute errors is showed for
various values µ.

Example 4.3. We introduce the following nonlinear time-fractional Newell-Whitehead-Segel equation:

CDγρ,µ,ω,0+u(x, t)− uxx(x, t) = u(x, t)− u4(x, t),

u(x, 0) =
( 1

1 + e
3x√
10

) 2
3

. (31)

Using the proposed method in this manuscript, this example is solved for different values of µ and the numerical
results are shown in Figure 6.

Example 4.4. Consider the following nonlinear time-fractional Newell-Whitehead-Segel equation:

CDγρ,µ,ω,0+u(x, t)− uxx(x, t) + sin(u) = t2 sin(x) +
2t2−µ sin(x)

Γ(3− µ)
+ sin(t2 sin(x)), (32)

with the following initial and boundary conditions:

u(x, 0) = 0, ut(x, 0) = 0, x ∈ [0, 1],

u(0, t) = 0, u(1, t) = t2 sin(1). (33)

The exact solution is u(x, t) = t2 sin(x). This example by using the proposed method for different values of µ and
ρ = 0.5, ω = 1, γ = 0.75 is solved and the numerical results are displayed in Fig. 7.

5. Conclusion

In this paper, the HPTM is applied in order to obtain the approximation solution of the fractional order
Newell-Whitehead-Segel equation contain Caputo-Prabhakar fractional derivative. The fractional derivatives in
this paper are demonstrated in the Caputo-Prabhakar fractional derivative senses. Finally, The numerical examples
are demonstrated to show the ability and the validity and the applicability of the suggested method.
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Figure 6: Graphs of approximation solution at various values of µ = 0.25, 0.5, 0.75, 0.85, 0.95, 0.99 for Example 4.3.
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Figure 7: Plots of approximation solution at various values of µ = 0.25, 0.5, 0.75, 0.85, 0.95, 0.99 for Example 4.4.
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