تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,287,993 |
تعداد دریافت فایل اصل مقاله | 4,882,739 |
مطالعه دینامیک برخورد قطره به سطوح منحنی آبدوست و آبگریز در نسبتهای چگالی و لزجت بالا با استفاده از روش شبکه بولتزمن توسعهدادهشده بر اساس معادله آلن-کاهن | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 7، دوره 53، شماره 5، مرداد 1400، صفحه 2869-2886 اصل مقاله (1.57 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2020.17879.6681 | ||
نویسندگان | ||
اسلام عزت نشان* 1؛ علی اصغر خسروآبادی2؛ ایوب فتاحی2 | ||
1گروه مهندسی هوافضا، دانشکده مهندسی فناوری های نوین، دانشگاه شهید بهشتی، تهران، ایران | ||
2گروه مهندسی هوافضا، دانشکده مهندسی فناوری های نوین، دانشگاه شهید بهشتی، تهران ایران | ||
چکیده | ||
در مقاله حاضر، یک الگوریتم عددی کارآمد و موثر بر اساس روش شبکه بولتزمن جهت شبیهسازی دوبعدی جریانهای چندفازی در نسبتهای چگالی و لزجت بالا توسعه داده شدهاست. کارآیی و دقت حل عددی حاضر جهت مدلسازی رفتار دینامیکی جریانهای چندفازی با استفاده از اضافه کردن معادله آلن-کاهن برای مدلسازی دینامیک فصل مشترک بهبود داده شدهاست. همچنین، جهت افزایش کارآیی روش برای حل دینامیک قطرات در گستره وسیعی از سرعتهای برخورد، از عملگر برخورد با زمان آرامش چندگانه استفاده شدهاست. جهت صحتسنجی و ارزیابی دقت حل، حالت تعادل یک قطره روی سطح صاف آبدوست و آبگریز مطالعه شدهاست. سپس، برخورد قطره روی سطح یک استوانه و یک حفره با در نظر گرفتن اثر شتاب گرانش بررسی شده و نتایج بهدستآمده از حل حاضر با نتایج دیگران مقایسه شده که تطابق خوبی را نشان میدهند. همچنین، مطالعه تغییرات ارتفاع قطره روی سطوح آبدوست و آبگریز در ضخامتهای مختلف فصل مشترک و در زاویههای تماس مختلف از نتایج این مطالعه است که شناخت خوبی از فیزیک پیچیده آنها ایجاد میکند. نتایج حاضر نشان میدهد که اضافه شدن معادله آلن-کاهن به معادله روش شبکه بولتزمن در کنار استفاده از زمان آرامش چندگانه منجر به توسعه یک روش عددی کارآمدی شده که با استفاده از آن، امکان مطالعه انواع جریانهای چندفازی کاربردی در نسبتهای چگالی 1000 و نسبتهای لزجت 100 با دینامیک فصل مشترک پیچیده فراهم است. | ||
کلیدواژهها | ||
روش شبکه بولتزمن؛ معادله آلن-کاهن؛ جریان چندفازی؛ دینامیک برخورد قطره؛ سطح منحنی | ||
عنوان مقاله [English] | ||
Studying of droplet impingement on hydrophilic and hydrophobic curved surfaces by lattice Boltzmann method based on Allen-Cahn equation | ||
نویسندگان [English] | ||
Eslam Ezzatneshan1؛ Aliasghar Khosroabadi2؛ Ayoub Fattahi2 | ||
1Aerospace Engineering Group, Dep. New Technologies Engineering, Shahid Beheshti University, Tehran, Iran | ||
2Aerospace Engineering Group, New Technologies Engineering Department, Shahid Beheshti University, Tehran, Iran | ||
چکیده [English] | ||
In this paper, an efficient lattice Boltzmann method is applied for the simulation of two-phase flow problems at high density and viscosity ratios. The present lattice Boltzmann method employs the Allen-Cahn equation to model the interfacial dynamics between two phases and an appropriate collision operator is implemented to ensure the stability of the numerical solutions. The performance of the numerical algorithm is examined by studying droplet dynamics at different flow conditions. Herein, the equilibrium state of a droplet on the flat and curved walls is verified by considering the wetting properties, namely the hydrophilic and hydrophobic characteristics, for solid surfaces. The multiphase flow pattern and interfacial dynamics of an impinging droplet on a cylinder surface and a semicircular cavity are also investigated and the obtained results are compared with the available data. The present study demonstrates that the curved wall considering the wettability effects significantly affects the droplet dynamics, depending on the properties of the liquid phase and the flow conditions. This work also shows that the lattice Boltzmann method with the Allen-Cahn equation is more stable for simulation of liquid-gas systems at density ratio 1000 and viscosity ratio 100 which makes this method more suitable for predicting practical flow characteristics. | ||
کلیدواژهها [English] | ||
Lattice Boltzmann method, Allen-Cahn equation, Multiphase flows, Droplet impingement dynamics, Curved surface | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] E. Ezzatneshan, Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method, Physics of Fluids, 29(11) (2017) 113304. [2] S. Chen, G. Ye, Z. Xiao, L. Ding, Efficient and thermally stable polymer solar cells based on a 54π-electron fullerene acceptor, Journal of Materials Chemistry A, 1(18) (2013) 5562. [3] Q. Chang, J.I.D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluidics and Nanofluidics, 2(4) (2006) 309-326. [4] J.W. Cahn, J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, The Journal of Chemical Physics, 28(2) (1958) 258-267. [5] F. Magaletti, F. Picano, M. Chinappi, L. Marino, C.M. Casciola, The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids, Journal of Fluid Mechanics, 714 (2013) 95-126. [6] A.N. Carvalho, T. Dlotko, Dynamics of the viscous Cahn–Hilliard equation, Journal of Mathematical Analysis and Applications, 344(2) (2008) 703-725. [7] A. Fakhari, T. Mitchell, C. Leonardi, D. Bolster, Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios, Physical Review E, 96(5) (2017). [8] E. Ezzatneshan, H. Vaseghnia, Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects, Physica A: Statistical Mechanics and its Applications, 541 (2020) 123258. [9] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Physical Review E, 56(6) (1997) 6811-6817. [10] P. Lallemand, L.S. Luo, Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 61(6 Pt A) (2000) 6546-6562. [11] A. Fakhari, D. Bolster, Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios, Journal of Computational Physics, 334 (2017) 620-638. [12] S. Bakshi, I.V. Roisman, C. Tropea, Investigations on the impact of a drop onto a small spherical target, Physics of Fluids, 19(3) (2007) 032102. | ||
آمار تعداد مشاهده مقاله: 546 تعداد دریافت فایل اصل مقاله: 658 |