تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,200 |
تعداد دریافت فایل اصل مقاله | 4,882,943 |
A linear-time algorithm to compute total $[1,2]$-domination number of block graphs | ||
AUT Journal of Mathematics and Computing | ||
مقاله 12، دوره 1، شماره 2، آذر 2020، صفحه 263-270 اصل مقاله (431.19 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2020.18444.1035 | ||
نویسندگان | ||
Pouyeh Sharifani1، 2؛ Mohammadreza Hooshmandasl* 3، 2؛ Saeid Alikhani4 | ||
1Institute for Research in Fundamental Sciences (IPM), Tehran, Iran | ||
2Department of Computer Science, Yazd University, Yazd, Iran | ||
3Department of Computer Science, University of Mohaghegh Ardabili, Ardabil, Iran | ||
4Department of Mathematics, Yazd University, Yazd, Iran | ||
چکیده | ||
Let $G=(V, E)$ be a simple graph without isolated vertices. A set $D\subseteq V$ is a total $[1,2]$-dominating set if for every vertex $v\in V , 1\leq |N(v)\cap D|\leq 2$. The total $[1,2]$-domination problem is to determine the total $[1,2]$-domination number $\gamma_{t[1,2]}(G)$, which is the minimum cardinality of a total $[1,2]$-dominating set for a graph $G$. In this paper, we present a linear-time algorithm to compute $\gamma_{t[1,2]}(G)$, for a block graph $G$. | ||
کلیدواژهها | ||
Total $[1,2]$-set؛ Dominating set؛ Block graph | ||
مراجع | ||
[1] A. V. Aho, J. E. Hopcroft, The design and analysis of computer algorithms, Pearson Education India (1974).
[2] A. Bishnu, K. Dutta, A. Gosh, S. Pual, [1,j]-set problem in graphs, Discrete Mathematics 339 (2016), 2215- 2525.
[3] M. Chellali, O. Favaron, T. W. Haynes, S. T. Hedetniemi, A. McRae, Independent [1, k]-sets in graphs, Australasian Journal of Combinatorics 59, 1 (2014), 144-156.
[4] M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. McRae, [1, 2]-sets in graphs, Discrete Applied Mathematics 161, 18 (2013), 2885-2893.
[5] O. Etesami, N. Ghareghani, M. Habib, M. R. Hooshmandasl, R. Naserasr, P. Sharifani, When an optimal dominating set with given constraints exists, Theoretical Computer Science, 780 (2019), 54-65.
[6] A. K. Goharshady, M. R. Hooshmandasl, M. Alambardar Meybodi, [1, 2]-sets and [1, 2]-total sets in trees with algorithms, Discrete Applied Mathematics, 198 (2016), 136-146.
[7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, CRC Press, 1998.
[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in graphs: advanced topics, Marcel Dekker, 1998.
[9] S. T. Hedetniemi, R. Laskar, Topics on domination, Elsevier, 1991.
[10] D. B. West, Introduction to graph theory, 2ed Edition. Prentice hall Upper Saddle River, 2001.
[11] X. Yang, B. Wu, [1, 2]-domination in graphs, Discrete Applied Mathematics, 175 (2014), 79-86. | ||
آمار تعداد مشاهده مقاله: 1,328 تعداد دریافت فایل اصل مقاله: 647 |