تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,750 |
اثرات مودهای بالاتر و درجات آزادی بر نیاز انرژی در سازههای بتنآرمه با دیوار برشی فولادی | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 3، دوره 53، شماره 10، دی 1400، صفحه 4143-4160 اصل مقاله (1.56 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2020.18001.6734 | ||
نویسندگان | ||
سید رضا سلیم بهرامی1؛ مجید قلهکی* 2 | ||
1مدرس دانشگاه فنی و حرفه ای، دانشکده امام محمد باقر (ع) | ||
2عضو هیات علمی دانشگاه سمنان | ||
چکیده | ||
لازم است جهت طراحی بهینه قابهای خمشی بتن آرمه با دیوار برشی فولادی به ارائه معیارهای طراحی لرزهای سیستمهای سازهای به طور مناسب پرداخته شود. محققین برای اندازهگیری و کمینهسازی خسارتهای تجمعی به سازهها از نیازهای انرژی به عنوان ابزاری مهم و کارآمد استفاده نموده که این نیازهای انرژی به شدت و زمان تداوم زلزله وابسته است. لذا در این پژوهش تلاش میشود تا با بررسی ویژگیهای پاسخ انرژی حاصل از تحلیل سیستمهای یک درجه آزادی معادل در برابر شتابنگاشتهای نزدیک گسل پالس گونه به تخمین انواع بیشینه انرژی و رابطه آن با سیستم چند درجه آزادی برای سه سازه بتن آرمه با دیوار برشی فولادی کوتاه، میان و بلند مرتبه تحت ضرایب شکلپذیری 1، 2، 3، 4 و 5 با مدلسازی در نرمافزار OpenSees پرداخته شود. از طرفی کلیه مدلها به صورت یک سازه یک درجه آزادی مدلسازی شدهاند. با توجه به اینکه در سالهای اخیر دیوارهای برشی فولادی در قابهای بتن آرمه مورد استقبال مهندسان قرار گرفته و در زمینهی نیاز انرژی با رویکرد تقاضای شکلپذیری در سازههای بتنی همراه با دیوار برشی فولادی کار تحقیقاتی مبسوطی صورت نگرفته است، لذا اهمیت مطالعه در این زمینه بیش از پیش تبیین مینماید. نتایج بررسی تغییرات نسبت انرژی چرخهای به کل انرژی تلف شده در سازهها نشان میدهد که در سیستم چند درجه آزادی مستقل از دوره تناوب بوده به قسمتی که اثر مودهای بالاتر چندان بر آن قابل توجه نیست. همچنین با افزایش ضریب شکلپذیری این نسبت برای سیستم چند درجه آزادی به نتایج سیستم یک درجه آزادی نزدیکتر شده و به تعبیری افزایش ضریب شکلپذیری منجر به کاهش اثرات مودهای بالاتر میگردد. | ||
کلیدواژهها | ||
انرژی؛ دیوار برشی فولادی؛ سازه بتنآرمه؛ مودهای بالاتر؛ سازه یک درجه آزادی | ||
موضوعات | ||
بهینه سازی سازه ها؛ دیوار برشی ، مهاربندها و میراگرها؛ رفتار لرزه ای سازه بتنی؛ رفتار لرزه ای سازه فلزی | ||
عنوان مقاله [English] | ||
Effects of higher modes and degrees of freedom on energy requirement in reinforced concrete structures with steel shear wall | ||
نویسندگان [English] | ||
Seyed Reza Salimbahrami1؛ majid gholhaki2 | ||
1Lecturer, Technical and Vocational University, College of Imam Muhammad Baqir (AS) | ||
2teacher | ||
چکیده [English] | ||
It is necessary to provide seismic design criteria for structural systems in order to optimally design bending reinforced concrete frames with steel shear wall. Researchers have used energy requirements as one of the most important and efficient tools to measure and minimize cumulative damage to structures, which depend strongly on the time and duration of the earthquake. Therefore, this study attempts to investigate the energy response properties of an equivalent single degree of freedom versus near pulse species acceleration accelerometers to estimate the maximum energy types and its relation to a multi-degree of freedom for three reinforced concrete structures with steel shear walls, low-rise, mid-rise and high-rise under ductile coefficients of 1, 2, 3, 4 and 5. The results of the study of the changes in the ratio of cyclic energy to total energy wasted in the structures show that in the multi-degree system, the period is independent of the periodicity to the extent that the effect of higher modes is negligible. Also, by increasing the ductility coefficient, this ratio for the multi-degree system is closer to the results of the one-degree system and, in a sense, increasing the ductility coefficient results in a decrease in the effects of higher modes. | ||
کلیدواژهها [English] | ||
Energy, Steel Shear Wall, Reinforced Concrete, Higher Modes, SDOF | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] G.W. Housner, Limit design of structures to resist earthquakes, in: Proc. of 1st WCEE, 1956, pp. 5.1-5.13
[2] H. Akiyama, Earthquake resistant design based on the energy concept, in: Proceedings of 9th WCEE, 1988, pp. 905-910.
[3] C.-M. Uang, V.V. Bertero, Use of energy as a design criterion in earthquake-resistant design, Earthquake Engineering Research Center, University of California Berkeley …, 1988.
[4] M. Fakhri-Niasar, The Energy Spectrum of the Iranian Earthquakes, Islamic Azad University, Tehran, 1998.
[5] H. Maleki, M. Ghafory-Ashtiany, Study on the Energy of Earthquakes in Reinforced Concrete Moment Frames, Journal of Seismology and Earthquake Engineering, 3(2) (2000) 11
[6] L.D. Decanini, F. Mollaioli, An energy-based methodology for the assessment of seismic demand, Soil Dynamics and Earthquake Engineering, 21(2) (2001) 113-137.
[7] L. Ye, G. Cheng, Z. Qu, X. Lu, Study on energy-based seismic design method and application on steel braced frame structures, Jianzhu Jiegou Xuebao(Journal of Building Structures), 33(11) (2012) 36-45.
[8] A. Ruzi, Energy concept in earthquake-resistant design, 2003.
[9] P. Khashaee, B. Mohraz, F. Sadek, H. Lew, J.L. Gross, Distribution of earthquake input energy in structures, Diane Publishing Company, 2003.
[10] A.G. GHODRATI, D.G. ABDOLLAHZADE, Z.M. KHAN, Earthquake duration and damping effects on input energy, (2007).
[11] F.H. Shargh, M. Hosseini, An optimal distribution of stiffness over the height of shear buildings to minimize the seismic input energy, Journal of Seismology and Earthquake Engineering, 13(1) (2011) 25-32.
[12] S.J. Kamali-Firozabadi, Using energy method to estimate the required displacement of steel moment frames, Khaje Nasir Toosi University of Technology, 2011.
[13] ن. سیاهپلو, اثر زلزله های نزدیک گسل بر تخمین نیازهای لرزه ای قاب خمشی فولادی با منظور نمودن اثرات چند درجه آزادی, دانشگاه سمنان, 1394.
[14] G.R. Havaei, E. Mobedi, Effect of interaction and rocking motion on the earthquake response of buildings, (2015).
[15] R. Bemanian, H. Shakib, Evaluation of nonlinear behavior of dual steel frame-shear wall system by a group of real earthquakes, (2016).
[16] R. Vahdani, M. Bitarafan, M.I. Khodakarami, Effect of the soil-structure interaction on performance assessment of the energy-based cumulative damage index in concrete reinforced frames, (2016).
[17] م.ع. واثقی نیا پیشنهاد روشی برای بهبود رفتار لرزه ای قاب های خمشی فولادی با رویکرد روش انرژی, دانشگاه سمنان, 1397.
[18] V.V. Bertero, R. Herrera, S. Mahin, Establishment of design earthquakes-evaluation of present methods, in: Proc., Int. Symp. on Earthquake Structural Engineering, Univ. of Missouri-Rolla Rolla, Mo., 1976, pp. 551-580.
[19] N. Makris, C.J. Black, Dimensional analysis of bilinear oscillators under pulse-type excitations, Journal of Engineering Mechanics, 130(9) (2004) 1019-1031.
[20] A.K. Chopra, Dynamics of Structures. Theory and Applications to, Earthquake Engineering, (2017).
[21] A.K. Chopra, Dynamics of structures: theory and applications to earthquake engineering, Prentice-Hall, 2001.
[22] C.M. Uang, V.V. Bertero, Evaluation of seismic energy in structures, Earthquake Engineering & Structural Dynamics, 19(1) (1990) 77-90.
[23] B. Stafford Smith, A. Coull, Tall building structures: analysis and design, (1991)
[24] I.N.B. Code, Applied Loads on Buildings, Part 6, (2013).
[25] آیین نامه طراحی ساختمانها در برابر زلزله استاندارد 2800, in, مرکز تحقیقات راه، مسکن و شهرسازی, تهران, 1393.
[26] A.I.o.S.C. (AISC), Specification for Structural Steel Buildings (ANSI/AISC 360-16), (2010).
[27] A.C.I. Committee, A.C. Institute, I.O.f. Standardization, Building code requirements for structural concrete (ACI 318-08) and commentary, in, American Concrete Institute, 2008.
[28] C.S.I. Berkeley, Computer Program ETABS Ultimate 2015, Computers and Structures Inc., Berkeley, California, (2015).
[29] I.-R. Choi, H.-G. Park, Cyclic loading test for reinforced concrete frame with thin steel infill plate, Journal of Structural Engineering, 137 (2010) 654-664.
[30] A.S.C. Engineers, Minimum Design Loads for Buildings and Other Structures: Second Printing, (2010).
[31] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, The open system for earthquake engineering simulation (OpenSEES) user command-language manual, (2006).
[32] I.N.B. Code, Design and Implement of Concrete Buildings, Part 9, (2013).
[33] I.N.B. Code, Design and Implement of Steel Buildings, Part 10, (2013).
[34] L.J. Thorburn, G.L. Kulak, C.J. Montgomery, Analysis of steel plate shear walls, in: Structural engineering report no.107, Edmonton, AB, Canada, 1983
[35] P.A. Timler, G.L. Kulak, Experimental study of steel plate shear walls, (1983).
[36] E.V.V. Tromposch, G.L. Kulak, Cyclic and Static Behavior of Thin Panel Steel Plate Shear walls, (1987).
[37] C.S. Association, CAN/CSA-S16. 1-M89. Limit States Design of Steel Structures, (1990).
[38] H.-G. Park, J.-H. Kwack, S.-W. Jeon, W.-K. Kim, I.-R. Choi, Framed steel plate wall behavior under cyclic lateral loading, Journal of structural engineering, 133(3) (2007) 378-388.
[39] T.H. Heaton, J.F. Hall, D.J. Wald, M.W. Halling, Response of high-rise and base-isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake, Science, 267(5195) (1995) 206-211
[40] W. Iwan, Drift spectrum: measure of demand for earthquake ground motions, Journal of structural engineering, 123(4) (1997) 397-404.
[41] H. Sucuoǧlu, A. Erberik, Energy‐based hysteresis and damage models for deteriorating systems, Earthquake engineering & structural dynamics, 33(1) (2004) 69-88.
[42] J.W. Baker, Quantitative classification of near-fault ground motions using wavelet analysis, Bulletin of the Seismological Society of America, 97 (2007) 1486-1501.
| ||
آمار تعداد مشاهده مقاله: 593 تعداد دریافت فایل اصل مقاله: 892 |