- S. Mjalli, S. Al-Asheh, H. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, Journal of Environmental Management, 83(3) (2007) 329-338.
- Arzate, S. Pfister, C. Oberschelp, J.A. Sánchez-Pérez, Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant, Science of The Total Environment, 694 (2019) 133572.
- M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environmental Modelling & Software, 19(10) (2004) 919-928.
- Owa, Water pollution: sources, effects, control and management, Mediterranean journal of social sciences, 4(8) (2013) 65.
- D. Salas, Applied modeling of hydrologic time series, Water Resources Publication, 1980.
- Nourani, M. Parhizkar, Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling, Journal of Hydroinformatics, 15(3) (2013) 829-848.
- .A. Nadiri, E. Fijani, F.T.-C. Tsai, A. Asghari Moghaddam, Supervised committee machine with artificial intelligence for prediction of fluoride concentration, Journal of Hydroinformatics, 15(4) (2013) 1474-1490.
- W. Chan, G.H. Huang, Artificial intelligence for management and control of pollution minimization and mitigation processes, Engineering applications of artificial intelligence, 16(2) (2003) 75-90.
- F. Hamoda, I.A. Al-Ghusain, A.H. Hassan, Integrated wastewater treatment plant performance evaluation using artificial neural networks, Water Science and Technology, 40(7) (1999) 55-65.
- Gontarski, P. Rodrigues, M. Mori, L. Prenem, Simulation of an industrial wastewater treatment plant using artificial neural networks, Computers & Chemical Engineering, 24(2-7) (2000) 1719-1723.
- Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environmental progress, 27(4) (2008) 439-446.
- Sharghi, V. Nourania, A. AliAshrafia, H. Gökçekuşb, Monitoring effluent quality of wastewater treatment plant by clustering based artificial neural network method, DESALINATION AND WATER TREATMENT, 164 (2019) 86-97.
- S. Nasr, M.A. Moustafa, H.A. Seif, G. El Kobrosy, Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT, Alexandria engineering journal, 51(1) (2012) 37-43.
- -Y. Pai, Gray and neural network prediction of effluent from the wastewater treatment plant of industrial park using influent quality, Environmental Engineering Science, 25(5) (2008) 757-766.
- Ö. Çinar, New tool for evaluation of performance of wastewater treatment plant: artificial neural network, Process Biochemistry, 40(9) (2005) 2980-2984.
- Heddam, H. Lamda, S. Filali, Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study, Environmental Processes, 3(1) (2016) 153-165.
- Yazdani, A. Khoshhal, N.S. Mousavi, Evaluating the performance of a sequencing batch reactor (SBR) for sanitary wastewater treatment Using Artificial Neural Network (ANN), Environmental Progress & Sustainable Energy, (2020) e13438.
- Yel, S. Yalpir, Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach, Procedia Computer Science, 3 (2011) 659-665.
- Wan, M. Huang, Y. Ma, W. Guo, Y. Wang, H. Zhang, W. Li, X. Sun, Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system, Applied Soft Computing, 11(3) (2011) 3238-3246.
- -Y. Pai, S. Wang, C. Chiang, H. Su, L. Yu, P. Sung, C. Lin, H. Hu, Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach, Bioprocess and biosystems engineering, 32(6) (2009) 781-790.
- Pai, P. Yang, S. Wang, M. Lo, C. Chiang, J. Kuo, H. Chu, H. Su, L. Yu, H. Hu, Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality, Applied Mathematical Modelling, 35(8) (2011) 3674-3684.
- Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J.-p. Park, J.H. Kim, K.H. Cho, Prediction of effluent concentration in a wastewater treatment plant using machine learning models, Journal of Environmental Sciences, 32 (2015) 90-101.
- Granata, S. Papirio, G. Esposito, R. Gargano, G. De Marinis, Machine learning algorithms for the forecasting of wastewater quality indicators, Water, 9(2) (2017) 105.
- S. Zaghloul, R.A. Hamza, O.T. Iorhemen, J.H. Tay, Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors, Journal of Environmental Chemical Engineering, 8(3) (2020) 103742.
- M. Bates, C.W. Granger, The combination of forecasts, Journal of the Operational Research Society, 20(4) (1969) 451-468.
- Dickinson, Some statistical results in the combination of forecasts, Journal of the Operational Research Society, 24(2) (1973) 253-260.
- Dickinson, Some comments on the combination of forecasts, Journal of the Operational Research Society, 26(1) (1975) 205-210.
- D. Thompson, How to improve accuracy by combining independent forecasts, Monthly Weather Review, 105(2) (1977) 228-229.
- T. Clemen, Combining forecasts: A review and annotated bibliography, International journal of forecasting, 5(4) (1989) 559-583.
- Y. Shamseldin, K.M. O'Connor, G. Liang, Methods for combining the outputs of different rainfall–runoff models, Journal of Hydrology, 197(1-4) (1997) 203-229.
- Xiong, A.Y. Shamseldin, K.M. O'connor, A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system, Journal of hydrology, 245(1-4) (2001) 196-217.
- P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50 (2003) 159-175.
- Li, A. Sankarasubramanian, Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination, Water Resources Research, 48(12) (2012).
- Sharghi, V. Nourani, N. Behfar, Earthfill dam seepage analysis using ensemble artificial intelligence based modeling, Journal of Hydroinformatics, 20(5) (2018) 1071-1084.
- S. Govindaraju, Artificial neural networks in hydrology. II: hydrologic applications, Journal of Hydrologic Engineering, 5(2) (2000) 124-137.
- Nourani, An emotional ANN (EANN) approach to modeling rainfall-runoff process, Journal of Hydrology, 544 (2017) 267-277.
- Farhoudi, S. Hosseini, M. Sedghi-Asl, Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins, Journal of hydroinformatics, 12(2) (2010) 201-211.
- Abraham, Adaptation of fuzzy inference system using neural learning, in: Fuzzy systems engineering, Springer, 2005, pp. 53-83.
- -S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review], IEEE Transactions on automatic control, 42(10) (1997) 1482-1484.
- -c. Wang, D.-m. Xu, K.-w. Chau, S. Chen, Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD, Journal of Hydroinformatics, 15(4) (2013) 1377-1390.
- N. Vapnik, An overview of statistical learning theory, IEEE transactions on neural networks, 10(5) (1999) 988-999.
- H. Haghiabi, H.M. Azamathulla, A. Parsaie, Prediction of head loss on cascade weir using ANN and SVM, ISH Journal of Hydraulic Engineering, 23(1) (2017) 102-110.
- F. Ansley, An algorithm for the exact likelihood of a mixed autoregressive-moving average process, Biometrika, 66(1) (1979) 59-65.
- Nourani, M. Komasi, A. Mano, A multivariate ANN-wavelet approach for rainfall–runoff modeling, Water resources management, 23(14) (2009) 2877.
- Haykin, Neural networks: a comprehensive foundation, Prentice-Hall, Inc., 2007.
- Noori, A. Karbassi, A. Moghaddamnia, D. Han, M. Zokaei-Ashtiani, A. Farokhnia, M.G. Gousheh, Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction, Journal of Hydrology, 401(3-4) (2011) 177-189.
|