تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,748 |
اندازهگیری ضریب انتقال حرارت جریان جوشش مادونسرد در فضای بین دو لوله دایروی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 14، دوره 53، شماره 7، مهر 1400، صفحه 4345-4360 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2020.18545.6841 | ||
نویسندگان | ||
مسعود یاراحمدی1؛ محمد محسن شاه مردان2؛ محسن نظری* 3؛ علیرضا اصغرزاده1 | ||
1گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
2دانشیار دانشکده مهندسی مکانیک دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
3Shahrood University of Tech, Shahrood, Iran | ||
چکیده | ||
در مطالعه حاضربا ساخت بستر آزمایشگاهی،به بررسی تجربی انتقال حرارتجریان جوشش مادونسرد در بین دو لوله هممحور عمودیبا قطر داخلی و خارجی بترتیب 50/7 و 70/6 میلیمتر در فشار اتمسفریک و سیال کاری آب پرداخته شدهو اثر پارامترهایی مانند شار حرارتی، دبی جرمی، دمای مادونسرد ورودی و استفاده از اسفنج متخلخل فلزی برروی ضریب انتقال حرارت بررسی شدهاست. نتایج بدستآمده از این پژوهش که در محدوده دبی جرمی kg/s 0/012 تا kg/s 0/0286 میباشد، نشان میدهد که انتقال حرارت از دو مکانیسم جابجایی اجباری و جوشش جریانی تشکیل مییابد که اثر هر یک از پارامترهای فوق بر روی این دو مکانیسم انتقال حرارت مورد بررسی قرارگرفتهاست. ضریب انتقال حرارت به شدت تابعی از شار حرارتی اعمال شده میباشد. با زیادشدن شار حرارتی، ضریب انتقال حرارت افزایش یافته و با تغییر دبی جرمی در محدوده ذکرشده (در ناحیه جوشش مادونسرد)، تا 30% افزایش مییابد. همچنین، استفاده از محیط متخلخل اسفنج فلزی (با تخلخل 95 درصد)، ضریب انتقال حرارت جریان جوشش مادونسرد را تا 30 درصد افزایش میدهد. اعتبارسنجی نتایج تجربی بدستآمده نیز با گزارشات معتبر انجام شدهاست. | ||
کلیدواژهها | ||
انتقال حرارت؛ جریان جوشش مادونسرد؛ بستر آزمایشگاهی؛ لوله عمودی | ||
عنوان مقاله [English] | ||
Measurement of subcooled flow boiling heat transfer coefficient in vertical annulus tube | ||
نویسندگان [English] | ||
Masoud Yarahmadi1؛ Mohammad Mohsen Shahmardan2؛ Mohsen Nazari3؛ Alireza Asgharzadeh1 | ||
1Fluid Mechanics Department, Shahrood University of Technology, Shahrood, Iran | ||
2Associated professor, Faculty of mechanical Engineering, Shahrood University of Technology, Shahrood, Iran | ||
چکیده [English] | ||
The boiling heat transfer, especially the subcooled flow boiling, is one of the cooling systems being used in industries due to their high heat transfer coefficient. The subcooled flow boiling happens when the bulk flow temperature and the interface temperature are lower and higher, respectively than the saturated temperature corresponding to the flow pressure. In the current study, an experimental apparatus was constructed, and subcooled flow boiling in an annulus tube was investigated. The annulus tube is in the vertical direction, and the internal and external diameters are 50.7 and 70.6 mm. The operating pressure was 1 atm, and the working fluid was water. In this investigation, heat flux, mass flow rate and the inlet subcooling effectiveness on heat transfer coefficient are considered. The experiments were performed in the mass flow rate range of 0.012 kg/s to 0.0286 kg/s in which the flow consists of both forced convection and flow boiling. The results show that the heat transfer coefficient is highly dependent on heat flux in a direct relationship. The mass flow reduction causes heat transfer coefficient increments to 30% in subcooled boiling regions. The use of porous media also increases the subcooled flow boiling heat transfer coefficient up to 30%. The validation of empirical results has also been done with valid previous reports. | ||
کلیدواژهها [English] | ||
Heat transfer, Subcooled flow boiling, Experimental study, Vertical tube | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] G.J. Collier, J.R. Thome, Convective boiling and condensation, (1994): Clarendon Press. [2] G. Wang, P. Cheng, Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel, International Journal of Heat and Mass Transfer, 52(1-2) (2009) 79-91. [3] J. Lee, I. Mudawar, Critical heat flux for subcooled flow boiling in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 52(13-14) (2009) 3341-3352. [4] K.E. Gungor, R. Winterton, A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 29(3) (1986) 351-358. [5] K. Gungor, R.S. Winterton, Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chemical engineering research & design, 65(2) (1987) 148-156. [6] M.M. Shah, A general correlation for heat transfer during saturated boiling with flow across tube bundles. HVAC&R Research, 13(5) (2007)749-768. [7] M.M. Shah, Improved general correlation for subcooled boiling heat transfer during flow across tubes and tube bundles. HVAC&R Research, 11(2) (2005) 285-303. [8] S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, (1990). [9] S.G. Kandlikar, P. Balasubramanian, An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering, 25(3) (2004) 86-93. [10] C. Martín-Callizo, B. Palm, W. Owhaib, Subcooled flow boiling of R-134a in vertical channels of small diameter. International Journal of Multiphase Flow, 33(8) (2007) 822-832. [11] W. Owhaib, B. Palm, C. Martín-Callizo, Flow boiling visualization in a vertical circular minichannel at high vapor quality. Experimental thermal and fluid science, 30(8) (2006) 755-763. [12] X. Zhu, et al., An investigation on heat transfer characteristics of different pressure steam-water in vertical upward tube. Nuclear Engineering and Design, 239(2) (2009) 381-388. [13] Z. Anwar, B. Palm, R. Khodabandeh, Flow boiling heat transfer and dryout characteristics of R152a in a vertical mini-channel. Experimental thermal and fluid science, 53 (2014) 207-217. [14] Z. Shen, et al., Experimental investigation on heat transfer characteristics of smooth tube with downward flow. International Journal of Heat and Mass Transfer, 68 (2014) 669-676. [15] S. Peyghambarzadeh, et al., Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Annals of Nuclear Energy, 53 (2013) 401-410. [16] M. Sarafraz, S. Peyghambarzadeh, Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Experimental Thermal and Fluid Science, 50 (2013) 154-162. [17] H. Yu, R. Sheikholeslami, W.O. Doherty, Flow boiling heat transfer of water and sugar solutions in an annulus. AIChE journal, 50(6) (2004) 1119-1128. [18] S. Li, et al., An experimental study of bubble sliding characteristics in narrow channel. International Journal of Heat and Mass Transfer, 57(1) (2013) 89-99. [19] B. Yun, et al., Characteristics of the local bubble parameters of a subcooled boiling flow in an annulus. Nuclear Engineering and Design, 240(9) (2010) 2295-2303. [20] S.G. Kandlikar, et al. High speed photographic observation of flow boiling of water in parallel minichannels. in 35th Proceedings of National Heat Transfer Conference, (2001) Citeseer. [21] S.G. Kandlikar, P.H. Spiesman, Effect of surface finish on flow boiling heat transfer. ASME Heat Transfer Div Publ HTD, 361 (1998) 157-163. [22] M. Kashi, et al., Experimental investigation and visualization of flow boiling heat transfer in a vertical tube containing metal porous medium. Amirkabir Journal of Mechanical Engineering, 52(6) (2018) 131-140. (in persian) [23] M.M. Shah, New correlation for heat transfer during subcooled boiling in plain channels and annuli. International Journal of Thermal Sciences, 112 (2017) 358-370. [24] E.N. Sieder, G.E. Tate, Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 28(12) (1936) 1429-1435. [25] M.G. Kang, Effects of pool subcooling on boiling heat transfer in a vertical annulus with closed bottom. International journal of heat and mass transfer, 48(2) (2005) 255-263. [26] Y. Zhu, et al., Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 1–Two-phase flow pattern visualization. International Journal of Heat and Mass Transfer, 91 (2015) 446-453. | ||
آمار تعداد مشاهده مقاله: 695 تعداد دریافت فایل اصل مقاله: 908 |