تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,748 |
امکانسنجی شکلدهی تدریجی تکنقطهای کانوپی هواپیما از ورق پلیکربنات: تاثیر استراتژی مسیر و دوران ابزار بر دقت هندسی و شفافیت ظاهری | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 20، دوره 53، شماره 4 (Special Issue)، تیر 1400، صفحه 2751-2768 اصل مقاله (4.33 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2021.18252.6784 | ||
نویسندگان | ||
ابوذر بریمانی ورندی* 1؛ محمد کاظمی نصرآبادی2؛ بهرام عابدی روان3 | ||
1دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران | ||
2استادیار دانشکده هوافضا، دانشگاه هوایی شهید ستاری | ||
3دانشکده هوافضا، دانشگاه هوایی شهید ستاری، تهران، ایران | ||
چکیده | ||
کانوپی به عنوان محافظ شفاف کابین خلبان، یکی از قطعات پلیمری راهبردی در صنایع هوایی است. فرآیندهای شکل دهی سنتی در تولید تکی کانوپی های پلیمریِ شفاف، به علت مصرف بالای انرژی و هزینه های زیاد ماشین آلات، تجهیزات و ابزار مقرون به صرفه نیستند. ورق های پلی کربنات با ویژگی های مناسب مکانیکی، حرارتی، شیمیایی و اپتیکی در ساخت جدیدترین کانوپی های یکپارچه مورد استفاده قرار می گیرند. در این مقاله نمونه سازی سریع هندسه ای مشابه کانوپی های یکپارچه هواپیما، به کمک فرآیند شکل دهی تدریجیِ ورقه ای شفاف پلی کربنات در مقیاس آزمایشگاهی بررسی می شود. در آزمایشهای شکل دهی تدریجی تک نقطه ای، تاثیر سرعت دورانی ابزار بر شفافیت ظاهری و تاثیر استراتژی مسیر ابزار بر دقت هندسی بررسی شد. سه استراتژی مسیر ابزار شامل استراتژی شطرنجی، مارپیچ از بیرون و استراتژی مارپیچ از داخل اعمال گردید. حرارت دهی پساشکل دهی در دمای حدود °C 55 به مدت min 30، با آزادسازی تنشهای پسماندِ فرآیندی سبب کاهش 50 % در برگشت فنری شد. استفاده از ابزار غیر دوار و همچنین پولیش سطحیِ مکانیکی- شیمیایی سبب بهبود قابل ملاحظه ای در پرداخت نهایی و شفافیت نمونه ها گردید. همچنین انحراف هندسی برای استراتژی شطرنجی در دو راستای عمقی و شعاعی کمتر از mm 1 ایجاد شده که در محدوده مجاز پنجره فرآیندی شکلدهی تدریجی تکنقطه ای قرار دارد. | ||
کلیدواژهها | ||
نمونهسازی سریع؛ کانوپی هواپیما؛ شکلدهی تدریجی تکنقطهای؛ ورق پلیکربنات؛ استراتژی مسیر ابزار | ||
عنوان مقاله [English] | ||
Feasibility study of single point incremental forming of aircraft canopy for polycarbonate sheet | ||
نویسندگان [English] | ||
Abozar Barimani Varandi1؛ mohammad kazemi nasrabadi2؛ Bahram Abedi Ravan3 | ||
1Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran | ||
2Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Engineering, Tehran, Iran | ||
3Aerospace Engineering, Shahid Sattari University of Aeronautical Engineering, Tehran, Iran | ||
چکیده [English] | ||
The canopy as a clear cockpit protector is one of the strategic polymer parts in the aviation industry. Conventional forming processes aren't cost-effective for individual production of transparent polymer canopies due to high energy consumption and high costs of machinery, equipment, and tools. In this paper, rapid prototyping of geometry similar to integral canopies is investigated using an incremental forming process of transparent polycarbonate sheets on a laboratory scale. Polycarbonate sheets with suitable mechanical, thermal, chemical, and optical properties are used in the manufacturing of the latest integral canopies. In single point incremental forming experiments, effect of tool rotational velocity on apparent transparency and effect of toolpath strategy on geometric accuracy were investigated. Three toolpath strategies including raster, spiral from outside, and spiral from inside were applied. Post-forming heating at about 55°C for 30 min resulted in a 50% reduction in spring back by releasing process-induced residual stresses. The use of a non-rotating tool as well as a mechanical-chemical surface polishing improved the final finishing and transparency of samples. Additionally, the amount of deviation for the raster strategy in both depth and radial directions was less than 1 mm, which was within the allowable range of process window of single point incremental forming. | ||
کلیدواژهها [English] | ||
Rapid prototyping, Aircraft canopy, Single point incremental forming, Polycarbonate sheet, Toolpath strategy | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] B.S. Haisty, Lockheed Martin’s Affordable Stealth, in: National Press Club, 2000. [2] B. Sweetman, f-22 raptor, Zenith Imprint, 1998. [3] X. Wang, S. Wei, B. Xu, Y. Chen, X. Yan, H. Xia, Transparent organic materials of aircraft cockpit canopies: research status and development trends, Materials Research Innovations, 19(sup10) (2015) S10-199-S110-206. [4] M. Moradi, O. Mehrabi, T. Azdast, K.Y. Benyounis, The effect of low power CO2 laser cutting process parameters on polycarbonate cut quality produced by injection molding, Modares Mechanical Engineering, 17(2) (2017) 93-100. [5] M.S.S.M. Meiabadi, A. Kazerooni, M. Moradi, M.J. Torkamany, Laser assisted joining of St12 to polycarbonate: Experimental study and numerical simulation, Optik, (2019) 164151. [6] M. Moradi, M.K. Moghadam, M. Shamsborhan, Z.M. Beiranvand, A. Rasouli, M. Vahdati, A. Bakhtiari, M. Bodaghi, Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets, Optik, (2020) 164932. [7] A. Barimani-Varandi, The non-isothermal hot deep drawing of AA5083 aluminum alloy, Mechanics & Industry, 21(1) (2020) 112. [8] A. Barimani-Varandi, A.J. Aghchai, Electrically-assisted mechanical clinching of AA6061-T6 aluminum to galvanized DP590 steel: effect of geometrical features on material flow and mechanical strength, Mechanics & Industry, 21(5) (2020) 529. [9] A. Barimani-Varandi, S.J. Hosseinipour, Numerical and experimental study on the effect of forming speed in gradient warm deep drawing process, Journal of Solid and Fluid Mechanics, 8(2) (2018) 51-66 (in Persain). [10] A. Barimani-Varandi, S. Jamal Hosseinipour, Investigation of process parameters in production of cylindrical parts by gradient warm deep drawing, Modares Mechanical Engineering, 14(10) (2015) 187-194 (in Persain). [11] A. Barimani-Varandi, A. Jalali Aghchai, Electroplastic Friction Stir Spot Welding for Joining of AA6061-T6 Aluminum to Galvanized DP590 Steel, Amirkabir Journal of Mechanical Engineering, (2020) (in Persain). [12] L. Edward, Apparatus and process for incremental dieless forming, in, Google Patents, 1967. [13] D.H. Nimbalkar, V. Nandedkar, Review of incremental forming of sheet metal components, Int J Eng Res Appl, 3(5) (2013) 39-51. [14] A.K. Behera, R.A. de Sousa, G. Ingarao, V. Oleksik, Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015, Journal of Manufacturing Processes, 27 (2017) 37-62. [15] M. Vahdati, R. Mahdavinejad, S. Amini, M. Moradi, Statistical analysis and optimization of factors affecting the surface roughness in UVaSPIF process using response surface methodology, Journal of Advanced Materials and Processing, 3(1) (2015) 15-28. [16] M. Vahdati, R. Mahdavinejad, S. Amini, Investigation of the ultrasonic vibration effect in incremental sheet metal forming process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6) (2017) 971-982. [17] V. Franzen, L. Kwiatkowski, J. Neves, P. Martins, A. Tekkaya, On the capability of single point incremental forming for manufacturing polymer sheet parts, in: ICTP2008, 9th International Conference on Theory of Plasticity, 2008. [18] P. Martins, L. Kwiatkowski, V. Franzen, A. Tekkaya, M. Kleiner, Single point incremental forming of polymers, CIRP annals, 58(1) (2009) 229-232. [19] T.A. Marques, M.B. Silva, P. Martins, On the potential of single point incremental forming of sheet polymer parts, The International Journal of Advanced Manufacturing Technology, 60(1-4) (2012) 75-86. [20] I. Bagudanch, M. Garcia-Romeu, M. Sabater, Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost, Journal of Cleaner Production, 112 (2016) 1013-1024. [21] W.L. Edwards, T.J. Grimm, I. Ragai, J.T. Roth, Optimum process parameters for springback reduction of single point incrementally formed polycarbonate, Procedia Manufacturing, 10 (2017) 329-338. [22] M. Durante, A. Formisano, F. Lambiase, Incremental forming of polycarbonate sheets, Journal of Materials Processing Technology, 253 (2018) 57-63. [23] A. Formisano, L. Boccarusso, L. Carrino, F. Lambiase, F.M.C. Minutolo, Single point incremental forming: Formability of PC sheets, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 100006. [24] M. Durante, A. Formisano, F. Lambiase, Formability of polycarbonate sheets in single-point incremental forming, The International Journal of Advanced Manufacturing Technology, 102(5-8) (2019) 2049-2062. [25] https://www.par-group.co.uk/. [26] https://www.condat-lubricants.com/. [27] Y. Li, X. Chen, Z. Liu, J. Sun, F. Li, J. Li, G. Zhao, A review on the recent development of incremental sheet-forming process, The International Journal of Advanced Manufacturing Technology, 92(5-8) (2017) 2439-2462. [28] O. Cybulski, P. Garstecki, VAPOR POLISHING OF MICROMACHINED STRUCTURES, (2015). [29] B. Neto, M. De, R.d.C.M. Sales, K. Iha, J.A.F.F. Rocco, Reinforced Transparencies for Aerospace Application–Case Description, Journal of Aerospace Technology and Management, 8(1) (2016) 49-54. [30] V. Franzen, L. Kwiatkowski, J. Neves, P. Martins, A. Tekkaya, On the capability of single point incremental forming for manufacturing polymer sheet parts, in: Int. Conf. Technol. Plast, 2008, pp. 890-895. [31] V. Franzen, L. Kwiatkowski, P. Martins, A. Tekkaya, Single point incremental forming of PVC, Journal of materials processing technology, 209(1) (2009) 462-469. [32] J. Duflou, H. Vanhove, J. Verbert, J. Gu, I. Vasilakos, P. Eyckens, Twist revisited: Twist phenomena in single point incremental forming, CIRP annals, 59(1) (2010) 307-310. [33] I. Bagudanch, O. Martínez-Romero, A. Elías-Zúñiga, M.L. Garcia-Romeu, Identifying polymeric constitutive equations for incremental sheet forming modelling, Procedia Engineering, 81 (2014) 2292-2297. [34] A. Formisano, M. Durante, L. Boccarusso, A. Astarita, The influence of thermal oxidation and tool-sheet contact conditions on the formability and the surface quality of incrementally formed grade 1 titanium thin sheets, The International Journal of Advanced Manufacturing Technology, 93(9-12) (2017) 3723-3732. [35] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP annals, 54(2) (2005) 88-114. [36] S. Matsubara, A computer numerically controlled dieless incremental forming of a sheet metal, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(7) (2001) 959-966. [37] M. Ham, J. Jeswiet, Forming limit curves in single point incremental forming, CIRP annals, 56(1) (2007) 277-280. [38] S. Jadhav, Basic investigations of the incremental sheet metal forming process on a CNC milling machine, Shaker, 2004. [39] J. Allwood, G. King, J. Duflou, A structured search for applications of the incremental sheet-forming process by product segmentation, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(2) (2005) 239-244. [40] J. Li, T. Bai, Z. Zhou, Numerical simulation and experimental investigation of incremental sheet forming with an elastic support, The International Journal of Advanced Manufacturing Technology, 74(9-12) (2014) 1649-1654. | ||
آمار تعداد مشاهده مقاله: 643 تعداد دریافت فایل اصل مقاله: 756 |