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ABSTRACT: Abnormalities in the vibrational behavior of driving motors and their side effects 
have always been a chief concern for home appliance manufacturers. Hermetic compressors used in 
refrigerators are no exception in this matter. As a single-piston reciprocating machine with a crankshaft 
driven by a simple rotor-stator system, compressors can have noticeable vibrational dissonances. The 
compressor’s vibration is considered as a source of noise that can be transferred to other parts of the 
refrigerator and disturbingly excite them. Despite multiple studies to isolate this vibration by removing or 
optimizing its pathways, the focus has never been directly on reducing the vibration of the main source. 
In this study, a 6 Degree of Freedom model of a refrigerator compressor is derived and then simulated in 
MATLAB-Simulink. The model is then verified with the computational results of an equivalent model 
made in ADAMS. All vibrating parts and their indexes are identified in order to design a new suspension 
system with improved vibrational behavior. A genetic algorithm is used to minimize an acceleration-
based objective function considering six optimization variables including the stiffness parameters of 
springs and their arrangement. The optimized springs were built and tested under an actual compressor, 
and the time/frequency responses of the compressor were compared with the initial system. The results 
show the enhanced vibrational behavior of the compressor in its working frequency after optimization.
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1- Introduction
Hermetic compressors are the main components of many 

refrigerating systems. These compressors have a compact 
form that offers a compatible, portable option for refrigerator 
manufacturers. Mechanically, compressors can be considered 
as two-part devices. The internal part consists of the rotor, 
stator, crankshaft, piston, and other components of the 
compression process, and the hard outer shell that protects the 
inner parts and seals everything within, including the whole 
compressing assembly, refrigerant gas, and lubricant oil. 
These two components are connected by a suspension system 
consisting of three or four springs and a discharge pipe that 
takes the compressed refrigerant out. The connecting parts 
contribute to the transmitted vibration generated by the 
rotating crankshaft [1], and therefore they need to be properly 
designed to prevent vibration problems.

Generally, vibration control can be achieved by three 
methods of isolation from the source, in the path, and at the 
receiver [2]. Refrigerator compressors can be considered in 
the same way, where all three approaches are applicable. 
However, most of the efforts have been made to keep the 
vibration isolated from other parts of the refrigerator using 
the second approach, i.e. controlling in the path. The inlet 

and outlet pipes of the refrigerant gas connect the inside 
core and the rigid outer shell. This connection may act as a 
vibration transmitter that disturbingly excites other parts of 
the refrigerator. Suk et al. [3] investigated these pipelines and 
designed the pipes in an innovative approach to reduce the 
vibration transmission. 

From the engineering point of view, vibration isolators 
are systems that react to the vibration and dynamic excitation 
of an object to mitigate the undesirable effects of its 
transmission [4]. Brungart and Riggs [5] used a single layer 
of an elastomer in a marine propulsor to reduce its vibration 
(isolation mount). The rotating feature of the propulsors and 
their interaction with non-uniform flow generated unwanted 
vibrations that needed to be examined. The modified rotor 
showed a reduction of 15 dB in transmissibility compared to 
the rotor with no isolation. Jihuyn Lee et al. [6], investigated 
the location of passive vibration isolators to minimize the 
unwanted exogenous vibrations. By assuming known stiffness 
and damping coefficients of the isolators, they focused on 
optimizing their locations. They managed to reduce the 
(vibration) cost function by reformulating the nonlinear 
problem as a Linear Time-Invariant (LTI) one and using 
methods of optimal control theory. The framework turned out 
to be applicable to passive isolators/dampers in automotive, 
aerospace, and other applications. Gardonio and Elliott [7], 
tried to reduce the transmitted vibration between two plates, *Corresponding author’s email: fshirazi@ut.ac.ir
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connected by a mounting system using an impedance-
mobility matrix. The effects of different active and passive 
isolators were investigated with simulation. Furthermore, they 
choose the proper isolator material for a specific vibration 
system by defining an optimization problem. Gou et al. [8] 
investigated the effects of nonlinear viscous dampers on 
absorbing the force/energy applied on an isolator system. An 
analytical algorithm was obtained via Ritz-Galerkin method 
to study the force transmission in a vibrating system that uses 
damping rubbers to absorb energy. The results showed that 
the nonlinear rubber dampers were more efficient than their 
linear counterparts in a wide frequency range. 

The suspension system optimization problem is more of a 
standard design issue in vehicles than refrigerator compressors. 
Auto-manufacturers have to design and modify the car 
suspension systems, depending on the operating conditions. 
Zehsaz et al. [9] investigated a tractor suspension system 
and optimized its vibrational behavior. They calculated the 
FRFs and measured vibration indexes using accelerometers 
connected to the cabin in road conditions at different speeds. 
Modeling of the vibration system in a finite element software 
was also conducted simultaneously. Optimization was then 
performed to determine the optimal values of the system 
parameters. They observed a significant dynamic improvement 
comparing the final and initial results. Zhongzhe chi et al. [10] 
compared three optimization methods: Genetic Algorithm 
(GA), Porcellio Scaber Algorithm (PSA), and Sequential 
Quadratic Programming (SQP) for a vehicle suspension 
system to minimize passenger’s cabin acceleration. SQP 
was more successful in finding local minima, while the other 
two were more compatible in finding global optimal points. 
The total acceleration of springs was reduced by 32.8% after 
optimizing the vehicle suspension system. Mahmudi et al. [11] 
studied the optimization of suspension system in an off-road 
vehicle. The vehicle suspension system and road conditions 
were modeled in ADAMS. Then, GA optimization was used 
to achieve a better cabin comfort, stability, and handling 
of the vehicle. The results were compared with a baseline 
model in ADAMS and experimental data. Reddy et al. [12] 
investigated a vehicle suspension system for improving cabin 
comfort with GA and RSM methods. Results showed the 
effectiveness of both approaches in finding optimal points for 
stiffness and damping coefficients.

A survey of the literature shows that the studies related 
to suspension system optimization have mainly focused on 
vehicles. Also, the works that have focused on the refrigerator 
compressor’s vibrations were not aiming at the primary 
source. The approach adopted in this paper has therefore 
not been attempted in the previous works mentioned in the 
literature.

Here, a hermetic compressor modeled in Computer-Aided 
Design (CAD) environment including all parts is brought 
into ADAMS for vibration analysis. Boundary conditions 
are then applied, and suspension springs are assembled in 
the model. The exciting external forces in the system are 
included and studied in the ADAMS model. The compressor 
is also modeled as a 6-Degree of Freedom (DoF) system in 

Simulink for design and optimization process. ADAMS and 
Simulink models are compared for verification under similar 
applied forces and boundary conditions. After completing the 
model and ensuring its accuracy, the optimization is carried 
out. The suspension system of the compressor is optimized 
with respect to the stiffness of its main springs and their 
arrangement under the compressor. The final suspension 
is tested in a real compressor system and the experimental 
results are demonstrated.

2- Simulation and Optimization
2- 1- System description

The compressor used in this study is a ½ hp Zanussi 
hermetic compressor (by PADENA Compressor 
manufacturers). The compressor and its CAD models are 
shown in Fig. 1. The interior structure of the compressor is 
composed of the main block for the compression chamber, 
valves and pathways for refrigerant, the stator block and 
windings, rotor, crankshaft and piston, and the suspension 
system including springs and damping rubbers. In each cycle 
of compression, the refrigerant is sucked from the condenser 
and pushed into the evaporator in the refrigerator. 

2- 2- Dynamic model
The compressor is dynamically modeled as a 6-DoF rigid 

body, supported by four compression springs. A coordinate 
system with the origin located at the compressor’s Center 
of Gravity (CG) is considered. It is assumed that Z-axis is 
parallel to the crankshaft axis, as shown in Fig. 2. The 6-DoF 
model of the compressor is described as follows.

The central part has 6 DoFs, three displacements, X, Y, Z 
and three rotations φ, θ and ψ along the three main axes. The 
four points connecting the main springs to the compressor 
have been indexed by 1 to 4 numerically. The distance of the 
CG from all four spring contact points has been shown and 
named accordingly. The distance of the CG along the Z-axis 
from all four positions is equal (d). Along About Y-axis, 
the compressor is symmetric and is divided into two equal 
parts (L), and finally, in the X-axis direction, the compressor 
model is divided into two unequal portions (a and b). The 
main springs are indicated with a single stiffness coefficient 
(K). A schematic view of the suspension system at contact 
point 1 is shown in Fig. 2. The other three have the same 
arrangement as point 1. The main springs have considerable 
lateral stiffness (k’) that should be considered in the system’s 
dynamic equations. For a steel spring, the lateral stiffness can 
be calculated from [13]
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Where K is the vertical stiffness, D is the spring diameter, 
k’ is lateral stiffness, hs is spring length under vertical load, 
and C1 is a coefficient determined by aspect ratio and vertical 
deflection.
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Fig. 1. Hermetic compressor and its CAD model 

 

 

 

 

 

 

 

 

 

Fig. 1. Hermetic compressor and its CAD model 

 

Fig. 2. 6-DOF model of compressor 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 6-DOF model of compressor
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Any displacement of the four corners in any direction 
will cause tension in springs; therefore, forces will apply 
to the main body from these contact points. Forces and 
displacements in the three main directions are shown in Fig. 2 
at a typical corner. They are also listed in Table 1. Each corner 
has its own subscript number for forces and displacements 
in the equations. In order to obtain the dynamic equations 
of motion the Lagrange’s method was employed as follows:

Kinetic Energy:
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Potential Energy:     
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 Lagrangian:   
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 where L T V= −
For further analysis in this paper, forces will be added to 

this equation. The equations for free vibration are obtained 
as follows:
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This 6-DoF system has been simulated and analyzed/
solved in MATLAB-Simulink. The remaining parts of the 
model, such as forces will be discussed in the next section. 
Optimization will also take place in an iterative manner 
between Simulink and MATLAB.  

2- 3- Forces
The force exerted on the system consists of two main 

components. Both of these force components are applied in 
a plane parallel to the XY plane and at the height of 51 mm 
from CG, aligned with the piston/cylinder. The reciprocating 
motion of the piston causes a sinusoidal force in the cylinder 
direction (X); the other force is caused by an unbalanced 
mass on top of the crankshaft produced by the crankshaft’s 
rotation and is applied on the XY plane.

2- 3- 1- Piston force
The cyclic motion of the piston in the cylinder is shown in 

Fig. 3. It depends on the crankshaft’s rotational speed and can 
be evaluated by the following equation [14].
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Table 1. Forces and proportional displacements at the cornersTable 1. Forces and proportional displacements at the corners 

Direction X Y Z 

Force R P F 

Displacement ζ δ Δ 

Relation between displacement and force k’ζ k’δ KΔ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic of the piston-cylinder-crankshaft with related variables/parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic of the piston-cylinder-crankshaft with related variables/parameters
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in which,

e 0

rc
hp

λ

=

=

Acceleration can then be obtained thru the second 
derivative of the displacement as follows:
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Where α is rotational acceleration, ω is rotational speed, 
and mp is the piston’s mass.

2- 3- 2- Unbalanced mass
The forces generated due to the unbalanced masses are 

[15]: 
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Where mu is the unbalanced mass on top of the crankshaft 

and ε is the distance between the rotational axis and the 
unbalanced mass center of gravity. Both of these parameters 
have been measured using a CAD model driven from the in-
hand part shown in Fig. 4 (b) and (c).

In the X-direction, the piston force and unbalanced force 
are in opposite directions and must be subtracted in all periods 
long. 
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Each one of these forces will produce a moment about 
the CG proportional to its direction, magnitude, and distance 
from the CG (lz).
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X YF  , F  , F  ϕ , and Fθ will be applied in Eqs. (5) to (6) 
and (8) to (9).

2- 4- ADAMS model
The compressor was modeled as a rigid steel body with 

a density of 7801 kg/m3 in ADAMS, as shown in Fig. 4(a) 
to compare with the dynamic model of the system derived in 
section 3. 

 

  

 

(a) (b) (c) 

Fig. 4. (a) 3D model of Compressor in ADAMS (b) Crankshaft (c) Unbalanced top mass of the crankshaft  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) 3D model of Compressor in ADAMS (b) Crankshaft (c) Unbalanced top mass of the crankshaft 
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For verification purposes, a particular analysis was done 
using Simulink and ADAMS models, and the outputs were 
compared in the frequency domain. A sinusoidal force with 
a frequency of 50 Hz and a random amplitude of 20 N was 
applied in the X direction for both models. Simultaneously, a 
similar force but with a phase difference of π/2 was applied in 
the Y direction. Both forces were applied to the actual force 
point. The acceleration response of CG was computed for 
both models. Each data set were then passed to MATLAB 
for frequency analysis. The Power Spectrum (PS) for both 
transfer (X) and rotation (θ) parameters were calculated from 
time vs. acceleration. The Power spectrums in both variables 
are shown in Fig. 5. The numerical values of the peak 
frequencies for both methods and their percentage errors are 
listed in Table 2. The numerical values of all parameters used 

in Eqs. (1) and (5) to (10) are listed in Table 3. These values 
were determined based on the CAD model and information 
given by the compressor manufacturer.

The differences between the first peak frequency 
associated with the lumped approach in deriving the dynamic 
model of the compressor. However, as seen in Fig. 5, there 
is an acceptable agreement between the responses and the 
dynamic lumped model which will be used in the next section 
for the optimization.

2- 5- Optimization problem
The purpose of optimization is to reduce the vibrations 

of the system at the working frequency (50 Hz) by designing 
an optimal suspension system. The compressor crankshaft 
rotates at a constant speed causing a harmonic excitation 

 

(a) 

 

(b) 

Fig. 5. Center of gravity PS acceleration comparison in MATLAB and ADAMS (a) in the X direction (b) in the θ direction 

 

 

 

 

 

 

 

Fig. 5. Center of gravity PS acceleration comparison in MATLAB and ADAMS (a) in the X direction (b) in the θ 
direction
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in the system. Knowing the amplitude and direction of the 
exciting force, the compressor geometry, and mass properties, 
optimization of the suspension system can be formulated.  

2- 5- 1- Objective function
The vibrations of the compressor must be evaluated in 

a specified time period that comprises a complete cycle of 
motion. Here, the main purpose is to reduce the vibrations 
of the compressor during its working conditions. Therefore, 
the optimization objective must be a function consisting of 
all motions in that period. Furthermore, the location where 
the acceleration is being examined must be accessible for 
experimental measurements (Fig. 6). Accelerations in all 

three directions were considered as in Eq. (17).

2 2 2. )][ . )][ . )]( ( [ (

O

a i a j a km m

ibject veFunction

RMS RM MS mS R




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1 2 2 2RMS X x x xn1 2n
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(18) 
 (18)

where, (i, j, k) are the unit vectors of (X, Y, Z) and n is the 
sample size.

Table 2. Peak frequencies of acceleration in two X and θ directionsTable 2. Peak frequencies of acceleration in two X and θ directions 

 First Peak Frequency (Hz) Second Peak Frequency (Hz) Third Peak Frequency (Hz) 

ADAMS 4.295 10 50 

Simulink 4.301 10 50 

Error % 0.1 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Initial physical parameters of the compressor model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter K(N/m) L(mm) a(mm) b(mm) M(kg) Iφ(kg.mm2) Iθ(kg.mm2) Iψ(kg.mm2) C1 D(mm) hs 

Magnitude 4838 41.25 41.25 41.25 5.49 126.6 116.5 96.69 1.25 12.2 33 

 

  

Fig. 6. Position of the accelerometer with respect to CG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Position of the accelerometer with respect to CG
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2- 5- 2- Optimization parameters
The stiffness of the four main springs (K) is the main 

parameter which, itself, contains five distinct and changeable 
spring design variables. Any change in main springs’ 
stiffness will change their lateral stiffness as well and will 
cause a whole different dynamic behavior of the system. 
The optimization parameters and their chosen constraints are 
shown in Table 4 [16].

The fifth optimization parameter refers to the material 
forming the spring’s wire chosen from: Music wire, Hard-
Drawn wire, Chrome-Vanadium, and Chrome-Silicon.

The sixth and final optimization parameter is the 
arrangement of the compression springs underneath the 
compressor. The constraints on these arrangements were 
taken into account according to the physical properties of the 
compressor model and its outer shell. There are four different 
allowed symmetric arrangements that were also considered in 
the optimization problem, as shown in Fig. 7.

3- Experimental work
The optimization process led to a new design of springs 

with new arrangements. Experiments were done to support 

the optimization results. As it was mentioned before, the 
objective function was the acceleration of a specific point on 
the compressor with easy access.

3- 1- Laboratory equipment
3- 1- 1- Accelerometer

A Triaxial Piezo-Tronic vibration transducer was used for 
experimental acceleration measurements. The accelerometer 
model was DJB A/130/V as shown in Fig. 8 (a).

3- 1- 2- Data logger and software
To convert the output signals from the accelerometer 

into numerical data, B&K Lan Interface Module Type 
7533 (shown in Fig. 8 (b)) was used as the data logger, and 
B&K PULSE-Labshop was the software used for further 
computations.

To attach the optimized springs to the compressor 
according to optimized arrangement, a new base design was 
required as well (Fig. 9). Both initial and optimal springs were 
attached to the model as shown in Fig. 10 in turn for testing 
and comparing the vibrational behavior of the compressor in 
each situation. 

Table 4. Lower and upper bounds of optimization parametersTable 4. Lower and upper bounds of optimization parameters 

Parameters Lower Bound Upper Bound 
Spring Wire Diameter d (mm) 0.8 2 
Spring Coil Diameter D (mm) 8 20 

Coil Number Na 3 15 
Closing Index ζ 0.15 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Eligible arrangements for compression springs under the compressor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Eligible arrangements for compression springs under the compressor
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(a) (b) 

Fig. 8. Equipment used in experimental measurements (a) DJB A/130/V Triaxial Piezo-Tronic Accelerometer (b) B&K Lan 
Interface Module Type 7533 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Equipment used in experimental measurements (a) DJB A/130/V Triaxial Piezo-Tronic Accelerometer 
(b) B&K Lan  Interface Module Type 7533

 

  

(a) (b) 

Fig. 9. Aluminum base for attaching springs (a) Actual made model (b) Base position under the compressor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Aluminum base for attaching springs (a) Actual made model (b) Base position under the compressor 

 

  

(a) (b) 

Fig. 10. Attached springs on compressor  (a) Initial Model (b) Optimal model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Attached springs on compressor  (a) Initial Model (b) Optimal model
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After preparation of the setup, the far end of compression 
springs was fixed entirely on the ground for reducing the 
error caused by slip. When the compressor reached its stable 
vibration situation, the accelerometer data were stored. A 10 
second record of the measurement signals for each case in 
its stable position was found to be rich enough for further 
calculations.

4- Results and Discussion
4- 1- Optimization results

In this study, the genetic algorithm optimization method 
was used to find the optimal suspension system parameters 
for the compressor model. The population size of 50 was 
chosen for the GA method. The number of generation limits 
was equal to variable numbers multiplied by 100, function 
and constraint tolerance for convergence criteria were both 
set to be 1e-7. Other optimization options were set to default 
values. The optimization program met its convergence criteria 
in the 136th generation. According to the results, the objective 
function decreased from 7.77 to 6.75 m/s2, indicating a 13% 
reduction of the objective function. The initial and optimal 

values of parameters, initial and optimal values of Root-
Mean-Square (RMS) accelerations in X, Y, Z directions, and 
total RMS (objective function) are listed in Tables 5 and 6.

4- 2- Mathematical model validation
To verify the described mathematical model, a comparison 

has been made between the actual model and its 6-DoF 
numerical simulation. The acceleration RMS response of 
the compressor in its stable situation for 10s was used for 
validation. The accelerometer was mounted at the mentioned 
location, and the measurement started after the compressor 
passed its transient behavior. The same approach was applied 
in the MATLAB model. The results are shown in Table 7 for 
comparison. It can be seen that the difference between the 
objective function in the experimental and simulation results 
is less than 3%. Therefore, the mathematical model and the 
following optimization can be considered reliable for further 
application.

4- 3- Experimental results
Our final experiments were aimed to give two comparisons 

Table 5. Initial and optimal values of optimization parametersTable 5. Initial and optimal values of optimization parameters 

 d (mm) D (mm) Na ζ Material Arrangement No. 

Initial 1.7 13.9 8 1.28 Spring Steel 4 

Optimal 1.8 16.8 4 6.55 Chrome-Silicon 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Initial and optimal values of acceleration RMS in the mathematical model
Table 6. Initial and optimal values of acceleration RMS in the mathematical model 

 Initial Optimal Reduction % 
X Acceleration RMS (m/s2) 4.02 3.04 24.44 
Y Acceleration RMS (m/s2) 6.42 5.78 9.8 
Z Acceleration RMS (m/s2) 1.72 1.7 1.02 
Total Acceleration RMS (m/s2) 7.77 6.75 13.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Acceleration RMS comparison between experimental and simulation modelTable 7. Acceleration RMS comparison between experimental and simulation model 

 Simulation Experimental Error % 
X Acceleration RMS (m/s2) 4.12 4.02 2.43 
Y Acceleration RMS (m/s2) 6.61 6.42 2.87 

Z Acceleration RMS (m/s2) 1.47 1.72 14 

Objective Function (m/s2) 7.92 7.76 2.02 
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between the initial and optimal suspension systems of 
the compressor. The first comparison is based upon the 
optimization objective function, which is the acceleration 
RMS in all three directions. The acceleration of the specified 
spot on the compressor is acquired from tests in its steady-
state situation for 10 seconds. Individual accelerations for 
each direction, in addition to the overall RMS, as the objective 
function, are listed in Table 8.

As indicated in Tables 5 and 8, the optimization results are 
correlated with the experimental and mathematical models. 
The best improvements in each direction were sorted by X, 
Z, and then Y. It is noticeable that by reducing the distance 
between springs in Y direction, the compressor would rotate 
more freely around X-axis (θ), hence, the acceleration RMS 
in the Y direction would increase. However, In spite of this 
adverse effect on the objective function, the optimal spring 
design compensated the RMS increase in the Y direction with 
significant reductions along X and Z.

The second comparison was made between the initial and 
optimal results in the frequency domain. The power spectrum 
of acceleration is shown in Fig. 11. The power magnitudes 
of the acceleration in different directions for the operating 
frequency (50 Hz) are also compared in Table 9 showing the 
improved vibrational performance of the system. 

As shown in Fig. 11, the optimal model is only 
more efficient than the initial model around 50 Hz, and 
improvements cannot be seen in other frequency ranges. The 
answer lies within the fact that the system has been optimized 
in its steady-state situation, meaning the motor has passed its 
quick speedup and has reached its 50 Hz rate. Considering 
the significant time the compressor is working on its nominal 
frequency of 50Hz compared to the transient short period of 
turning on and off, the reduction of acceleration RMS in 50 
Hz should justify the optimization.

5- Conclusion
The main purpose of this study was to reduce the vibration of 

hermetic compressors used in conventional refrigerators. The 
compressor was modeled and analyzed as a 6-DoF system in 
MATLAB-Simulink and then in ADAMS for verification and 
accuracy analysis. The suspension system of the compressor 
was primarily considered to be optimized. The optimization 

Table 9. Acceleration power comparison for initial and optimal values in the operating 
frequency of 50 HzTable 9. Acceleration power comparison for initial and optimal values in the operating frequency of 50 Hz 

 Initial Optimal Reduction % 

Power in X direction (m/s2)2 6309.6 4639.8 26.4 

Power in Y direction (m/s2)2 11389 9817.5 13.8 

Power in Z direction (m/s2)2 1983.8 1419.1 4.9 

 

 

 

 

 

 

 

was performed for five different parameters, including the 
main spring design variables and their arrangement under 
the central core of the compressor. The objective function 
was chosen to be the acceleration RMS for three directions 
of a location at the top of the compressor available for 
measurement. The genetic algorithm was used to determine 
the optimal values of the parameters. A major improvement 
in the vibrational behavior of the system (in both time and 
frequency domains) was observed at the working frequency 
of the system comparing the objective function for initial and 
optimal values.
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(c)  

 Fig. 11. Acceleration Power Spectrum for initial and optimal designs (a) X direction (b) Y direction (c) Z direction
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