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ABSTRACT:The COVID-19 pandemic is a severe public health hazard. Hence, proper and early 
diagnosis is necessary to control the infection progression. We can diagnose this disease by employing a 
chest X-ray (CXR) screening, which is ordinarily cheaper and less harmful than a Computed Tomography 
scan (CT scan) and is continuously accessible in small or rustic hospitals. Since the COVID-19 dataset is 
inadequate and cannot be strictly distinguished from CXR, Deep Transfer Learning (DTL) models can be 
used to diagnose coronavirus even with access to a small number of images. In this paper, we presented 
an approach to diagnosis COVID-19 using CXR images based on the concatenated features vector of the 
three DTL structures and soft-voting feature selection procedure, including Receiver of Curve (ROC), 
Entropy, and signal-to-noise ratio (SNR) techniques. Our hybrid model reduces the feature vector size 
and classifies it in optimize manner to improve the decision-making process. A collection of 2,863 CXR 
images comprising normal, bacterial, viral, and COVID-19 cases were prepared in JPEG format from the 
Medical Imaging Center of Vasei Hospital, Sabzevar, Iran. The proposed approach obtained an Accuracy 
of 99.34%, Sensitivity of 99.48%, Specificity of 99.27% while having a far fewer number of trainable 
parameters in contrast to its counterparts. Compared to the latest similar methods, the diagnosis accuracy 
has increased from 1.5 to 2.2%. The comparative experiment reveals the advantage of the suggested 
COVID-19 classification pattern based on DTL over other competing schemes.
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1- INTRODUCTION
COVID-19 is a worldwide disease and epidemic 

infectious sickness [1,2] that has been widespread in almost 
every country since its first origin. Nearly 108.1 M approved 
cases and the deaths of more than 2.36 M people, in mid-
February 2021 was confirmed by WHO [3]. COVID-19 is a 
pandemic originated by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [4]. The exponential growth of 
COVID-19 not only endangers life, but also further affects 
financial business and disturbs world trip. The virus originated 
from pneumonitis [5], an infection caused to inflame alveoli 
[5]. One method of diagnosing lung swelling is to engage 
in CXR radiography. The artificial intelligence (AI) and 
ML procedures assist physicians in recognizing pneumonia 
fast and precisely. Furthermore, CT scans are usually more 
expensive and more deleterious than X-rays and are not 
regularly accessible in small or rustic hospitals. 

The radiologists favor chest X-Ray images, since most 
hospitals acquire X-ray devices [6]. Moreover, considering 
its low cost, CXR is a preferable procedure to diagnose 
COVID-19 in some undeveloped countries. Although 
sometimes the X-ray radiography devices cannot identify 
muscle impairment, soft-tissue lesions, or the defects of other 

parts of the body, a CT scan can overcome these challenges. 
Accordingly, ML-based approaches can efficiently aid in 
analyzing images to minimize the mistake in distinguishing 
infectious diseases. 

Lately, processing procedures have been broadly 
studied to improve the processing of medical images [7]. 
Conventional techniques implement ML algorithms on 
CXR images to detect COVID-19 patients. However, they 
do not focus on detecting false-negatives that cause further 
spread of COVID-19 [8]. Usually, DL methods are famous 
for screening tuberculosis in CXR. DTL improves such 
medical methods to produce more reliable outcomes, extend 
diagnosing scope, and perform real-time employed medical 
and diagnostic schemes [9-11]. These techniques can modify 
and train the weight of networks on a big database, as well as 
fine-tuning the weight of pre-trained networks on a dataset 
with inadequate images. Up to now, many DTL models have 
been proposed to classify various patterns, (e. g., AlexNet 
[12], VGGNet [13], GoogleNet [14], ResNet [15], Xception 
[16], DenseNet [17] and Inception-V3 [18]).

Various novel investigations have considered medical 
images of COVID-19 utilizing several types of DL-based 
methods. Wang et al., [19] introduced an open-source DL 
pattern and fulfilled an extensive standard dataset called 
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COVIDx with 13,975 X-ray radiographs of the patient’s chest 
to detect COVID-19. Their research had an efficiency of 93.3% 
over the COVIDx dataset. Messina and Apostolopoulos [20] 
implemented transfer learning (TL), preparing CNNs on a 
small-size medical image dataset. Their dataset contains 1427 
X-ray images, including 224 COVID-19 confirmed images. 
Their evaluation metrics including accuracy, sensitivity, 
and specificity have been calculated at 96.78%, 98.6%, and 
96.46%, respectively. Narin et al., [9] applied three CNN 
models, particularly InceptionResNet V2, InceptionV3, and 
ResNet50, for automatic determination of COVID-19 to 
interpret CXR images. The outcomes showed the highest 
accuracy of 98% relating to five-fold cross-validation. 
Abbas et al., [21] introduced the De TraC CNN in-depth 
model, which proposes a method based on the transfer of 
knowledge from object detection. They used the mentioned 
transfer of knowledge to recognize COVID 19 CXR images, 
and their plan illustrated an accuracy of 95.55% (precision 
of 93.36% and specificity of 91.87%). In [22], a COVIDX-
Net comprises several CNN in-depth structures proposed that 
analyzed 50 chest radiographs with 25 cases of COVID-19. 
Their outcomes revealed an F-score of 91% and an accuracy 
of 90%. Zhang et al., [23] introduced the construction of a 
DL-based anomaly detection pattern that is utilized in the 
CXR image dataset, and the sensitivity and specificity were 
96% and 70.65%. 

As stated in prior investigations, CT scans of the chest 
perform a low false-positive rate compared to other imaging 
machines, such as X-rays. Therefore, some studies have only 
analyzed CT images to diagnose COVID-19. In [25], a DL 
method has been offered for automatically analyzing infected 
pulmonary areas. They assessed their approach to 300 people 
with coronavirus, leading accuracy of 91%. Extended systems 
cannot ascertain the severity of other cases of pneumonia. 
Gozes et al., [26] formed a DL-based approach to recognize 
and quantify COVID-19 severity from chest CT scan images. 
They evaluated more than 110 infected individuals, and 
the classification accuracy obtained by this process was 
94.80%. Wang et al., [27] employed Inception Net to identify 
COVID-19-related abnormalities in CT scan images of the 
lungs. They examined the InspectionNet architecture on 1065 
CT scan images and distinguished 325 infected individuals 
with 85.20% accuracy. Xu et al. [28] applied 3D CNN 
architecture to detect infections affected by coronaviruses 
from influenza-A (H1N1) viral pneumonia on CT scans. The 
accuracy of the CNN structure has been reported as 86.70%. 
Chen et al., [29] handled UNet++ construction to identify 
coronavirus pneumonia. Following training their architecture 
with 106 patients, they achieved a classification accuracy 
of 98.85%. The time demanded analysis was decreased by 
up to 65%. Das et al. [30], suggested a deep learning-based 
Convolutional Neural Network (CNN) architecture, which 
utilizes the Truncated Inception Net to screen COVID-19 
positive CXRs from other non-COVID and/or healthy cases. 
They strived to extract chest CXR images’ features to detect 
coronavirus infection by improving the COVID-19 diagnose 
neural network (COVNet).

Zheng et al. [31], presented a supervised DL-based 
approach to detect COVID-19 patients by employing a 
3D CT scan. They formed a UNET-trained structure to 
segment 3D images of the lungs. The segmented areas were 
implemented to the DL plan to recognize infected regions. 
The accuracy achieved from their model was 95.9%. Minaee 
et al. [32], exhibited a DL structure as per 5000 images called 
COVID-Xray-5k in which it adopted SqueezeNet, ResNet18, 
ResNet50, Densenet-121, and illustrated an average 
sensitivity of 97.5% and a specificity of 90%. Concerning 
many new DLs, models have been formed for the detection 
of the COVID-19. The study [33] intended to consider 
the accurate tuning of pre-trained CNNs for COVID-19 
classification using CXR images. Recently, methods based 
on combining features extracted from DTL-based networks 
have been proposed, each of which has reported satisfactory 
results from CXR image classification for Covid-19 diagnosis 
[34-36]. 

We need the application of patterns that are automatically 
inferred from the CXR images and various infections similar 
to COVID-19. It can be understood from this respect that 
different models can be appropriated beside the designs, 
such as different classifiers as an integrated representation 
in recognizing abnormal pneumonia. One of the proper 
methods that have lately matured as the essential model 
in classification is deep learning-based methods. In this 
investigation, hybrid deep learning procedures are suggested 
for detecting COVID-19 based on chest X-ray radiographs, 
unlike the several intended approaches in the literature. 
Accordingly, our study’s major contribution is presenting 
a hybrid utilization of a pre-train deep learning framework 
to extract the proper features from CXR images to classify 
various types of pneumonia and COVID-19. Therefore, 
we introduce a COVID-19 detection algorithm that does 
not need an identical decision layer process (i.e. used in 
advanced architectures). We also have solved challenges 
such as vanishing gradient and over-fitting problems, using 
a new methodology based on pre-train structures, hybrid 
feature selection, and optimized classifier. This methodology 
utilizes pre-trained CNN structures (i. e., AlexNet [12], 
Vgg-f [37], and CaffeNet [38]) to extract features from CXR 
images without further preprocessing. This is followed by 
adopting the properties acquired for an optimized SVM-
based classification. We applied a CXR database from Vasei 
Hospital in Sabzevar to evaluate the achievement of the 
proposed model.

The remainder of the research is prepared as follows: 
Section 2 presents the material and method. This section 
explains the chest X-ray datasets employed in experiments 
and the evaluation of the scheme. Section 3 reflects the 
experimental results and outcomes of the proposed model. 
Subsequently, Section 4 consummate the paper and donates 
aspects of future studies.

2- MATERIALS AND METHODS
We stated that the main contributions of COVID-19 

diagnosis have been throughout the analysis of CXR images, 
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concatenated feature extraction via three pre-train structures 
(i.e. non-handcrafted features), feature selection, and 
classification plan. The suggested approach tries to detect 
COVID-19 utilizing CXR images. According to Fig. 1, this 
model employs CXR images without further pre-processing 
or segmentation as input, marking the significant distinction 
between the offered procedure and similar approaches. The 
input radiographs are represented relating CNNs, followed 
by feature selection. The classification step comprises image 
classification as validated COVID-19 cases applying the 
SVM with Gaussian Radial Basis Function (RBF) kernel.

2-1- CXR Images
Our implemented pre-train learning models were prepared 

in MATLAB 2019b environment. Several deep learning 
techniques and classifiers were employed to analyze the CXR 
image for healthy, pneumonia patient, and COVID-19. We 
used a single CPU to process the information. 

Pattern recognition and deep learning toolboxes 
were adopted to carry out the architectures and classifier 
implementation. A sum of 2,863 chest X-ray images in JPEG 
format was gathered, which contained two major categories: 
healthy and pneumonia. Two physicians have clarified the 
type of induced infectious diseases from CXR images in the 
Medical Imaging Center of Vasei Hospital, Sabzevar, Iran. All 
chest X-ray images in the dataset were considered to remove 
low-quality scans. They were also classified by a physician 
and a third-party specialist to prevent any classification errors. 

In this manner, radiographs were administered as a part 
of clinical analysis. Only 676 CXR images (331 normal; 183 
COVID-19; 83 bacterial, and 79 viral images) were chosen 
from the received dataset to show the effectiveness, which 
could generate acceptable results with an inadequate number 
of images depicting about 23.61% of the data available. In 
Fig. 2, the CXR images are represented in four separate 
classes.

 

Fig. 1. A schematic of the proposed method for identifying COVID-19 and similar infectious diseases. 

  

Fig. 1. A schematic of the proposed method for identifying COVID-19 and similar infectious diseases.

 

 

 

Fig. 2. A sample of CXR images collected from four different classes. 

   

Fig. 2. A sample of CXR images collected from four different classes.
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2-2- Pre-train Models
Fig. 3 depicts the overall structure of the DTL. Pre-

trained CNNs in a great natural database use 1000-category 
images, referred to as ImageNet [12,39]. Among them, this 
database comprises medical images as well. While improving 
the suggested approach, three models were preferred and 
concatenated: Vgg-F, AlexNet, and CaffeNet. They are 
similar in structure, with the main variation being the number 
of neurons in the fully-connected (FC) layers and the size of 
the filters used in convolutional layers (CLs). The principal 
variation between this structure and the AlexNet pattern is 
the order of the normalization and pooling layers. AlexNet 
was designed to train and classify the ImageNet database 
for the ILSVRC-2010 architectural purpose. The AlexNet 
architecture incorporates eight layers requiring to be training, 
five CLs with 5×5 and 7×7 filters, following by three FC 
layers as well as max-pooling layers (MPLs). The CaffeNet 
structure is one of the most popular CNNs in DL. It comprises 
five circular layers, each of which is joined by a single layer 
and three FC layers. The VGG-F structure is an 8-layer 
deep convolutional neural network (DCNN). This structure 
is analogous to the one utilized by Krizhevsky et al. [12]. 
In VGG-f, the radiography image size should be applied as 
224×224×3 sizes. Quick processing is assured by the four-
pixel stride in the first convolutional layer. The structure 
has been trained on ILSVRC data applying gradient descent 
(GD) with momentum. The VGG-f additionally is similar 
to AlexNet and presented with two other items: Vgg-s and 
Vgg-m.

The main variation between the three models is the size of 
convolutional filters and the number of layers. The filter size 
influences enhancement of the computational complexity of 
the network. By reducing the size of the filter, a less number 
of processors will be recquired. Notwithstanding, larger-size 
filters utilize more neighborhood data. The main variation 
between Vgg-f and AlexNet prevails that Vgg-f has a lower 
number of filters in the 1st, 3rd, and 4th CLs. Approximately 
4096 features are extracted from the last FC layer of any 
structure.

2-3- Feature Selection
The effectiveness of the suggested soft-voting for subset 

selection has already been investigated [40]. Feature selection 
is conducted by soft-voting three schemes employing the 

signal-to-noise ratio, Entropy, and Receiver operating 
characteristic (ROC). A ROC plot is a graphical plotting 
of the fraction of true positives (TP) against the fraction of 
false positives (FP) for a paired classification scheme that 
the discrimination threshold is different. The area under a 
ROC curve, AUC, is a global estimation of the discrimination 
representation in a pattern. The AUC can be computed 
according as (1) [41]: 

1

0

( )AUC ROC t dt= ∫  � (1)

If the distribution functions of X in the two statistical 
samples are F1(x) and F2(x), the function T can be brought up 
a complement of Fi(x), and as an outcome, we express ROC 
as (2) [41]:

1
1 2( ) ( ( )), (0,1)ROC t T T t t−= ∈ � (2)

A large amount of AUC shows a high overlap between the 
samples’ labels in chest X-rays, and thus, the features with a 
larger AUC are included in the feature selection vector. 

The Entropy measure is represented as (3), also known 
as the Kullback–Liebler (K-L) divergence, and assumes that 
the considered test classes are distributed normally. This 
equation, also called the entropy score, is provided as follows 
[42]:

2 2
21 2

1 22 2 2 2
2 1 2 2

1 1 1( 2) ( )( )
2

Entropy σ σ µ µ
σ σ σ σ

 
= + − + + − 

  �
(3)

Where, µ1, µ2, as well as σ1 and σ2, are the mean of the 
samples and their standard deviation. Selected features are 
ordered according to the highest entropy score. 

The third approach is the SNR method, which is utilized 
to measure the distinction between feature labels that are 
shown as (4) [43]:

1 2

1 2

( , )iSNR f c µ µ
σ σ

−
=

+ �
(4)

The variables c and fi are supposed to be the vectors of 
the chest X-ray labels and the feature vector of the ith. Fig. 
4 presents the trend of feature selection based on the soft-
voting method.

 

Fig. 3. An illustration of the pre-train structures. 

   

Fig. 3. An illustration of the pre-train structures.
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Fig. 4. Soft-voting feature selection 

   

Fig. 4. Soft-voting feature selection

2-4- Classification
The subset selection of concatenated features is applied to 

SVM classifier through different cross-validation (CV). We 
choose the Gaussian RBF kernel and apply the grid search 
function to determine the optimal parameters C and gamma. 
Therefore, the over-fitting problem will be solved, and the 
classification accuracy will increase. The SVM with the 
final aim of finding a hyper-plane as a decision hyper-plan 
in such a way that maximizes the margin between the two 
or four classes in the COVID-19 classification design. The 
parameters of the Gaussian RBF kernel is expressed as (5) 
[44]:

2

2( , ) exp( )
2

i
i

x x
K x x

γ
σ
−

= −  � (5)

The chief reason for applying the Gaussian RBF kernel 
function is that this kernel has fewer numerical complexities, 
possesses less hyper-parameter than other kernels, and a low 
number of regulatory variables (C and gamma) compared to 
other kernels [45].

3- EXPERIMENTAL RESULTS
3-1- Setting

The concatenated features are constructed by 
implementing a deep learning model including CNN, DNN, 
and pre-trained models (i.e. Vgg-f, CaffeNet, and Alexnet). 
We employed other CXR images for training, validation, 
and testing steps. We apply the deep learning package and 
MATLAB software as a library. The models were configured 

with an initial learning rate (μ) of 0.001 and epochs of 50-
2000. Furthermore, the mini-batch size was set to 32 and early-
stopping to 5 epochs if the accuracy was not improved. This 
optimization method fuses Root Mean Square Propagation 
(RMSprop) and Stochastic Gradient Descent (SGD) with 
momentum. Additionally, to eschew the over-fitting problem 
in the deep learning network, this problem was appropriated 
using the dropout process along the early-stopping procedure 
to determine the best training iteration. 

3-2- Assessments
We utilize the confusion matrix that is a table ordinarily 

handled to represent the performance of the classification 
method. The accuracy, precision, recall, F-measure, and AUC 
were determined from this table. To validate the outcomes, a 
k-fold CV was selected (k=5.) This value expressed a broader 
set of images to be tested, which considered 20% of images 
related to tests, 20% for validation, and 60% for training. In 
the SVM classifier, the RBF kernel was used with standard 
parameters. 

We conducted two experiments in our study: (1) binary 
classification and (2) multi-class classification. In the first 
experiment, the overall CXR images are divided into two 
categories: COVID-19 and Healthy (i.e. normal CXR image). 
The multi-class category incorporates Healthy, Bacterial, 
Viral, and COVID-19 classes. The highest, lowest, and mean 
accuracies of binary and multi classifications are illustrated 
in Tables 1 and 2 based on various pre-train designs in two 
scenarios (i.e. low and high sizes of the extracted vector). The 
experiments were replicated five times with a 5-fold CV for 
concatenated of Vgg-f, CaffeNet, and Alexnet architectures. 
The selected vectors with a soft ensembling feature selection 
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Table 1. Experimental outcomes of binary and multi-class classifications in scenario 1 (i. e., the high size of extracted features).

Table 2. The experimental outcomes of binary and multi-class classifications in scenario 2 (i. e., the low size of extracted features).

model. They conducted experiments on 453 CT scans of confirmed COVID-19 cases, reporting an accuracy 

of 89.5%. Another deep learning-based scheme was introduced by Xu et al. [27], who recognized COVID-

19 pneumonia from influenza-A viral pneumonia.  

Table 1. Experimental outcomes of binary and multi-class classifications in scenario 1 (i. e., the high size of extracted features). 

Data 
Divi. 

Pre-train 
model 

Binary classification (Scenario 1) Multi classification (Scenario 1) 
Best Mean Worst Best Mean Worst 

5-
fold 
(1) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.018) 0.97 ± (0.028) 0.94 ± (0.043) 0.92 ± (0.057) 0.91 ± (0.076)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.014) 0.97 ± (0.021) 0.94 ± (0.047) 0.93 ± (0.063) 0.92 ± (0.068)  
Vgg-f 0.99 ± (0.010) 0.98 ± (0.010) 0.98 ± (0.018) 0.94 ± (0.039) 0.93 ± (0.055) 0.92 ± (0.073)  
Concatenate 0.99 ± (0.002) ↑ 0.99 ± (0.005) ↑ 0.98 ± (0.010) ↑ 0.95 ± (0.028) ↑ 0.93 ± (0.041) ↑ 0.92 ± (0.054) ↑ 

5-
fold 
(2) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.016) 0.98 ± (0.019) 0.95 ± (0.032) 0.93 ± (0.062) 0.92 ± (0.058)  
CaffeNet 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.023) 0.93 ± (0.046) 0.92 ± (0.047) 0.92 ± (0.054)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.018) 0.98 ± (0.017) 0.94 ± (0.038) 0.93 ± (0.051)  0.91 ± (0.063)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.018) ↓ 0.95 ± (0.030) ↑ 0.93 ± (0.042) ↑ 0.92 ± (0.047) ↑ 

5-
fold 
(3) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.018) 0.98 ± (0.019) 0.94 ± (0.052) 0.91 ± (0.068) 0.90 ± (0.073)  
CaffeNet 0.99 ± (0.006) 0.98 ± (0.015) 0.97 ± (0.027) 0.95 ± (0.039) 0.92 ± (0.056) 0.91 ± (0.065)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.016) 0.97 ± (0.024) 0.95 ± (0.038) 0.92 ± (0.051) 0.91 ± (0.068)  
Concatenate 0.99 ± (0.002) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.013) ↑ 0.96 ± (0.024) ↑ 0.92 ± (0.038) ↑ 0.91 ± (0.070) ↓ 

5-
fold 
(4) 

AlexNet 0.99 ± (0.007) 0.98 ± (0.019) 0.97 ± (0.024) 0.94 ± (0.040) 0.93 ± (0.041) 0.92 ± (0.064)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.017) 0.98 ± (0.019) 0.94 ± (0.051) 0.93 ± (0.067) 0.92 ± (0.058)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.019) 0.93 ± (0.056) 0.92 ± (0.038) 0.92 ± (0.066)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.012) ↑ 0.94 ± (0.032) ↑ 0.92 ± (0.041) ↓ 0.92 ± (0.051) ↑ 

5-
fold 
(5) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.025) 0.94 ± (0.053) 0.92 ± (0.048) 0.91 ± (0.054)  
CaffeNet 0.99 ± (0.010) 0.98 ± (0.014) 0.97 ± (0.025) 0.94 ± (0.048) 0.93 ± (0.041) 0.90 ± (0.081)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.011) 0.97 ± (0.019) 0.95 ± (0.037) 0.93 ± (0.053) 0.92 ± (0.066)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.005) ↑ 0.98 ± (0.015) ↑ 0.95 ± (0.030) ↑ 0.93 ± (0.048) ↓ 0.92 ± (0.072) ↓ 

 

Table 2. The experimental outcomes of binary and multi-class classifications in scenario 2 (i. e., the low size of extracted features). 

Data 
Divi. 

Pre-train 
model 

Binary classification (Scenario 2) Multi classification (Scenario 2) 
Best Mean Worst Best Mean Worst 

5-
fold 
(1) 

AlexNet 0.99 ± (0.007) 0.98 ± (0.016) 0.97 ± (0.022) 0.95 ± (0.041) 0.93 ± (0.051) 0.90 ± (0.082)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.018) 0.97 ± (0.022) 0.95 ± (0.037) 0.94 ± (0.054) 0.91 ± (0.076)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.011) 0.98 ± (0.021) 0.95 ± (0.036) 0.93 ± (0.052) 0.91 ± (0.071)  
Concatenate 0.99 ± (0.004) ↑ 0.99 ± (0.003) ↑ 0.98 ± (0.013) ↑ 0.95 ± (0.023) ↑ 0.94 ± (0.047) ↑ 0.91 ± (0.078) ↓ 

5-
fold 
(2) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.011) 0.98 ± (0.021) 0.95 ± (0.042) 0.94 ± (0.052) 0.91 ± (0.073)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.018) 0.97 ± (0.024) 0.95 ± (0.039) 0.93 ± (0.057) 0.91 ± (0.078)  
Vgg-f 0.99 ± (0.009) 0.98 ± (0.014) 0.98 ± (0.026) 0.95 ± (0.031) 0.93 ± (0.061)  0.91 ± (0.082)  
Concatenate 0.99 ± (0.005) ↑ 0.99 ± (0.004) ↑ 0.98 ± (0.017) ↑ 0.96 ± (0.026) ↑ 0.94 ± (0.044) ↑ 0.91 ± (0.081) ↓ 

5-
fold 
(3) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.017) 0.98 ± (0.023) 0.95 ± (0.046) 0.93 ± (0.061) 0.91 ± (0.074)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.012) 0.97 ± (0.020) 0.95 ± (0.041) 0.93 ± (0.060) 0.91 ± (0.081)  
Vgg-f 0.99 ± (0.006) 0.98 ± (0.014) 0.97 ± (0.019) 0.96 ± (0.033) 0.94 ± (0.056) 0.90 ± (0.085)  
Concatenate 0.99 ± (0.003) ↑ 0.99 ± (0.002) ↑ 0.98 ± (0.011) ↑ 0.96 ± (0.022) ↑ 0.94 ± (0.043) ↑ 0.91 ± (0.067) ↑ 

5-
fold 
(4) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.017) 0.97 ± (0.028) 0.95 ± (0.047) 0.94 ± (0.047) 0.91 ± (0.073)  
CaffeNet 0.99 ± (0.008) 0.98 ± (0.016) 0.98 ± (0.019) 0.94 ± (0.056) 0.93 ± (0.063) 0.92 ± (0.063)  
Vgg-f 0.99 ± (0.009) 0.98 ± (0.015) 0.97 ± (0.026) 0.94 ± (0.051) 0.93 ± (0.061) 0.91 ± (0.074)  
Concatenate 0.99 ± (0.006) ↑ 0.99 ± (0.002) ↑ 0.98 ± (0.014) ↑ 0.95 ± (0.029) ↑ 0.94 ± (0.054) ↓ 0.92 ± (0.057) ↑ 

5-
fold 
(5) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.016) 0.97 ± (0.028) 0.94 ± (0.051) 0.93 ± (0.053) 0.90 ± (0.085)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.014) 0.97 ± (0.021) 0.95 ± (0.041) 0.93 ± (0.050) 0.91 ± (0.076)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.011) 0.97 ± (0.023) 0.94 ± (0.057) 0.93 ± (0.049) 0.91 ± (0.070)  
Concatenate 0.99 ± (0.005) ↑ 0.99 ± (0.003) ↑ 0.98 ± (0.017) ↑ 0.95 ± (0.038) ↑ 0.93 ± (0.042) ↑ 0.91 ± (0.066) ↑ 

model. They conducted experiments on 453 CT scans of confirmed COVID-19 cases, reporting an accuracy 

of 89.5%. Another deep learning-based scheme was introduced by Xu et al. [27], who recognized COVID-

19 pneumonia from influenza-A viral pneumonia.  

Table 1. Experimental outcomes of binary and multi-class classifications in scenario 1 (i. e., the high size of extracted features). 

Data 
Divi. 

Pre-train 
model 

Binary classification (Scenario 1) Multi classification (Scenario 1) 
Best Mean Worst Best Mean Worst 

5-
fold 
(1) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.018) 0.97 ± (0.028) 0.94 ± (0.043) 0.92 ± (0.057) 0.91 ± (0.076)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.014) 0.97 ± (0.021) 0.94 ± (0.047) 0.93 ± (0.063) 0.92 ± (0.068)  
Vgg-f 0.99 ± (0.010) 0.98 ± (0.010) 0.98 ± (0.018) 0.94 ± (0.039) 0.93 ± (0.055) 0.92 ± (0.073)  
Concatenate 0.99 ± (0.002) ↑ 0.99 ± (0.005) ↑ 0.98 ± (0.010) ↑ 0.95 ± (0.028) ↑ 0.93 ± (0.041) ↑ 0.92 ± (0.054) ↑ 

5-
fold 
(2) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.016) 0.98 ± (0.019) 0.95 ± (0.032) 0.93 ± (0.062) 0.92 ± (0.058)  
CaffeNet 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.023) 0.93 ± (0.046) 0.92 ± (0.047) 0.92 ± (0.054)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.018) 0.98 ± (0.017) 0.94 ± (0.038) 0.93 ± (0.051)  0.91 ± (0.063)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.018) ↓ 0.95 ± (0.030) ↑ 0.93 ± (0.042) ↑ 0.92 ± (0.047) ↑ 

5-
fold 
(3) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.018) 0.98 ± (0.019) 0.94 ± (0.052) 0.91 ± (0.068) 0.90 ± (0.073)  
CaffeNet 0.99 ± (0.006) 0.98 ± (0.015) 0.97 ± (0.027) 0.95 ± (0.039) 0.92 ± (0.056) 0.91 ± (0.065)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.016) 0.97 ± (0.024) 0.95 ± (0.038) 0.92 ± (0.051) 0.91 ± (0.068)  
Concatenate 0.99 ± (0.002) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.013) ↑ 0.96 ± (0.024) ↑ 0.92 ± (0.038) ↑ 0.91 ± (0.070) ↓ 

5-
fold 
(4) 

AlexNet 0.99 ± (0.007) 0.98 ± (0.019) 0.97 ± (0.024) 0.94 ± (0.040) 0.93 ± (0.041) 0.92 ± (0.064)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.017) 0.98 ± (0.019) 0.94 ± (0.051) 0.93 ± (0.067) 0.92 ± (0.058)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.019) 0.93 ± (0.056) 0.92 ± (0.038) 0.92 ± (0.066)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.006) ↑ 0.98 ± (0.012) ↑ 0.94 ± (0.032) ↑ 0.92 ± (0.041) ↓ 0.92 ± (0.051) ↑ 

5-
fold 
(5) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.016) 0.97 ± (0.025) 0.94 ± (0.053) 0.92 ± (0.048) 0.91 ± (0.054)  
CaffeNet 0.99 ± (0.010) 0.98 ± (0.014) 0.97 ± (0.025) 0.94 ± (0.048) 0.93 ± (0.041) 0.90 ± (0.081)  
Vgg-f 0.99 ± (0.008) 0.98 ± (0.011) 0.97 ± (0.019) 0.95 ± (0.037) 0.93 ± (0.053) 0.92 ± (0.066)  
Concatenate 0.99 ± (0.001) ↑ 0.99 ± (0.005) ↑ 0.98 ± (0.015) ↑ 0.95 ± (0.030) ↑ 0.93 ± (0.048) ↓ 0.92 ± (0.072) ↓ 

 

Table 2. The experimental outcomes of binary and multi-class classifications in scenario 2 (i. e., the low size of extracted features). 

Data 
Divi. 

Pre-train 
model 

Binary classification (Scenario 2) Multi classification (Scenario 2) 
Best Mean Worst Best Mean Worst 

5-
fold 
(1) 

AlexNet 0.99 ± (0.007) 0.98 ± (0.016) 0.97 ± (0.022) 0.95 ± (0.041) 0.93 ± (0.051) 0.90 ± (0.082)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.018) 0.97 ± (0.022) 0.95 ± (0.037) 0.94 ± (0.054) 0.91 ± (0.076)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.011) 0.98 ± (0.021) 0.95 ± (0.036) 0.93 ± (0.052) 0.91 ± (0.071)  
Concatenate 0.99 ± (0.004) ↑ 0.99 ± (0.003) ↑ 0.98 ± (0.013) ↑ 0.95 ± (0.023) ↑ 0.94 ± (0.047) ↑ 0.91 ± (0.078) ↓ 

5-
fold 
(2) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.011) 0.98 ± (0.021) 0.95 ± (0.042) 0.94 ± (0.052) 0.91 ± (0.073)  
CaffeNet 0.99 ± (0.007) 0.98 ± (0.018) 0.97 ± (0.024) 0.95 ± (0.039) 0.93 ± (0.057) 0.91 ± (0.078)  
Vgg-f 0.99 ± (0.009) 0.98 ± (0.014) 0.98 ± (0.026) 0.95 ± (0.031) 0.93 ± (0.061)  0.91 ± (0.082)  
Concatenate 0.99 ± (0.005) ↑ 0.99 ± (0.004) ↑ 0.98 ± (0.017) ↑ 0.96 ± (0.026) ↑ 0.94 ± (0.044) ↑ 0.91 ± (0.081) ↓ 

5-
fold 
(3) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.017) 0.98 ± (0.023) 0.95 ± (0.046) 0.93 ± (0.061) 0.91 ± (0.074)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.012) 0.97 ± (0.020) 0.95 ± (0.041) 0.93 ± (0.060) 0.91 ± (0.081)  
Vgg-f 0.99 ± (0.006) 0.98 ± (0.014) 0.97 ± (0.019) 0.96 ± (0.033) 0.94 ± (0.056) 0.90 ± (0.085)  
Concatenate 0.99 ± (0.003) ↑ 0.99 ± (0.002) ↑ 0.98 ± (0.011) ↑ 0.96 ± (0.022) ↑ 0.94 ± (0.043) ↑ 0.91 ± (0.067) ↑ 

5-
fold 
(4) 

AlexNet 0.99 ± (0.008) 0.98 ± (0.017) 0.97 ± (0.028) 0.95 ± (0.047) 0.94 ± (0.047) 0.91 ± (0.073)  
CaffeNet 0.99 ± (0.008) 0.98 ± (0.016) 0.98 ± (0.019) 0.94 ± (0.056) 0.93 ± (0.063) 0.92 ± (0.063)  
Vgg-f 0.99 ± (0.009) 0.98 ± (0.015) 0.97 ± (0.026) 0.94 ± (0.051) 0.93 ± (0.061) 0.91 ± (0.074)  
Concatenate 0.99 ± (0.006) ↑ 0.99 ± (0.002) ↑ 0.98 ± (0.014) ↑ 0.95 ± (0.029) ↑ 0.94 ± (0.054) ↓ 0.92 ± (0.057) ↑ 

5-
fold 
(5) 

AlexNet 0.99 ± (0.009) 0.98 ± (0.016) 0.97 ± (0.028) 0.94 ± (0.051) 0.93 ± (0.053) 0.90 ± (0.085)  
CaffeNet 0.99 ± (0.009) 0.98 ± (0.014) 0.97 ± (0.021) 0.95 ± (0.041) 0.93 ± (0.050) 0.91 ± (0.076)  
Vgg-f 0.99 ± (0.007) 0.98 ± (0.011) 0.97 ± (0.023) 0.94 ± (0.057) 0.93 ± (0.049) 0.91 ± (0.070)  
Concatenate 0.99 ± (0.005) ↑ 0.99 ± (0.003) ↑ 0.98 ± (0.017) ↑ 0.95 ± (0.038) ↑ 0.93 ± (0.042) ↑ 0.91 ± (0.066) ↑ 

of less than 500 had a high hit rate of above 99% in the binary 
classification and 0.95 in multi-classification. By increasing 
the size of the vector, these rates are maintained throughout 
this percentage. Moreover, when only 5% of the features 
are applied, the suggested method can achieve the highest 
accuracy rate. By increasing the size of the vector, these 
rates are maintained throughout this percentage. Moreover, 
when only 5% of the features are applied, the suggested 
method can achieve the highest accuracy rate. Therefore, we 

emphasize the need for feature selection, which expedites the 
classification level and reduces the computational complexity 
in both classification forms.

Our further approach is the proper design with 5% of 
features as it conceded the highest robustness and accuracy. 
As displayed in Fig. 5, converges of the algorithm has the 
minimum value based on differences in the number of 
features. In this figure, the two diagrams describe binary and 
multi classifications. Additionally, the loss value is computed 
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based on the extracted feature from Vgg-f, AlexNet, CaffeNet, 
and Concatenate models in all three pre-train purposes. 

The experiments are fulfilled for the Multi-Layer 
Perceptron (MLP), k-nearest neighbor (k-NN), SVM-
Gaussian, SVM-Polynomial, and SVM-RBF kernels 
classifiers (the K selected in the range of 3 to 5). In Fig. 6, 
the outcomes are examined and compared as a box-plot based 
on various classifiers. As can be observed, the SVM-RBF 
kernel yields the highest accuracy with the lowest number 
of features. Tables 3 and 4 compare the accuracy, precision, 
recall, and f-measure evaluation metrics of the introduced 

method with other state-of-the-art approaches for validation 
and test CXRs. As displayed in Tables 3 and 4, the suggested 
scheme outperforms other methods exhibited in the literature. 
We believe that the outcomes could still be improved by a 
fine-tuning function such as C and γ parameters in the SVM-
RBF kernel classifier. We calculated the AUC for similar pre-
train designs, as illustrated in Fig. 7. These techniques involve 
DenseNet201, ResNet101, and the concatenate model for 
AlexNet, CaffeNet, and Vgg-f networks. In these plots, the 
AUC value of the concatenate strategy is higher. 

 
 

Fig. 5. Accuracy of binary (left) and multi (Right) classifications obtained by the proposed approach, varying the size of the feature vector for 
Vgg-f, CaffeNet, AlexNet, and Concatenated models. 

   

Fig. 5. Accuracy of binary (left) and multi (Right) classifications obtained by the proposed approach, varying the size of the feature vector for 
Vgg-f, CaffeNet, AlexNet, and Concatenated models.

 
 

Fig. 6. Results are compared based on the box-plots shown for different classifiers in which different values of K in K-fold CV are analyzed.  

  

Fig. 6. Results are compared based on the box-plots shown for different classifiers in which different values of K in K-fold CV are analyzed.

 

 
 

Fig. 7. Comparing AUC and ROC curves between  DenseNet201, ResNet101, and  Concatenated pre-train model (K or CV range of 3 to 5).  

 

Fig. 7. Comparing AUC and ROC curves between  DenseNet201, ResNet101, and  Concatenated pre-train model (K or CV range of 3 to 5).
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In Table 5, our suggested usage has been compared with 
existing procedures. Significant correspondence with the 
conclusions of Wang et al. [26], Jaiswal et al. [5], Mpesiana 
et al. [20], and Xu et al. [28] can be witnessed in Table 5. 
Wang et al. [26] extended transfer learning procedures 
employing the Inception model. They conducted experiments 
on 453 CT scans of confirmed COVID-19 cases, reporting 
an accuracy of 89.5%. Another deep learning-based scheme 
was introduced by Xu et al. [27], who recognized COVID-19 
pneumonia from influenza-A viral pneumonia. 

Our suggested recommendation approach was able to 
detect the COVID-19 from bacterial pneumonia (99.31% 
accuracy) and COVID-19 from viral pneumonia (98.83% 
accuracy). We employed three pre-trained CNN networks to 

design a combined transfer learning model and concluded that 
fine-tuning pre-trained CNN networks can be successfully 
used in limited-sized CXR images even without data 
augmentation to discriminate COVID-19 disease. However, 
augmenting the statistical community, investigating patients, 
determining the COVID-19 severity, and exploring their 
influence can contribute to more generalizable outcomes. 
The constraints of our identification procedure based on 
CXR images involve the reliance on the COVID-19, while 
this disease is made by a variety of determinants. Given all 
these challenges, our suggested approach is nevertheless able 
to be considered a robust diagnosis based on CXR images as 
a novel strategy for COVID-19 disease.

Table 3. Comparison of the accuracy, precision, recall, and f-measure evaluation metrics of the proposed strategy with other state-of-the-art 
schemes for binary classifications

Table 4. Comparison of the accuracy, precision, recall, and f-measure evaluation metrics of the proposed strategy with other state-of-the-art 
schemes for multi-class classifications

Table 5. Performance comparison of recent works based on deep learning models
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challenges, our suggested approach is nevertheless able to be considered a robust diagnosis based on CXR 

images as a novel strategy for COVID-19 disease. 

 

Table 3. Comparison of the accuracy, precision, recall, and f-measure evaluation metrics of the proposed strategy with other 

state-of-the-art schemes for binary classifications 

Model Precision Recall F-measure Specificity Accuracy 
Inception 0.953  0.952 0.955  0.957  0.954  
DenseNet201 0.964  0.965  0.966  0.967  0.962  
ResNet101 0.922  0.954  0.950 0.923  0.943  
Vgg16 0.987  0.973 0.982  0.983 0.988 
Proposed  0.995  0.992 0.990  0.991  0.996  

 

Table 4. Comparison of the accuracy, precision, recall, and f-measure evaluation metrics of the proposed strategy with other 

state-of-the-art schemes for multi-class classifications 

Model Precision Recall F-measure Specificity Accuracy 
Inception 0.915  0.916 0.917 0.911  0.913  
DenseNet201 0.916  0.911  0.912 0.914  0.910  
ResNet101 0.909  0.906  0.901 0.905 0.904 
Vgg16 0.912  0.913 0.916  0.919 0.915 
Proposed  0.934  0.938 0.931  0.933  0.935  

 

Table 5. Performance comparison of recent works based on deep learning models 

Author(s) Method Dataset Accuracy Samples 
Wang et al. [19] DL model Collected 0.933 13,975 
Jaiswal et al. [5] DenseNet201 Kaggle 0.952 1262  
Chen et al. [29] UNet++ Collected 0.988 106 
Wang et al. [27] InspectionNet COVIDx 0.852 1065 
Mpesiana et al. [20] DTL model Public 0.967 1427 
Xu et al. [28] 3D CNN Kaggle 0.867  618 
Narin et al. [9] InceptionResNet Kaggle 0.980 - 
Abbas et al. [21] TraC CNN Collected 0.955 - 
Zhang et al. [23] DL-based xVIRAL 0.960 5000 
Shan et al. [25] DL-based Collected 0.916 300 
Gozes et al. [26] DL-based Collected 0.948 110 
Zheng et al. [31] UNET-trained Collected 0.959 499 
Minaee et al. [32] DL framework 5k  0.954 3100 
Proposed  Concatenated Collected 0.993  676  
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Xu et al. [28] 3D CNN Kaggle 0.867  618 
Narin et al. [9] InceptionResNet Kaggle 0.980 - 
Abbas et al. [21] TraC CNN Collected 0.955 - 
Zhang et al. [23] DL-based xVIRAL 0.960 5000 
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4- CONCLUSION
This paper represents a hybrid scheme for diagnosing 

COVID-19 in CXR images using pre-train CNNs. Based 
on the suggested method’s outcomes, the robustness of 
pre-trained CNNs for feature extraction could be measured 
corresponding to other classical state-of-the-art approaches. 
Utilizing the feature selection, we realized that more 
features were required to analyze images, including similar 
viruses, while fewer features were required for images that 
only revealed COVID-19. As discussed, CXR lets local 
hospitals and small clinics carry out analysis in a short 
time. The suggested procedure’s major superiority is that it 
surpasses other state-of-the-art approaches without needing 
a segmentation process. Moreover, we demonstrated the 
robustness of the recommended model applying the collected 
CXR dataset. It is offered that future investigations prospect 
the manner of fine-tuning in the CNN and optimized SVM 
classifiers to develop the generality of COVID-19 information. 
Further to the improvement of CNNs performance, a new and 
large CXR could be utilized to provide validation in daily 
life, promoting this disease’s diagnosis for physicians and 
patients.
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