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ABSTRACT:  In this paper, a speckle noise suppression algorithm based on the 2D Gaussian filter 
is addressed, which employs entropy to estimate the filter’s variance effectively. Speckle noise is an 
inherent characteristic of the coherent imaging systems, which degrades the quality of the resulting 
images. Gaussian filter is a traditional approach for speckle denoising. However, estimating its optimum 
variance is still a challenge. Many algorithms have been developed to estimate the optimum variance, 
but they suffer from the type of noise or a predetermined variance. Our proposed method demonstrates 
an improved 2D Gaussian filter since it estimates the optimum variance of the filter in the context 
of differential entropy between the noisy and filtered images under different p-norms. This optimum 
variance is directly estimated from the speckle noise level of image and it differs for different types of 
noise and images. The optimization problem is numerically solved, and the value of the norm order is 
also appropriately determined. The blind estimation of norm order is also accomplished based on the 
level of noise variance. Finally, the proposed method’s performance is appraised, utilizing both standard 
and real ultrasound (US) images. The quality of filtered images is assessed through the qualitative and 
quantitative simulations in terms of peak signal to noise ratio (PSNR), correlation coefficient (CoC), 
structural similarity (SSIM), and equivalent number of looks (ENL). The experimental results reveal 
the proposed method’s proficiency in contradiction to state-of-the-art despeckling methods through the 
capability of strong speckle noise removal and preserving the edges and local features.
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1- INTRODUCTION
US imaging is a non-invasive imaging modality that 

captures images of the internal organs of the human body 
[1]. This medical imaging system has enormous medical field 
applications such as diagnosis, check-ups, and guidance tools 
in surgeries due to its real-time, portable, affordable, and non-
ionizing capabilities [2]. However, its images suffer from 
artifacts, low resolution, and contrast [3]. The main reason 
for the declined quality of US images is the speckle noise 
resulting from the constructive and destructive interference 
of backscattered echo signals [4]. The speckled image might 
lead to a wrong decision of physicians [5, 6]. Thus, the speckle 
noise suppression from US images is of great importance in 
medical image processing. Some basic descriptions of image, 
noise, and several common speckle noise removal methods 
are given in the following.

The visual depiction of real objects is image. During the 
process of transmission or acquisition of images, a granular 
pattern is introduced, which creates problems for further 
operations [7]. The phenomenon that makes the image 
appearance grainy is called noise. Noise is a random variation 
in image intensities, which makes the image interpretation 
challenging [8]. From the noise source point of view, two 

primary multiplicative and additive noise models have been 
introduced [9]. Suppressing the additive noise is easy due 
to its systematic nature, the ability of easy modeling, and 
the feature of signal Independence [10]. On the other hand, 
multiplicative noise has complex modeling features making 
multiplicative noise reduction problematic. In particular US, 
Speckle is a multiplicative noise that appears in coherent 
imaging systems, laser, and airborne remote sensing [11, 
12]. This type of noise is responsible for the granularity 
[13, 14] and poor visibility by decreasing the contrast of 
essential details and resolution, which plays a critical role in 
segmentation and edge detection [15, 16]. Speckle removal or 
despeckling facilitates subsequent analysis of the image and 
improves the quality metrics [17]. 

Numerous studies have been conducted to effectively 
suppress the speckle noise while retaining the images’ vital 
details. Despeckling filters proposed in these studies can 
be classified into spatial, wavelet-based and nonlocal mean 
filters [18]. Median [19], Wiener [20], neighbor pixels 
averaging (NPA) [21], Lee [22], and Kuan [23] are the 
most efficient spatial filters. They perform well in image 
despeckling. However, they cannot differentiate between 
the edges and noise existing in the image, which is the main 
limitation of these filters resulting in blurring the edges [24]. 
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Wavelet-based denoising methods are the second class of 
despeckling filters. Despite being successful in preserving 
image resolution, ringing effects close to the edges show 
that more developments are required to make this filtering 
class universally effective [17, 25]. The last is Nonlocal mean 
filters, which can preserve edges efficiently [26, 27]. The 
main drawback of this category is their blurring and adhesive 
effects on images. 

Gaussian filter is an example of spatial filters which is 
capable of proficiency restoring the grainy image [25]. Due 
to various types of edges and noise levels in each part of the 
image, it is essential to apply different degrees of smoothness 
provided by the Gaussian filter. Hence, this paper’s main 
contribution is to present an improved 2D Gaussian filter with 
an optimal variance using the entropy concept to suppress the 
speckle noise efficiently. To this end, the p -norm between 
the noisy and denoised images is calculated. Afterward, the 
entropy of the calculated p -norm is determined. Moreover, 
the optimal variance is obtained by identifying the point with 
the highest slop tangent line corresponding to the differential 
entropy function. The estimation of p  in two cases of having 
or not having an estimate of noise variance is discussed.

The remainder of this paper is structured as follows. 
Section 2 presents the speckle noise model in US images. In 
section 3, 2D Gaussian filtering and a brief review of well-
known Gaussian methods are given. Our novel despeckling 
strategy is covered in section 4. In Section 5, the proposed 
method’s performance analysis is appraised compared to the 
state-of-the-art speckle noise reduction methods. Finally, the 
paper is concluded in section 6. 

2- SPECKLE NOISE MODEL IN US IMAGES
In this section, a brief explanation of the speckle noise 

model in US Images is provided. Let us consider an image 
acquired by the US scanner. This image contains speckle 
noise, which affects the human interpretation to differentiate 
the fine details by its granular pattern. The approximate 
general Two-dimensional model of US image influenced by 
speckle noise is represented as [28]:

( , ) ( , ) ( , ) ( , ),I x y f x y x y x yη ν= + � (1)

where ( ),I x y  is the degraded image by the multiplicative 
and additive noises, ( ),f x y  denotes the noise-free image 
and ( ) ,  x yη and ( ),x yν  are the speckle and additive noise 
components. In this equation, x  and y  depict the axial 
and lateral pixel position. Due to the less importance of the 
additive component in contradiction to the multiplicative 
component, Eq. (1) can be rewritten as [28]:

( , ) ( , ) ( , ).I x y f x y x yη= � (2)

Such models help us smooth the uniform regions of image 
where the signal is approximately supposed to be constant. In 
US imaging systems, echo signals need to be compressed to be 

displayed on a monitor. The compression can be applied using 
a log transformation. Log transformation not only converts 
the multiplicative noise to an additive one but also leads to 
amplify powerless backscatters [20]. Moreover, it simplifies 
the US image filtration since the speckle noise is considered 
as white additive Gaussian noise after the transformation. By 
applying a log-transformation on both sides of Eq. (2), the 
following equation is obtained [20]:

( ) ( ) ( )ln , ln , ln , .I x y f x y x yη= + � (3)

In this equation, the ( ),  x yη is approximately the white 
Gaussian noise.

3- SPECKLE REMOVAL USING GAUSSIAN FILTER
Gaussian filter is a linear approach that is extensively 

utilized as a low pass filter to remove different kinds of noise. 
As stated in [25], we employ a 2D Gaussian filter as follows:

( )
2 2

22
2

1, ; ,
2

x y

G x y e σσ
πσ

+
−

= � (4)

where 2σ  represents the variance and determines the 
shape of the filter. In order to assess the smoothing effect 
of 2σ , a 2D Gaussian filter is applied on Pirate image with 
different values of 2σ . The results are shown in Fig. 1. Fig. 
1(a,b) represent the 2D Gaussian filter shape with 2 2σ =  
and 5 . Additionally, the corresponding filtered images are 
exhibited in Fig. 1(c,d). It is clear that as the amount of 2σ  
increases, the amount of smoothing, and image details such 
as edges enhance and the borders become more blurred.

Filtering by a 2D Gaussian filter can be viewed as a 
convolution taken based on the 2D Gaussian kernel. In other 
words, the center pixel of the kernel will be replaced by the 
weighted averaging of its own and neighbors’ pixels where 
the weighing factors follow from Eq. (4). Such an operation 
will be continued by sliding the window through all the image 
pixels. 

It is noteworthy to mention that determining the variance 
value has been a high priority issue in the last decades. 
One of the initial works on the image noise reduction issue 
using an optimal Gaussian filter can be traced back to [29] 
when the authors demonstrate a relationship between noise 
statistics knowledge and choosing an optimum Gaussian 
filter. Initially, they depict that the Gaussian filter’s properties 
associate with the noise statistics and the signal. Afterwards, 
according to the derived relationship, an optimal Gaussian 
filter is identified that is able to suppress the noise efficiently. 
Another study proposed an adaptive noise removal method 
in which the strength changes based on the noise type, image 
contrast, and the intensity [25]. The proposed method is 
made up of a Gaussian core with a variable kernel structure. 
Likewise, to achieve efficient denoising results, the smoothing 
strength is supervised by a neural network. In [30]. the author 
recommended a novel variance estimator for the Gaussian 
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filter to denoise the image based on the relationship between 
the linear diffusion and Gaussian scale space. In such studies, 
the image gradient’s median absolute and the noise variance 
are utilized to match the estimates to the image structure. 
The results indicate that such an adaptive Gaussian filter has 
superior results compared to noise diffusion filters. Another 
attempt in image denoising domain is [31], in which a new 
methodology to estimate the variance value of the Gaussian 
filter is developed. In this work, an adaptive Gaussian 
filtering algorithm based on Hudson’s work is introduced. 
Additionally, the filter’s variance is adapted to the signal’s 
local variance and noise characteristics. Images filtered by 
such a Gaussian method have smaller mean square errors 
than those filtered by non-adaptive Gaussian techniques. 
Furthermore, the edge points will be less distorted by the 
adaptive Gaussian filter, since the filter’s variance have the 
minimum values there.  

Despite all its advantages, there is an assumption 
constraining the application of the mentioned filter, which is 
the image’s noise type that should be Gaussian noise with a 
known variance.

Different kinds of images have different types of 
histograms and intensities. By considering the effect of noise 

and their various variance, applying a Gaussian filter with a 
predetermined variance will not give an admissible outcome. 
Meanwhile, the determination of variance of the Gaussian 
filter should be according to the image content. In this paper, 
we are determined to introduce an approved 2D Gaussian 
filter with changeable variance regarding the image content.

4- PROPOSED METHOD
Now, we propose an improved 2D Gaussian filter which 

reduces the speckle noise effectually. To achieve this goal, 
the noise removal equation of the noisy image using a 2D 
Gaussian filter is presented as the following:

( ) ( ) ( )

( )
( ) ( )2 2

22
2

ˆ , ; , , ;

1 , ,
2

x y

I x y I x y G x y

I e d d
α β

σ
α β

σ σ

α β β α
πσ

− + −
−

= ∗

= ∫ ∫
� (5)

where ( )ˆ , ;I x y σ  shows the filtered or denoised image and 
* denotes convolution operator. To improve the performance, 
a variance value estimation for the 2D Gaussian filter is 
discussed. We aim to estimate the variance based on the p
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(b) 

 

(c) 

 

(d) 

Fig. 1. Performance comparison of the 2D Gaussian filter in terms of different 𝜎𝜎 values. (a, b) 2D Gaussian filter shape with 
𝜎𝜎 � � and 5. (c, d) Corresponding filtered images. 

Fig. 1. Performance comparison of the 2D Gaussian filter in terms of different σ values. (a, b) 2D Gaussian filter shape with σ=2 and 
5. (c, d) Corresponding filtered images.
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-norm distance of the noisy image and the filtered one. Its 
mathematical representation is expressed as:

( ) ( ) ( )ˆ ˆ, ; , , ; ,
p

D I I I x y I x yσ σ= − � (6)

where 1p >  is the norm order and D  denotes a measure 
of the difference between the two images. Afterwards, we 
need to appropriately determine the value of σ , which 
ensures the optimum filtering in the context of distance 
mentioned before. Moreover, the original noise-free image 
is not accessible. Many techniques use a predefined constant 
value for σ  to overcome this problem. We introduce an 
approach based on the entropy concept to obtain the optimum 
σ . Entropy is a statistical measure of randomness. Recently, 
the entropy concept has been extensively applied on image 
segmentation [32] and optoacoustic tomographic image 
reconstruction [33]. In this work, we utilize entropy in the 
content of Gaussian filter variance estimation to eliminate the 
speckle noise. To this end, we calculated the entropy of Eq. 
(6) as follows:

( ) ( ) ( )ˆ, ; , ln , ,D D Dx y
H I I p x y p x y dydxσ = −∫ ∫ � (7)

where ( ),Dp x y  is the probability density function of 
( )ˆ, ;D I I σ . In order to find the optimum σ , we have defined 

an optimization problem on the entropy using 500 points in 
the interval of 0 to 5. A typical diagram of obtained entropy is 
illustrated in Fig. 2(a). This figure shows that as the value of 
standard deviation (std) increases, the differential entropy’s 
behavior increases monotonically. Thus, we are looking for 
a point where the tangent line has the highest slope to the 
differential entropy curve. Such point corresponds to the 
optimum std (variance). The proposed method considers the 

optimum value of σ  as the point where the entropy derivative 
has its maximum value. To find the optimal variance, the 
derivative of obtained entropy curve is computed. The 
derivative function of Eq. (7) and its maximum value are also 
plotted in Fig. 2(b). The maximum value for the derivative 
of differential entropy corresponds to the differential entropy 
curve’s tangent line with the max slope. Finally, the optimal 
std value is calculated as:

 
( )ˆˆ arg max , ; .p

D
d H I I

dσ
σ σ

σ
= � (8)

According to this relation, the effect of the norm order (
p ) has been taken into account in the computation of the 

optimal σ . As the last step, the appropriate norm order must 
be introduced simply and comprehensively.

5- NORM ORDER ESTIMATION
Choosing the proper p  plays a vital role in parameter 

estimation of 2D Gaussian filter based on the addressed 
technique. The selection procedure is categorized into two 
cases, having or not having an estimate of the variance of 
speckle noise.

In the case of having a noise variance estimation, we 
introduced a relationship between p  and the noise variance. 
We used regression to estimate the value of p . It was 
observed according to the made efforts that the p  value 
varies linearly with the noise variance. Hence, we performed 
a two order linear regression on std. Afterwards, we could find 
its coefficients according to the optimization and rounding 
made. Thus, the approximate estimation of p  behavior 
versus the different values of speckle variance is as follows:

240 1,p ησ= + � (9)

 

   

 

(a) 

 

(b) 

Fig. 2. Differential entropy curves. (a) p-norm differential entropy curve between noisy and denoised images. (b) Differential 
entropy derivative curve. 

Fig. 2. Differential entropy curves. (a) p-norm differential entropy curve between noisy and denoised images. (b) Differential entropy 
derivative curve.
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where 20 1ησ< <  is the normalized speckle noise variance. 
In introducing the above relation, we have some observations 
in simulations. For images corrupted by low-level noise, 

1p =  reveals good results. Moreover, by increasing the noise 
level, p  tends to grow to 4, 5, and higher levels for better 
performance. Based on linear regression, we concluded our 
observations by fitting a linear curve expressed in Eq. (9).

On the other hand, in the blind case where we have no 
estimate of the noise variance from the noise level of images, 
a proper value for p  is chosen. Meanwhile, we defined three 
categories based on the noise level. The first class belongs to 
high SNR images meaning that they are corrupted by low-
level noise. For such an image, the p  value is chosen from 
the range of 1 to 2. The second images are those which are 
degraded by the medium noise level. For these images, p  
lies in the interval of 2 to 4. Finally, for the low SNR 

images, p  takes values greater than 4. The above 
mentioned p  selection procedure is summarized as:

5. Norm Order Estimation 

Choosing the proper 𝑝𝑝 plays a vital role in parameter estimation of 2D Gaussian filter based on the addressed 

technique. The selection procedure is categorized into two cases, having or not having an estimate of the 

variance of speckle noise. 

In the case of having a noise variance estimation, we introduced a relationship between 𝑝𝑝 and the noise 

variance. We used regression to estimate the value of 𝑝𝑝. It was observed according to the made efforts that 

the 𝑝𝑝 value varies linearly with the noise variance. Hence, we performed a two order linear regression on 

std. Afterwards, we could find its coefficients according to the optimization and rounding made. Thus, the 

approximate estimation of 𝑝𝑝 behavior versus the different values of speckle variance is as follows: 

 240 1,p = +  (9) 

where 0 < 𝜎𝜎𝜂𝜂2 < 1 is the normalized speckle noise variance. In introducing the above relation, we have 

some observations in simulations. For images corrupted by low-level noise, 𝑝𝑝 = 1 reveals good results. 

Moreover, by increasing the noise level, 𝑝𝑝 tends to grow to 4, 5, and higher levels for better performance. 

Based on linear regression, we concluded our observations by fitting a linear curve expressed in Eq. (9). 

On the other hand, in the blind case where we have no estimate of the noise variance from the noise level 

of images, a proper value for 𝑝𝑝 is chosen. Meanwhile, we defined three categories based on the noise level. 

The first class belongs to high SNR images meaning that they are corrupted by low-level noise. For such 

an image, the 𝑝𝑝 value is chosen from the range of 1 to 2. The second images are those which are degraded 

by the medium noise level. For these images, 𝑝𝑝 lies in the interval of 2 to 4. Finally, for the low SNR  

images, 𝑝𝑝 takes values greater than 4. The above mentioned 𝑝𝑝 selection procedure is summarized as: 

 
High SNR: ‍‍ ‍‍‍ 1 2
Medium SNR: 2 4
Low SNR:      4  

p
p

p

 
  
 

 (10) � (10)

Our suggestion for the p  value per each interval is as 
follows: if the image has a low-level noise, a good choice 
can be 1.5. On the other hand, it is better for images with 
medium-level noise to select the p  value as 3 or 4. Finally, 
the p  value of 5 or 6 can be applied for images having a 
high-level noise.

6- EXPERIMENTAL RESULTS
In this section, an experimental assessment of the proposed 

method in contradiction to some state-of-the-art despeckling 
techniques is accomplished.

6-1- Experiments on Standard Images
In this paper, the standard dataset contains six images with 

a resolution of 256×256 pixels; 1) boats, 2) cat, 3) houses, 4) 
Lena, 5) room, and 6) pirate as demonstrated in Fig. 3. The 
noise variance is considered 0.01, 

0.05, and 0.1 for low, medium, and high noise levels, 
respectively. The performance of the proposed method is 

examined with eight well-known filters: 1) average filter, 2) 
Wiener filter, 3) adaptive median filter (AMF), 4) Lee filter, 
5) Kuan filter, 6) Frost filter, 7) non-local mean (NLM) filter, 
and 8) wavelet filter. In this paper, the Stein’s unbiased risk 
estimate (SURE), which is one of the more popular selections 
in the wavelet domain, is used for image denoising. This 
threshold selection algorithm uses shrinkage operators (soft 
thresholding) and minimizes a risk function. Additionally, 
the wavelet filter bank of biorthogonals (bior4.4) is used 
[34]. Since PSNR, CoC and SSIM are powerful and the 
most used performance evaluation metrics in the image 
processing applications, they have been utilized to evaluate 
the proficiency of the methods [35].

PSNR is one of the image quality evaluation metrics 
determining the different filtering techniques effects [20]. 
It is the maximum signal-to-noise ratio and represents the 
relationship between the original image and the filtered one 
[36]. PSNR can be defined as following expression [37, 38]:

1020log .IMAXPSNR
MSE

 
=  

 
� (11)

In this expression, IMAX  represents the max value of 
the filtered image and the mean squared error (MSE) can be 
defined as [20]:

( ) ( ) 2

1 1

1 ˆ[ , , ] .
NM

x y
MSE I x y I x y

MN = =

= −∑∑ � (12)

The higher PSNR value depicts an improvement in noise 
reduction.

SSIM is another image quality metric that evaluates 
the similarity between the reference image and the 
despeckled image [20, 36]. SSIM is mainly designed based 
on the multiplicative combination of three comparison 
measurements, luminance, contrast, and structural [39]. It is 
computed by [36]:

( )( )
( )( )

1 , 2

2 2 2 2
1 2

2 2cov
.x y x y

x y x y

C C
SSIM

C C

µ µ

µ µ σ σ

+ +
=

+ + + +
� (13)

 

   

 
(a) boats 

 
(b) cat 

 
(c) houses 

 
(d) Lena 

 
(e) room 

 
(f) pirate 

Fig. 3. Standard images with resolution of 256×256 pixels 
Fig. 3. Standard images with resolution of 256×256 pixels
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In this equation, xµ  and xσ  represent the mean and 
standard deviation of x . yµ  and yσ  are the mean and 
standard deviation of y . 1C  and 2C  are constant values. 
SSIM values varies in the range of [-1,1]. The closer 

the SSIM value is to 1, the more the images become 
similar to the despeckled and reference images, and there is 
almost no difference between them [40].

CoC is the last used quality metric on the standard images. 
CoC represents the linear relationship between the restored 
and the reference images by calculating their pixels’ variation 

accompanying the two images’ average. It is given as [41]:

2 2

ˆ ˆ( ( , ) ( , ))( ( , ) ( , ))
,

ˆ ˆ( ( , ) ( , )) ( ( , ) ( , ))

I x y I x y I x y I x y
CoC

I x y I x y I x y I x y

− −
=

− −

∑
∑ ∑

� (14)

where the ( ),I x y  and ( )ˆ ,I x y   are the mean of original 
and the filtered images. The range of CoC varies from -1 to 
1. The coefficients close to 1 indicate the stronger correlation 
between the images [21].

 

   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 4. Despeckling results for houses image. (a-c) Speckled images with noise variances of 0.01, 0.05 and 0.1, respectively. 
(d-f) Results by Wiener filter. (g-i) Results by proposed method. 

Fig. 4. Despeckling results for houses image. (a-c) Speckled images with noise variances of 0.01, 0.05 and 0.1, respectively. (d-f) 
Results by Wiener filter. (g-i) Results by proposed method.
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First, the noise-free images shown in Fig. 3 are degraded 
with different levels of speckle noise. Afterwards, they are 
denoised by the techniques mentioned above. Finally, the 
quantitative results in terms of PSNR, SSIM, and CoC are 
provided. The merit of the proposed approach is quantitatively 
and visually assessed on dataset images. It is noted that 
we used the Monte Carlo method for validation, since the 
speckle noise is added to the standard dataset and we perform 
statistical analysis. In other words, for each level of noise, 
the denoised image is estimated 100 times with different 
speckle noise and averaged quantitative metrics of these 100 
experiments.

To visually assess, our 2D Gaussian filter-based method is 
compared with the Wiener filter, and the results for the houses 
image are demonstrated in Fig. 4. This figure shows the three 
speckled version of the houses image and the corresponding 
denoised images, using the proposed method and the Wiener 
filter. Our novel approach reveals a better performance than 
the Wiener filter, which is one of the most potent filters in 
preserving fine details and suppressing the speckle noise.  

PSNR results provided in Table 1 show the proposed 
method’s noise reduction capability in contradiction to the 
filters mentioned above. For example, for the Lena image in 
the case of 2σ = 0.05, the proposed filter with a PSNR of 

Table 1. PSNR (dB) performance analysis of standard images for different speckle noise level.

 1020log .IMAXPSNR
MSE

 
=  

 
 (11) 

In this expression, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 represents the max value of the filtered image and the mean squared error (MSE) 

can be defined as [20]: 

 ( ) ( ) 2

1 1

1 ˆ[ , , ] .
NM

x y
MSE I x y I x y

MN = =

= −  (12) 

The higher PSNR value depicts an improvement in noise reduction. 

SSIM is another image quality metric that evaluates the similarity between the reference image and the 

despeckled image [20, 36]. SSIM is mainly designed based on the multiplicative combination of three 

comparison measurements, luminance, contrast, and structural [39]. It is computed by [36]: 

 
( )( )
( )( )

1 , 2

2 2 2 2
1 2

2 2cov
.x y x y

x y x y

C C
SSIM

C C

 

   

+ +
=

+ + + +
 (13) 

Table 1. PSNR (dB) performance analysis of standard images for different speckle noise level. 

𝜎𝜎𝜂𝜂2 Images AMF Wiener average NLM Frost Lee Kuan wavelet proposed 
 
 
0.01 

boats 26.09 29.40 26.43 30.43 28.05 27.66 25.37 28.90 29.27 
cat 29.48 31.37 29.43 30.03 30.33 29.94 27.90 30.38 32.23 
houses 27.57 30.31 27.84 30.19 29.86 29.57 26.31 29.88 31.02 
Lena 26.61 30.07 26.74 30.56 28.21 27.74 25.19 29.51 29.36 
room 26.61 29.20 26.26 30.08 27.84 27.37 25.10 29.25 29.59 
pirate 27.42 30.36 27.52 30.37 29.05 28.66 26.84 29.69 30.42 

 
 
0.05 

 

boats 19.76 24.22 24.29 25.26 25.20 24.97 23.60 23.56 25.41 
cat 23.83 25.80 27.75 24.16 28.39 28.09 26.66 23.78 28.63 
houses 21.55 25.13 25.68 25.39 26.90 26.74 24.62 25.02 27.17 
Lena 20.64 24.60 24.80 25.44 25.68 25.39 23.75 24.53 25.85 
room 20.67 24.70 24.56 25.14 25.58 25.25 23.77 24.84 25.88 
pirate 21.27 25.04 25.58 25.39 26.50 26.24 25.12 24.22 26.69 

 
 

0.1 

boats 17.08 21.59 22.64 22.92 23.19 23.07 22.17 21.23 23.76 
cat 21.22 22.98 26.30 21.75 26.75 26.54 25.52 20.97 27.10 
houses 18.83 22.48 23.91 23.38 24.68 24.62 23.19 22.79 25.28 
Lena 17.97 22.00 23.21 23.26 23.76 23.60 22.46 22.31 24.26 
room 17.97 22.19 23.09 23.15 23.76 23.56 22.49 22.81 24.27 
pirate 18.54 22.32 24.00 23.29 24.57 24.43 23.68 21.79 25.07 

Table 2. SSIM comparison under noise variances of 0.01, 0.05 and 0.1.

In this equation, 𝜇𝜇𝑥𝑥 and 𝜎𝜎𝑥𝑥 represent the mean and standard deviation of 𝑥𝑥. 𝜇𝜇𝑦𝑦 and 𝜎𝜎𝑦𝑦 are the mean and 

standard deviation of 𝑦𝑦. 𝐶𝐶1 and 𝐶𝐶2 are constant values. SSIM values varies in the range of [-1,1]. The closer  

the SSIM value is to 1, the more the images become similar to the despeckled and reference images, and 

there is almost no difference between them [40]. 

CoC is the last used quality metric on the standard images. CoC represents the linear relationship between 

the restored and the reference images by calculating their pixels' variation accompanying the two images' 

average. It is given as [41]: 

 
2 2

ˆ ˆ( ( , ) ( , ))( ( , ) ( , ))
,

ˆ ˆ( ( , ) ( , )) ( ( , ) ( , ))

I x y I x y I x y I x y
CoC

I x y I x y I x y I x y

− −
=

− −


 

 (14) 

where the 𝐼𝐼(̅𝑥𝑥, 𝑦𝑦) and 𝐼𝐼(̅𝑥𝑥, 𝑦𝑦)  are the mean of original and the filtered images. The range of CoC varies 

from -1 to 1. The coefficients close to 1 indicate the stronger correlation between the images [21]. 

First, the noise-free images shown in Fig. 3 are degraded with different levels of speckle noise. Afterwards, 

they are denoised by the techniques mentioned above. Finally, the quantitative results in terms of PSNR, 

SSIM, and CoC are provided. The merit of the proposed approach is quantitatively and visually assessed 

Table 2. SSIM comparison under noise variances of 0.01, 0.05 and 0.1. 

𝜎𝜎𝜂𝜂2 Images AMF Wiener average NLM Frost Lee Kuan wavelet proposed 
 
 
0.01 

boats 0.631 0.801 0.750 0.823 0.786 0.777 0.749 0.765 0.778 
cat 0.865 0.887 0.852 0.891 0.871 0.861 0.842 0.901 0.920 
houses 0.723 0.820 0.790 0.819 0.821 0.813 0.787 0.807 0.847 
Lena 0.642 0.805 0.751 0.826 0.790 0.779 0.748 0.792 0.787 
room 0.696 0.815 0.751 0.845 0.795 0.780 0.751 0.819 0.832 
pirate 0.735 0.845 0.797 0.843 0.831 0.822 0.800 0.821 0.853 

 
 
0.05 

boats 0.399 0.576 0.590 0.598 0.615 0.604 0.589 0.530 0.629 
cat 0.694 0.781 0.803 0.754 0.824 0.811 0.794 0.752 0.836 
houses 0.454 0.658 0.680 0.648 0.706 0.695 0.678 0.627 0.723 
Lena 0.396 0.586 0.601 0.623 0.629 0.617 0.597 0.575 0.643 
room 0.431 0.633 0.627 0.638 0.663 0.645 0.627 0.622 0.683 
pirate 0.474 0.667 0.683 0.663 0.713 0.701 0.684 0.620 0.725 

 
 
0.1 

boats 0.308 0.472 0.506 0.491 0.526 0.515 0.505 0.434 0.557 
cat 0.589 0.710 0.758 0.687 0.779 0.765 0.750 0.673 0.789 
houses 0.330 0.555 0.596 0.552 0.618 0.606 0.594 0.528 0.650 
Lena 0.297 0.476 0.512 0.519 0.535 0.522 0.508 0.472 0.571 
room 0.320 0.518 0.540 0.527 0.571 0.553 0.540 0.513 0.603 
pirate 0.354 0.562 0.602 0.570 0.627 0.615 0.602 0.518 0.654 
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25.85 dB is better, at least with a 0.17 dB margin to the next 
better one. After the proposed method, the Frost filter has the 
highest PSNR value of 25.68 dB. Additionally, by considering 
the PSNR results of all the despeckling methods on the pirate 
image with 0.05 and 0.1 noise variances, it is observed that 
the best and worst results belong to the proposed method 
and AMF. Moreover, for the houses image with 0.01 noise 
variance, it is observed that the proposed method with the 
PSNR value of 31.02 dB has the maximum value and the Kuan 
filter with the PSNR value of 26.31 dB denotes the minimum 
value. By considering the results obtained for boats, Lena and 
room images in the noise variance of 0.01, it is perceived that 
the NLM filter reached the best performance in term of PSNR 
value. After the NLM filter, the Wiener filter and the proposed 
method depict the second and third-best PSNR values in boats 
image. In the case of Lena image, in addition to NLM filter, 
the Wiener and wavelet filters have better performance than 
the proposed method. Finally, in the room image with the 
noise variance of 0.01, the proposed method with the PSNR 
value of 29.59 reached the second-rank after the NLM filter. 
Table 2 reveals the SSIM values resulting from the above-
mentioned speckle noise reduction algorithms. The proposed 
method provides the best despeckling performance on all 
images for the noise variance of 0.05 and 0.1. For instance, 
in the noise variance of 0.05, it demonstrates the first-best 
performance on the 

boats, cat, houses, Lena, room, and pirate images with 
the SSIM of 0.629, 0.836, 0.723, 0.643, 0.683, and 0.725. 
Additionally, the reached SSIM values of 0.557, 0.789, 
0.650, 0.571, 0.603, and 0.654 from the boats, cat, houses, 
Lena, room, and pirate images prove the proposed methods’ 
proficiency in the noise variance of 0.1. Based on the results, 
it has been observed that the Frost filter has slightly similar 
SSIM values to the proposed method. However, Frost, Wiener 
and NLM filter exhibit relatively larger SSIM values in the 
boats image with a 0.01 noise variance. According to Table 
2, NLM, Wiener and Frost filter have the best performance 
in boats image with 0.045, 0.023 and 0.008 margin to the 
proposed method. Although in Lena image, in addition to 
NLM, Frost and Wiener filters, the wavelet filter also presents 
better performance than the proposed method in the noise 
variance of 0.01. In the case of room image, the NLM and 
the proposed filters with the PSNR values of 0.845 and 0.832 
ranked first and second at speckle noise reduction.

In Fig. 5, the CoC values of our proposed method and all 
aforementioned despeckling methods applied on six images 
are plotted for different noise levels. For example, Fig. 5(b) 
represents the CoC values for the cat image. According to this 
figure, results depict the supremacy of our method compared 
to other despeckling algorithms. The CoC values of 0.994, 
0.986, and 0.980 are recorded for the proposed method in 
the cases of 0.01, 0.05, and 0.1 noise variances, respectively. 
Results also revealed that after the suggested method, other 
approaches including Frost, Lee, and average filters, have 
the highest CoC values for 0.05 and 0.1 noise variances. In 
the noise variance of 0.01, Wiener, Frost, and wavelet filters 
reached the highest CoC values after the proposed method. 

Furthermore, the proposed method’s comparison results for 
the pirate image are illustrated in Fig. 5(e). By comparing 
the methods in the noise variance of 0.01, it was observed 
that the proposed method with the CoC value of 0.987 has 
the best performance, followed by CoC values of 0.986, 
0.986, 0.984, 0.982, 0.980, 0.974, 0.973, and 0.969 for NLM, 
Wiener, wavelet, Frost, Lee, average, AMF, and Kuan filters. 
It is noteworthy to mention that by considering Lena, room 
and boats’ results, it was perceived that the NLM filter has 
the highest CoC values in the noise variance of 0.01. In these 
cases, the proposed method has the second-best performance, 
while in the higher noise variances, it ranked first in speckle 
noise suppression.

6-2- Experiments on Real US Images
In this section, six real US images of breast cancer [42] 

with the resolution of 512×512 pixels are used to assess the 
performance of the proposed method and the state-of-the-art 
despeckling methods, which are mentioned in Section 6.1. 
These images are shown in Fig. 6(a-f). They are obtained 
from http://onlinemedicalimages.com.

It is noteworthy to mention that since the noise variance 
is unknown in this case, we have to follow the blind case 
structure for the proposed method. Looking at the US images, 
it can be perceived that they have 

been corrupted by the medium to high speckle noise. 
Therefore, the p  value should be selected from the range 
of 2 to 4 corresponding to the medium SNR. In this case, the 
proposed method is performed by the p =2. Filtered images 
using the proposed method are exhibited in Fig. 6(e-h). In 
these figures, it is observed 

that the proposed method depicts a strong ability of 
speckle noise suppression. In addition, it preserves the edges 
and details efficiently. 

The ENL metric is used for quantitative evaluation of 
the despeckling performance of different methods from US 
images in the absence of reference images. ENL is a standard 
measurement metric which measures the despeckling 
capability of different methods in the homogeneous areas [36, 
43]. It can be computed by [6]:

2

.ENL µ
σ
 =  
 

�  (15)

In this equation, the mean and standard deviation of 
homogeneous regions are depicted by µ  and σ . The higher 
values of ENL presents an excellent despeckling ability. 

In this paper, two regions of interest (ROI) in each filtered 
US images have been selected [36]. ROI are selected from 
the homogeneous regions of the filtered images as stated 
in [6, 36, 43]. The resolution of ROI1 and ROI2 is 60×110 
pixels, and 85×60 pixels. The selected ROIs in each filtered 
US images are depicted in Fig. 6(e-h). ENL is calculated in 
these regions, and the results are listed in Table 3. 

As depicted in Table 3, among all despeckling approaches 
considered, the NLM filter has the lowest ENL value in all of 



197

Z.Hosseini and M.Hassannejad Bibalan, AUT J. Elec. Eng., 53(2) (2021) 189-200, DOI: 10.22060/eej.2021.19374.5389

 

 
(a) boats 

 
(b) cat 

 
(c) houses 

 
(d) Lena 

 
(e) room 

 
(f) pirate 

Fig. 5. Comparison of CoCs for different methods versus three noise variances (0.01, 0.05 and 0.1). 

Fig. 5. Comparison of CoCs for different methods versus three noise variances (0.01, 0.05 and 0.1).



Z.Hosseini and M.Hassannejad Bibalan, AUT J. Elec. Eng., 53(2) (2021) 189-200, DOI: 10.22060/eej.2021.19374.5389

198

the ROI (US image 1 (ENL1=59.4, ENL2=79.5), US image 
2 (ENL1=57.8, ENL2=26.7), US image 3 (ENL1=81.5, 
ENL2=13.7), US image 4 (ENL1=11.9, ENL2=28.7)), 
US image 5 (ENL1=58.9, ENL2=61.4)) and US image 6 
(ENL1=113.9, ENL2=38.3)). By considering the ENL results 
related to patient 3, the best to worst despeckling methods 
are proposed method (ENL1=96.5, ENL2=15.1), Lee, 
Kuan, average (ENL1=88.8, ENL2=14.4), Wiener, Frost 
(ENL1=88.7, ENL2=14.4), AMF (ENL1=83.1, ENL2=13.8), 
wavelet (ENL1=82.2, ENL2=13.7) and NLM (ENL1=81.5, 
ENL2=13.7) filters. According to Table 3, the proposed 
method outperforms the existing approaches by reaching 
the highest ENL values. After the proposed method, Lee 
and average filters rank second in despeckling with the ENL 
values of ENL1=64.5 and ENL2=88.7 in the US image 1, 
ENL1=83.7 and ENL2=28.4 in the US image 2, ENL1=88.8 

and ENL2=14.4 in the US image 3, ENL1=13.3 and 
ENL2=30.5 in the US image 4, ENL1=65.3 and ENL2=70.1 
in the US image 5, and ENL1=133.3 and ENL2=41.3 in the 
US image 6. We have computed the enhancement percentage 
of the proposed method based on the first and second-best 
despeckling filters’ ENL values. The proposed approach 
has 7.3%, 65%, 8.7%, 11.3%, 11.3%, and 17.1% ENL 
improvement compared to the second-best despeckling filter 
in the ROI1 of the US images 1, 2, 3, 4, 5 and 6. Additionally, 
this method was 10.6%, 2.1%, 4.9%, 6.9%, 15.9% and 9% 
better than the Lee and average filters in the ROI2 of the US 
images 1, 2, 3, 4, 5 and 6.

In conclusion, the results in terms of PSNR, SSIM, 
CoC, and ENL exhibit the proposed method’s excellent 
speckle noise suppression capability. Additionally, the visual 
assessment verifies this superiority.
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Fig. 6. (a-f) US images with resolution of 512×512 pixels. (g-l) Selected ROIs on the filtered US images. Fig. 6. (a-f) US images with resolution of 512×512 pixels. (g-l) Selected ROIs on the filtered US images.

Table 3. ENL obtained from the experiments on US images.

In conclusion, the results in terms of PSNR, SSIM, CoC, and ENL exhibit the proposed method's excellent 

speckle noise suppression capability. Additionally, the visual assessment verifies this superiority. 

7. Conclusion 

In this work, we introduced a novel approach to estimate 2D Gaussian filter variance to effectively eliminate 

the speckle noise. The entropy of optimum 𝑝𝑝-norm, which is calculated for the difference between the noisy 

and denoised images, was proposed as a criterion to obtain the appropriate variance of the filter. The 𝑝𝑝 root 

of optimum variance value can be calculated by finding the point where the maximum derivative of 

differential entropy occurs. Through this procedure, an estimate of the norm order was also addressed. 

Simulation results confirm the superiority of the proposed method in terms of quantitative evaluation and 

image quality indexes. 
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7.CONCLUSION
In this work, we introduced a novel approach to estimate 

2D Gaussian filter variance to effectively eliminate the 
speckle noise. The entropy of optimum p -norm, which is 
calculated for the difference between the noisy and denoised 
images, was proposed as a criterion to obtain the appropriate 
variance of the filter. The p  root of optimum variance value 
can be calculated by finding the point where the maximum 
derivative of differential entropy occurs. Through this 
procedure, an estimate of the norm order was also addressed. 
Simulation results confirm the superiority of the proposed 
method in terms of quantitative evaluation and image quality 
indexes.
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