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Control of parabolic PDE systems with time varying spatial boundary conditions using 
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ABSTRACT:  In this paper, an extension of backstepping controller for parabolic PDE systems 
(Heat Transfer Process) with time-varying spatial boundary is studied. The PDE system dynamics is 
transformed to an exponentially stable target system via a new nonlinear backstepping transformation. 
The exponential stability of the closed-loop system is established by using a proper Lyapunov function. 
Finally, numerical simulation is provided to support the effectiveness of the proposed controller.
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1- INTRODUCTION
In distributed-parameter systems described by partial 

differential equations (PDEs), the state variables depend 
on time and spatial coordinates in which changes in the 
shape and material properties characterized by phenomena 
such as material deformation may result in system models 
represented by moving boundary parabolic PDEs. Both 
infinite dimensionality and changes in the domain of these 
models impose further complexities and limitations to both 
analysis and design of such systems [2,3]. 

Control analysis of these systems have not been received 
much of attention. Most of the proposed control schemes are 
based on discretization by means of suitable approximation 
techniques such as modal decomposition or Galerkin’s 
method which yield approximate finite-dimensional models 
[1,7]. Another more complicated approach introduced in [10] 
is the use of backstepping concept for boundary observation 
of PDE systems. In this methodology, an invertible Volterra 
integral transformation is used to transform the estimation 
error dynamics into a suitably selected stable distributed 
parameter target system. Backstepping observer design 
is extended to linear parabolic PDEs with spatially and 
time-varying reaction parameters [5], parabolic PDEs with 
nonlinear reactive-convective terms [4] and finally, to semi-
linear parabolic PDEs [13]. 

In case of a moving boundary parabolic PDE, even if 
the process parameters are time-invariant, the system is 
inherently nonautonomous [12]. For such problems, as 
infinite-dimensional systems, an early-lumping approach, 

the Galerkin’s method is used for an eigenfunctions-based 
observer design in [4] for the boundary control of a 2D heat 
equation with time-dependent spatial domain. Furthermore, 
the observer design for the parabolic PDEs with time-
varying domain was fully studied in [8]. An extension of the 
backstepping observer design of parabolic PDEs by time-
varying domain with an application to the Czochralski crystal 
growth process was proposed in [9]. 

In this paper, the boundary control of parabolic PDEs 
with time varying spatial domain using a backstepping 
transformation is studied. The contribution of our approach 
relies on new backstepping transformation without rescaling 
the space domain into a fixed boundary. In fact, we use an 
extension of backstepping transformation which was used in 
[11] for linear PDE on a fixed domain. The proposed controller 
provides exponential stability in the sense of H1 norm. 

Problem Statement
Consider heat transfer problem along a beam of length L 

shown in Fig.1. 
Where ref refu(t), ( , t), , f (t), fθ ζ θ  will be introduced later.
Our goal is to find a position at which phase transition 

from solid to liquid occurs and vice versa. Hence, the length 
of the beam 0 L≤ ζ ≤ can be divided into two sub-domains. 
The first  0 f (t)≤ ζ ≤  is a part of the beam melted and the 
second part f (t) L≤ ζ ≤  is the solid part, where f (t) +∈ ¡ is the 
time-dependent length of the domain and t [0, )∈ ∞  represents 
the time. 

The control input, namely, the heat affects the moving 
boundary ( f (t)  ) and is manipulated at 0ζ = . The dynamic 
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equations of the system consists of two part
1)	 Parabolic Partial Differential Equation that describes 

melted part of the beam is
2

2
( , t) ( , t) 0 f (t) L

t
∂θ ζ ∂ θ ζ

= α ≤ ζ ≤ <
∂ ∂ζ

	        � (1)

where ( , t) [0,L] R R+θ ζ ∈ × → is the state variable (the 
temperature distribution along the beam) and α is the process 
parameter. 

We assume the following boundary conditions for the PDE 
system which is applicable to the temperature stabilization in 
the heat transfer process:

(0, t) u(t)∂ θ =
∂ζ

		�   (2)

ref(f (t), t)θ = θ 				�     (3)

Where u(t) is the control input applied at the boundary 
0ζ =  to stabilize the system state. Our objective is to make 

ref( , t)θ ζ → θ  and reff (t) f→  asymptotically where reff L< is 
the maximum length of the beam to be melted. 

2)	 The dynamical equation of the moving boundary is 
an ordinary differential equation of the form 

f (t) q (f (t), t)
t

∂ ∂= − θ
∂ ∂ζ

		�   (4)

where q  accounts for the process parameter. 
To develop the controller, the following assumptions are 

made.
Assumption 1.

ref( , t) ;0 f (t)θ ζ ≥ θ ≤ ζ ≤  which means temperature in 
melted part of the beam is higher  than refθ .

Assumption 2. 

f (t) 0; t 0
t

∂
≥ ∀ ≥

∂ which is plausible to assume the moving 
interface f (t) increases as heat inserted through the beam
( )u(t) 0>

The block diagram of the system depicted in Fig. 2.
As depicted in Fig. 2, the proposed control scheme utilizes 

the measurement on f (t) , the moving boundary of melted 
part, and ( , t)θ ζ to design the control signal u(t) . 

We define two error signals as 

ref( , t) ( , t)ν ζ = θ ζ − θ 	�  (5)

refX(t) f (t) f= − 			�    (6)

Our objective is to find a proper control input signal 
( )u(t) 0> such that the errors approach zero in steady state.

The following control law stabilizes the PDE system (1)- 
(4)

f (t )
ref ref

0
u(t) ( ( , t) )d (f (t) f )

q
γ γ

= θ ζ − θ ζ + −
α ∫ 		�   (7)

Where 0γ >  is the control gain.
Towards this end, consider the following backstepping 

transformation 
f (t )

( , t) ( , t) k( , ) ( , t)d (f (t) )X(t)
ζ

ω ζ = ν ζ + ζ η ν η η+ Ψ − ζ∫ 	�  (8)

Which transforms the system (1)-(4) to the following 
exponentially stable target PDE system

2

2
( , t) ( , t) X(t) f (t)
t q t

∂ω ζ ∂ ω ζ γ ∂= α +
∂ ∂∂ζ

	 (9)

(f (t), t) 0ω = 	  (10)

 

ref


Lreff

Liquid

 

Figure 1- b  Steady-State of Heat Transfer Process 

 

  

Fig. 1.  a. Schematic of Hear Transfer Process, b. Steady-State of Heat Transfer Process
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f (t )
(0, t) (0, t) ( , t)d X(t) 0

q
ζ

γ γ∂ ∂ω = ν − −ν η η− =
∂ζ ∂ζ α ∫ 	�  (11)

f (t) X(t) X(t) q (f (t), t)
t t
∂ ∂ ∂= = −γ − ω
∂ ∂ ∂ζ

	 (12)

where the gain kernel k( , )ζ η  and (f (t) )Ψ − ζ  are 
obtained as:

( )k( , ) γ
ζ η = η− ζ

α
			�    (13)

(f (t) ) (f (t) )
q
γ

Ψ − ζ = − ζ 		�   (14)

Proof. 
By recalling liepnitz formula

v v

u u

v uf (x,y)dy f (x, v) f (x,u) f (x,y) dy
x x x x
∂ ∂ ∂ ∂ = − +  ∂ ∂ ∂ ∂ ∫ ∫ 	�  (15)

and noting that (f (t), t) 0ν = , ( , t) ( , t)
t t

∂ν ζ ∂θ ζ
=

∂ ∂
 and 

2 2

2 2
( , t) ( , t)∂ ν ζ ∂ θ ζ

=
∂ζ ∂ζ

we  take derivative of (8) with respect to space and time 
to obtain

f (t )

'

f (t )
'

( , t) ( , t) k( , ) ( , t)d
t t t

X(t) f (t) (f (t) ) (f (t) ) X(t)
t t

( , t) ( , t) k( , ) ( , t)

k( , ) ( , t)d (f (t) )X(t)

ζ

ζ

∂ω ζ ∂ν ζ ∂= + ζ η ν η η+
∂ ∂ ∂

∂ ∂Ψ − ζ + Ψ − ζ
∂ ∂

∂ω ζ ∂ν ζ
= − ζ ζ ν ζ +

∂ζ ∂ζ

∂ ζ η
ν η η−Ψ − ζ

∂ζ

∫

∫
�

(16)

and 

2 2

2 2

f (t ) 2
''

2

( , t) ( , t) d( , t) k( , )
d

( , ) k( , )k( , ) ( , t)

k( , ) ( , t)d (f (t) )X(t)
ζ

∂ ω ζ ∂ ν ζ
= − ν ζ ζ ζ −

ζ∂ζ ∂ζ
∂ν ζ η ∂ ζ η

ζ ζ − ν ζ
∂ζ ∂ζ

∂ ζ η
+ ν η η+ Ψ − ζ

∂ζ
∫

	�  (17)

where

k( , ) k( , )d k( , )
d

∂ ζ ζ ∂ ζ ζ
ζ ζ = +

ζ ∂ζ ∂η
		�   (18)

obviously, (13) and (14) are easily obtained.
Exponential stability of the target system (9) –(12) implies 

exponential stability of the original system (1) – (4) knowing 
the fact that (8) has a unique inverse transformation as 

f (t )
( , t) ( , t) l( , ) ( , t)d (f (t) )X(t)

ζ

ν ζ = ω ζ + ζ η ω η η+Φ − ζ∫ � (19)

By taking derivative of (19) with respect to space and time 
we obtain

f (t )

'

f (t )
'

( , t) ( , t) l( , ) ( , t)d
t t t

X(t) f (t) (f (t) ) (f (t) ) X(t)
t t

( , t) ( , t) l( , ) ( , t)

l( , ) ( , t)d (f (t) )X(t)

ζ

ζ

∂ν ζ ∂ω ζ ∂= + ζ η ω η η+
∂ ∂ ∂

∂ ∂Φ − ζ + Φ − ζ
∂ ∂

∂ν ζ ∂ω ζ
= − ζ ζ ω ζ +

∂ζ ∂ζ

∂ ζ η
ω η η−Φ − ζ

∂ζ

∫

∫

(20)

 

Controller
PDE

   t ,t ,t    

   reff t ,t  

ODE

    f t ,tf t
q

t


 
 

 u t

 measurmant ,t 

 measurmantf t
 

Figure 2-Block diagram of heat transfer moving boundary  system 

  

Fig. 2. Block diagram of heat transfer moving boundary  system
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2 2

2 2

f (t ) 2
''

2

( , t) ( , t) ( , )l( , )

l( , )d( , t) l( , ) ( , t)
d

l( , ) ( , t)d (f (t) )X(t)
ζ

∂ ν ζ ∂ ω ζ ∂ω ζ η
= − ζ ζ −

∂ζ∂ζ ∂ζ
∂ ζ ζ

ω ζ ζ ζ − ω ζ
ζ ∂ζ

∂ ζ η
+ ω η η+ Ψ − ζ

∂ζ
∫

		  (21)

After similar calculations the kernel l( , )ζ η and function 
(f (t) )Φ − ζ would take the form

( )l( , ) sin
 γ γ

ζ η = − η− ζ α α 
	�  (22)

(f (t) ) sin (f (t) )
q

 γα γ
Φ − ζ = − − ζ α 

		�   (23)

Physically, positive control signal ( )u(t) 0>  leads to 
ref( , t) ; (0,f (t))θ ζ > θ ∀ζ∈ and f (t) 0

t
∂

>
∂

 while negative control signal 
may lead to a freezing process. 

Now assume 

reff (0) f (t) f ; t 0< < ∀ > 		�   (24)

and pursue the stability analysis.
Theorem. The target system (9) – (12) is exponentially 

stable in the sense of 1H - norm. 
Proof. Consider the following Lyapunov function 

candidate:

1

2 2
H

1V(t) ( , t) X (t)
2
 = ω ζ + λ 
 

		�   (25)

where λ is a positive parameter, which is chosen later, and 
1H - norm of ( , t)ω ζ  is defined as

1

1
2 2f (t ) f (t )2

H 0 0
( , t)( , t) ( , t)d d

 ∂ω ζ  ω ζ = ω ζ ζ + ζ  ∂ζ  
∫ ∫

	 (26)

Taking the time derivative of (25) and replacing from (9)- 
(11) to obtain:

(f (t) ) sin (f (t) )
q

  
 −−  == −− −−   

(( ))u(t) 0 ref( , t) ; (0,f (t))    
f (t) 0

t





reff (0) f (t) f ; t 0   

1H

1

2 2
H

1V(t) ( , t) X (t)
2
 ==   ++  
 

 1H ( , t) 

1

1
2 2f (t) f (t)2

H 0 0
( , t)( , t) ( , t)d d

      ==    ++     
 

2f (t)
20

2f (t )2
0

( , t)V(t) ( , t) X(t) f (t) d
q t

( , t) ( , t)1 f (t) (f (t), t) d
2 t t

X(t) X(t) q (f (t), t)

     ==    ++  ++   

      ++  ++
  

  −− −−   





( , t) 
0 f (t)  

f (t ) 2 2
0

2f (t )2
0

( , t)d 2f (t) (0, t)

( , t)4f (t) d

     ++

     





	�  (27)

Note:

Poincare inequalities takes the following form for 
any variable ( , t)ω ζ  defined on the time varying spaces
0 f (t)≤ ζ ≤  (see Appendix A)

 

f (t ) 2 2
0

2f (t )2
0

( , t)d 2f (t) (0, t)

( , t)4f (t) d

ω ζ ζ ≤ ω +

∂ω ζ  ζ ∂ζ 

∫

∫
		�   (28)

f (t ) 2 2
0

2f (t )2
0

( , t)d 2f (t) (s(t), t)

( , t)4f (t) d

ω ζ ζ ≤ ω +

∂ω ζ  ζ ∂ζ 

∫

∫

			�   (29)

Using integration by parts, applying (9) – (12) , imposing 
poincare inequality and the fact that reff (t) f ; t 0< ∀ > , we end 
up with:

f (t ) 2 2
0

2f (t )2
0

( , t)d 2f (t) (s(t), t)

( , t)4f (t) d

     ++

     





reff (t) f ; t 0  

(( ))

f (t ) 2
0

22 f (t )ref
0

f (t ) 2
2 ref 02

2

( , t)d
V

( , t) d1 4 f

( , t)d
q f f (t)X (t)

2q t 1 X (t)
q

    ++    −− −−
    ++     

    ++   
   −− ++         ++    







(( ))
2 ref

2ref

q f2a min ,2
1 4 f

 
  ==  −−     ++

 
 

1b max 1, 1
2q q

   == ++     
 

2 refq f


 

f (t)V aV b V
t


 −− ++


f (t) 0

t





	�  (30)

Applying these, Young’s and Cauchy- Schwartz inequalities 
[10] and choosing,

( )
2 ref

2ref

q f2a min ,2
1 4 f

 
  λα= γ −   α  +

 

	�  (31)

1b max 1, 1
2q q

 αγ αγ = +  λ   
		�   (32)

2 refq f
αγ

λ < 			�    (33)

Therefore

f (t ) 2 2
0

2f (t )2
0

( , t)d 2f (t) (s(t), t)

( , t)4f (t) d

     ++

     





reff (t) f ; t 0  

(( ))

f (t ) 2
0

22 f (t )ref
0

f (t ) 2
2 ref 02

2

( , t)d
V

( , t) d1 4 f

( , t)d
q f f (t)X (t)

2q t 1 X (t)
q

    ++    −− −−
    ++     

    ++   
   −− ++         ++    







(( ))
2 ref

2ref

q f2a min ,2
1 4 f

 
  ==  −−     ++

 
 

1b max 1, 1
2q q

   == ++     
 

2 refq f


 

f (t)V aV b V
t


 −− ++


f (t) 0

t





		�   (34)

Since f (t) 0
t

∂
>

∂
 then;

( )b f (t) f (0) atV(t) e V(0)e− −≤ 		�   (35)

finally, using reff (t) f<  we arrive at
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( )refb f f (0) atV(t) e V(0)e
− −≤ 			�    (36)

2- SIMULATION RESULTS
To verify the performance of the controller (7) we use 

numerical value of zinc beam [14]. The definition of ,qα  in 
(1) and (4) which  related to heat transfer process are 

p

k
C

α
ρ

=

and *

kq
Hρ

=
∆  respectively. The physical properties of zinc are 

given in Table 1. 
The steady state of melted part is 35reff cm= . The control 

gain in (7) is 0.01γ = . 
The dynamic of the moving boundary f(t) is depicted in 

Fig. 3. The closed loop stability is evidence. 
Time evolution of the positive control signal is depicted 

in Fig. 4.
.The simulation of coupled system (1)- (4) shows that the 

interface converges to its setpoint while keeping f (t) 0; t 0
t

∂
≥ ∀ ≥

∂
 

and reff (t) f<  with a positive control signal u(t) 0>  as we 
expected from theoretical result. 

3- CONCLUSION
In this paper, we studied an extension of backstepping 

controller of parabolic PDEs (Heat Transfer Process) with 
time-dependent spatial domain. The PDE system dynamics 
was transformed to an exponentially stable target system by a 
nonlinear backstepping transformation. Exponential stability 
of the closed-loop system was discussed via Lyapunov’s 
method. 

4- APPENDIX A. 
Proof of Poincare inequalities for the time varying spaces
The proof to the conservative form of Poincar´e inequality 

(28for the time-varying space 0 f (t)≤ ζ ≤  is given here, and 
(29) can be shown similarly. We start with the following 
relation:

( )

( )

2 2( , t) f (t) ( , t)

( , t)2 f (t) ( , t)

∂  ω ζ = − − ζ ω ζ + ∂ζ
∂ω ζ

− ζ ω ζ
∂ζ

		�   (A.1)

 1
 

 
36570 /kg m   

111,961 /J kg *H  

389.5678 / ( . )J kg K pC
 

111 /w m k  

 
Figure 3-Time Evolution of the moving boundary position 

  

Fig. 3. Time Evolution of the moving boundary position

Table 1 . Physical Properties of Zinc



H. Shirinabadi Farahani et al., AUT J. Model. Simul., 52(1) (2020) 3-10, DOI: 10.22060/miscj.2017.13216.5064

8

By integrating both sides of this equation with respect to ξ 
from 0 to f(t) one obtains:

( )

f (t ) 2 2
0

f (t )
0

( , t)d f (t) (0, t)

( , t)2 f (t) ( , t) d

ω ζ ζ = ω +

∂ω ζ
− ζ ω ζ ζ

∂ζ

∫

∫
			�    (A.2)

By using  Cauchy-Schwartz and Young’s inequalities, 
respectively, One can readily shown that

f (t ) 2 2
0

11 2 2f (t ) f (t )22 2
0 0

f (t )2 2
0

2f (t ) 2
0

( , t)d f (t) (0, t)

( , t)( , t)d 4(f (t) ) d

1f (t) (0, t) ( , t)d
2

( , t)2 (f (t) ) d

ω ζ ζ ≤ ω +

 ∂ω ζ    ω ζ ζ − ζ ζ    ∂ζ    

≤ ω + ω ζ ζ +

∂ω ζ − ζ ζ ∂ζ 

∫

∫ ∫

∫

∫
�

(A.3)

 The last integral in (A.3) is majorized by

( )
2f (t )

00 f (t )
2f (t )2

0

( , t)sup f (t) d

( , t)f (t) d

≤ζ≤

∂ω ζ − ζ ζ = ∂ζ 

∂ω ζ  ζ ∂ζ 

∫

∫

	�  (A.4)

resulting in the inequality (28). 
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