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ABSTRACT:  Learning and reconstruction-based methods are the two main approaches to the solve 
single image super resolution (SISR) problem. In this paper, to exploit the advantages of both learning 
based and reconstruction based approaches, we propose a new SISR framework by combining them, 
which can effectively utilize their benefits. The external directional dictionaries (EDD) are learned 
from external high quality images. Additionally, we embeded the nonlocal means (NLM) filter and an 
isotropic total variation (TV) scheme in the reconstruction based method. We suggest a new supervised 
clustering scheme via curvelet based direction extraction method (CCDE) to learn the external directional 
dictionaries from candidate patches with sharp edges. Each input patch is coded by all the EDD. Each 
of the reconstructed patches under different EDD is applied with a weighted penalty to characterize the 
given input patch. To disclose new details, the local smoothness and nonlocal self-similarity priors are 
added on the recovered patch by TV scheme and NLM filter. Extensive experimental results validate the 
effectiveness and robustness of the proposed method comparing with the state-of- the-art algorithms in 
SISR methods. Our proposed schemes can retrieve more fine structures and obtain superior results than 
the competing methods with the scaling factors of 2 and 3.
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1- INTRODUCTION
The goal of the SISR is to increase the resolution of a 

single low-resolution (LR) image, MR∈y , so that the 
reconstructed high resolution (HR) image resembles the 
original HR image NR∈x . The SISR problem can be 
modeled as:

= +y DHx n �  (1)

where N NH R ×∈ , M ND R ×∈  and n  are the blurring 
filter, down-sampling matrix and additive white Gaussian 
noise. SISR is an ill-posed inverse problem. There are various 
algorithms in the literature to solve this problem. In general, 
these algorithms are divided into three categories: Interpolation-
based algorithms, reconstruction-based algorithms and 
learning-based algorithms [1]. The interpolation-based methods 
are the basic approaches for SISR. Since this kind of methods 
do not consider the destruction model, the reconstructed image 
by this type of methods has unpleasing artifacts. The solution 
of SISR problem by the reconstruction-based methods can be 
modeled as: 

2
2

1arg min ( )
2

Rλ= − +xx y DHx x  � (2)

where, the first term is the fidelity, ( )R x is the 
regularization term which imposes the suitable priors such 
as local smoothness, nonlocal (NL) similarity [2], edge-
directed priors [3], gradient–profile prior [4] and λ in (2) is 
the regularization parameter [2, 5]. The local smoothness 
prior guarantees the similarity of the neighboring pixels and 
Total variation (TV) [6] is one of the smoothing classical 
regularizations that is used to this purpose. The repeatation 
of the similar patterns in different locations of the image 
is the basic assumption of NL regularization. In nonlocal 
means (NLM) [7] approach the NL property has been 
efficiently utilized for denoising. Recently, the learning-based 
algorithms by utilizing the example images or input image 
itself have achieved superior results. These methods can be 
classified into three categories: neighbor embedding-based 
(NE) methods, dictionary learning-based (DL) methods and 
deep learning-based methods. The NE-based methods [8-
13] have been inspired by the manifold learning methods. 
In [14], first a SR convolutional neural network (SRCNN) 
method was proposed that learns an end-to-end mapping 
between the LR and HR images for SISR. Since the number 
of layers in this network is only three; it is difficult to learn 
the complex structures. A very deep super-resolution (VDSR) 
[15] network with 20 layers in a cascade deep network is 
one of the first methods that utilizes the residual learning to 
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train VSDR network for SISR. In the mentioned methods, 
the LR input images are interpolated before utilizing them 
into networks; thus the obtained end-to-end mappings aren’t 
learned from the original LR to HR images. To solve this 
problem, Dong et al. [16] utilized the original LR images as 
the input to the network.  Zhang et al. in [17] proposed  a 
super-resolution network for multiple degradation (SRMD), 
which its degradation maps are utilized in addition to the LR 
image as input. Despite the superiority of the obtained results 
by neural network-based methods, their learning procedure is 
complicated with high computation complexity. Dictionary 
learning algorithms [18-23] were proposed by utilizing this 
fact that natural images can be sparsely represented by the 
atoms of a dictionary. In [18] and [19], two over complete 
LR-HR dictionaries are learned whose atoms are the raw 
training image patches, and are learned by the sparsity 
constraints. In [20], by considering the instability of the 
sparse decomposition over a highly redundant dictionary, an 
adaptive sparse domain selection (ASDS) scheme for sparse 
representation using complete dictionaries, was proposed. 
In order to improve the ASDS, nonlocal centralized sparse 
representation (NCSR) model [21] was proposed with a 
superior performance. A statistical prediction model based on 
sparse representation of LR and HR image was  proposed in 
[23]. Some fast NE-based learning methods are proposed in 
[9-13] . In [9] the anchored neighbor regression (ANR) method 
was proposed that combines NE algorithms with the sparse 
learned dictionaries. A+ was proposed in [10] that improves 
the ANR. Despite the advantages of both the learning and 
reconstruction based methods, there are some drawbacks. 
For instance, blured fine details and unexpected artifacts 
may appear in the estimated HR image by the reconstruction-
based and learning- based methods. In this paper, to exploit 
the advantages of both learning based and reconstruction 
based approaches, we propose a new SISR framework by 
combining them, which can effectively utilize their benefits. 
In our proposed method, the external directional dictionaries 
(EDD) are learned by the external high quality images; 
also NLM filter and isotropic total variation (TV) scheme 
[24] have been utilized in the reconstruction based method. 
Despite the suitable results obtained by k-means clustering 
method to classify the patches, this scheme is unsupervised 
that different initial clusters may lead to the different final 
groups. To overcome this deficiency, we have developed a 
supervised clustering technique using explicit features of 
the image, thus extra details such as edges and textures can 
be appropriate. To this end, we have proposed directional 
clustering scheme. The candidate patches with sharp edges 
are utilized to extract their orientations via curvelet based 
direction extraction method [25]. The obtained patches with 
dominant orientations are clustered into groups according 
to the estimated directions and their corresponding external 
directional dictionaries are learned by k-svd approach [26]. 
This paper is the extended and completed version of the paper 
presented earlier in [34]. The contributions of our proposed 
method are listed as follows: 

1)We propose a new directional clustering method via curvelet 
based direction extraction method (CCDE), and the external 
directional dictionaries (EDD) of each cluster is learned by 
the k-svd method.
2)Each given input patch is reconstructed under all EDD. 
The obtained patches are applied with weighted penalty to 
characterize the given input patch.
3)To enforce the local smoothness and the repeated details 
constraints on the recovered patches, the isotropic total 
variation (TV) scheme and the nonlocal means (NLM) filter 
are leveraged.

The rest of this paper is organized as follows:
 In section 2, we review the background on local smoothness 

modelling by anisotropic TV and curvelet based direction 
extraction method. In section 3, the proposed supervised 
clustering scheme via curvelet based direction extraction 
method (CCDE) is introduced and its implementation in a 
new SISR technique is illustrated. In section 4, the obtained 
results are reported and the effectiveness of our proposed 
method is confirmed through experiments, and finally section 
5 concludes the paper. In the following of the matrixes, 
vectors and scalar values are shown by bold and uppercase, 
bold and lowercase and italic and lowercase notifications.

2- LOCAL SMOOTHNESS MODELING BY 
ANISOTROPIC TV AND CURVELET-BASED 
DIRECTION EXTRACTION

Due to the similarity of the intensities of the neighboring 
pixels in natural images, the output of the vertical and 
horizontal highpass filters are close to zero and their marginal 
distributions are very sharp. These  marginal distributions 
can be modeled by Laplacian distribution [27]. By definition 

;v hD D=   D  where, [ ]1,0, 1 TDv = −  and [ ]1,0, 1hD = −  are 
the vertical and horizontal highpass filters, the regularization 
term ( )R x  that describes the local smoothness prior of image 
x  at pixel level is modeled as follows:

1 1 1( ) v hR D D= = +x x x xD
�

(3)

Where, vD x and hD x  are gradient pictures in vertical 
and horizontal directions that are obtained by applying the 
mentioned filters on image x  through convolution operator.  
By utilizing the above ( )R X in (2), it can be considered as 
the statistical convex explanation of anisotropic TV [24].

Inspired by this fact that the patches in the natural images 
with sharp edges are adjusted in the limited number of 
directions, in [25] these directional information is exploited 
by applying the curvelet transform Γ  on the image X:

{ }, 5

( ),

1,..., ; 1,..., ; 5, 64j l j

Q

j J l L J L

= Γ

= = = =

X

Q
�

(4)
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where ,Q j l is the curvelet coefficient matrix at the j th 
scale and l th direction. By considering the property of the 
directional symmetry, the fifth scale coefficients with 64 
matrices are partitioned into 16 direction subsets 16

1{ }k kZ =  
which are shown in Fig.1. By utilizing 16

1{ }k kZ = , the efficient 
directional features 16

1{ }k kA =  of the input image are defined as 
the following expression:
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 (5)

where (.) (Re(.))P abs= and 1−Γ  is the inverse curvelet 
transform. 1, 2, 16,, ,...,

T
i i i i =  v A A A is considered as a directional 

feature vector of i th pixel.

3- PROPOSED METHOD 
As mentioned earlier, using dictionaries which have 

meaningful information of the main features of the image 
can lead to superior image restoration results. The external 
dictionaries that are learned by external high quality images, 
can reconstruct the features that rarely exist in the input image. 
In this paper, inspired by the fact that the sharp edges are 
oriented in one of 16 directions [25], the external dictionaries 
are learned via supervised clustering. By considering the 
SISR problem, we propose a novel scheme by combining the 
learning based and reconstruction based approaches which 
can effectively model the local smoothness and nonlocal self-
similarity in a unified framework. This algorithm consists 
of three parts: 1) learning the directional dictionaries for 
external high quality training patches with sharp edges 2) 
obtaining the sparse representation of each input pach over 
the learned external directional dictionaries 3)  reconstruction 
of the goal patch by the estimated sparse representations with 
weighted penalty, isotropic TV and NLM regularizations.  In 
the following, our proposed methods for external directional 
dictionary learning and SISR are illustrated.

3- 1-  Directional Dictionary Learning by Clustering Scheme 
via Curvelet-based Direction Extraction Method

In order to learn directional sub-dictionaries, we apply 
the curvelet based direction extraction method [25] on 
the set of high-quality training natural images which are 
provided in [18]. The directional feature, ,1 16k k≤ ≤A  for 
each pixel are obtained. Each training images is decomposed 
into the overlapped patches with the size of n n× . The 
smooth patches with intensity variances smaller than a 
threshold value 1, ,δ  are excluded. Indeed, only patches 
with meaningful structures are used in dictionary learning. 
To estimate the dominant orientation of each of the selected 
patches, the average energy, kε , for each directional features, 

kA , is calculated by (6):

( , )
1 1 ,1 16k i jn n

k i j k
n

ε = =∑ ∑= ≤ ≤
A

�
(6)

The main direction of each patch is determined by the 
maximum value ,1 16k kε ≤ ≤ . Similarly [28], if the distance 
between the average energy of two dominant orientations is 
smaller than a threshold value, 2 δ , the patch is considered 
as a stochastic patch and when this difference is larger than 
the threshold value, the patch has dominant orientation. 
Therefore, only patches with a specific orientation are selected. 
The selected training patches with dominant orientations are 
grouped into sixteen directions { }1 16,...,C C .{ },1 ,16,...,E EΦ Φ  are 
considered as external directional dictionaries (EDD) for 
patches in { }1 16,...,C C ,. The k-svd [26] algorithm is utilized 
to learn these dictionaries. The superiority of our proposed 
method in classifying the patches with geometrical details over 
k-means clustering method is shown in Fig.(2). According 
to this figure, we observe that the patches in each proposed 
clusters (Fig. 2 (a)-(h)) indicate the specific oriantation and 
in comparison with K-means clustering ((Fig. 2 (i)-(l)) their 
geometric information are more compatible with each other.

3-2- Single Image Super Resolution via EDD
Similar to other schemes, the initial estimation of the goal 

HR image lX , 0,l =  is obtained by applying the bicubic 
interpolation on the LR input image Y . Our proposed SISR 
problem by inserting two regularization terms into (2) is 
formulated as follows:

1 2
2.5 2arg min 0 EDD NLMR Rλ λ+ +−x y DHx � (7)

Where, the first term is the fidelity term, NLMR is the 
NLM regularization that is used to confirm the nonlocal self-
similarity prior and EDDR  is our proposed regularization 
term that is used to reconstruct the sharp and directed edges.  
In the following, after introducing these two regularization 
terms, to insert the local smoothness prior into Eq. In (7), an 
auxiliarly variable is considered and finally the procedure of 
solving this minimization problem is explained.  

For each overlapped β β×   patch } 1

n
i i=

X  (n is the 
number of overlapped patches in the lX ), the similar patches 
of ,iX ,jX  are selected according to large value of ijw :

  
2

exp( )i j
ij h

w
−

= −
x x 

�
(8)

 Where, i Rβ∈x and j Rβ∈x  are the column vectors 
of iX and jX . By obtaining ijw , the formulation of NLM 
regularization term is modeled by the following expression 
[7]:

2

1 ( ) 2
( )

n
NLM i ij j

i j i
R w

= ∈Ω
∑ ∑= −

x
x x x  � (9)
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Where, ( )iΩ x  denotes the patches similar t.  ix  Our 
proposed EDDR   regularization term is as below: 

1

1

, 1
16 ,, ,1

( )

. , )
i
n

i n

EDD
k
E i

k
i k E k E ik

R

s t c
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≤ ≤=

∑

∑

=
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=  

x

x

α

.(Φ α
 � (10)

Where, ,
i
E kα  is the sparse representation of the thi  input 

patch  ( )ix  over kth learned EDD ( ,E kΦ ) and 
ix  is the reconstruction of  the ix  over all learned EDDs 

}16
, 1E k k=

Φ  with the weighted penalty ( )kc . kc
 depends on the similarity between ix  and  its reconstruction 

over ,E kΦ  , ,( )k
E k E iΦ α . For weak similarity 

between ix  and 
, ,( )k

E k E iΦ α , we force small value for ,kc that 
will be shown. 

To depict the local smoothness, an auxiliary variable u  
that is equal to x  is considered and  (7) can be

rewriten as follows:

2
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(11)

where, 1Du  denotes the anisotropic TV of image u .  The 
minimization problem in (11) can be solved

 iteratively using the following steps:

u Sub problem:

By fixing x , we can rewrite (11) as:

( 1) 2
2 3 1arg min 0.5 , 1,..,l l l D l Lλ+ = − + =uu x u u 

	�
(12)

where L  is the number of iterations and lx  can be 
interpreted as the noisy observation of lu  at iteration l, 
and (12) can be regarded as anisotropic TV-based denoising 
problem [24]. For convenience, the superscript l has been 
dropped without loss of generality. The proximal operator 
( ( )( ))tprox g u of a proper closed convex function g can be 
defined as:

{ }2
2( )( ) arg min 0.5 ( )tprox g tg= +uu x - u u  � (13)

 Where 0t >  is a scalar parameter. The u  sub-problem 
can be regarded as the proximal map due to 1( )g D=u u  . 
We utilize FIST [24] with the fixed number of iterations to 
solve (13). 

,
k
E iα Sub problems:

By fixing x and u , minimizing (11) with respect to ,
k
E iα  

leads to:

2
, ,

2,

1 1,

arg min 0.5 )

,

k
k E k E i
E i

k
E i

i

λ ≤ ≤ ≤ ≤

− +

   1 i n,    1 k 16

y DH(



α
Φ α

α �

(14)

where, ( iy ) is the input of LR patch, ( , ,
k

E k E iΦ α ) is its 
corresponding HR patch over ,E kΦ . The sub-problem in (14) 
can be solved efficiently by the orthogonal matching pursuit 
(OMP) algorithm. By considering the subject in (11), the 
reconstructed patch ix over all EDDs }16

, 1E k k=
Φ with the 

recovery weight kc is expressed as:

 

 

 

 

                            

 

 

 

Fig.1. Curvelet coefficient matrices at different scales and its partition of 16 different direction subsets [25]  

  

Fig.1. Curvelet coefficient matrices at different scales and its partition of 16 different direction subsets [25]
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By (15), it is obvious that for a weak similarity between 
ix  and , ,( )k

E k E iΦ α , we force small value for .kc

x  Sub problem:

By fixing the obtained ,
k
E iα  and u , the x  sub problem 

is written for all the patches ix  as follows:

2
( ) 2

2 2
1 22 2

arg min
i ji i ij ji

i i i i

w

γ γ

∈Ω∑= − +

− + −

xxx x x

x u x x





 � (16)

where, iu  and ix are the thi  patch of u  and the 
reconstructed patch over all EDDs with the recovery weight. 

The first term in (16) indicates the nonlocal self-similarity 
property which is used to reconstruct the more noticeable 
repeated features in the image. The second term ensures the 
local consistency prior in the image which is used to confirm 
the similarity of the intensities of the neighboring pixels and 
the third term preserves the local geometry of each patch 
which is used to reconstruct the sharp edges in the image. The 

ix sub problem in (16) has a closed form solution as follows: 

1
1 2 1 2( 1) . ( )Ti j i i iγ γ γ γ−  = + + + +    x I S w u x 

	�
 (17)

Where 1 ( ),...,i i i i
w w Ω
 =   xw  that its elements is the obtained by (8) 

and ( )i
j Rβ×Ω∈ xS  is a matrix, which its columns are the similar 

patches to ix . Finally, the goal image X  is reconstructed by 
replacing all the reconstructed patches in their corresponding 
positions and their average in the overlapped areas. The 
mentioned seperated sub problems are solved iteratively, 
until a stopping criteria is satisfied. The detailed description 
of the proposed SISR using EDD is summerized in Table 1.

 

Input : LR input image, directional external learned dictionaries  ,1 ,16,...,E E   ,  Output: HR image 𝒙𝒙 

Initialization:  

set 𝑙𝑙=0,  set  (0)x as the initial estimation of HR target image by bicubic interpolation;  
set initial regularization parameters 1 2 3 1 1 230, 1.5, 5, 0.01, 2, 0.01     = = = = = =  
Repeat 

( 1) ( )l l+ =x x  

Reconstruction ( 1)lu +   via anisotropic TV-based denoising problem by considering ( )lx  as the noisy observation of it. 

a.  Definition: 1( )g u Du=      b . 
3

( 1) ( )( )( )l lu prox g x
+ =  

Update  ( 1)l +x  

    1. Reconstruction  1
n

i i =x   over all directional dictionaries with the weighted penalty   

           for each patch   1
n

i i =x  

                 reconstruct ,
k
E i  by computing Eq.(14) over learned EDDs 16

, 1E k k =
 , reconstruct ix by computing Eq. (15).  

           end for 
    2. Update  𝒙𝒙𝑖𝑖 by computing Eq.(17) 
    3. Reconstruct ( 1)l +x  by averaging all reconstructed 1l

i
+x  

l=l+1; until maxl Iter or 
1 2

2
l l

N


+−


x x  

 

Table 1.EDD_based image super resolution algorithm.
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4- EXPERIMENTAL RESULTS
All the experiments have been implemented using 

MATLAB 2014a, an Intel ® Core™ i7, 2.4GHz processor 
with an 8 GB of RAM and a 64-bit Windows operating 
system. Four benchmark datasets are used for testing in 
our expriments: Set5 [29], Set14 [30], BSDS100 [31] and 
Urban100 [32]. In our experiments, the LR images are obtained 
by applying a 7 7×  Gaussian kernel with the standard 
deviation of 1.6 on the HR test images and downsampled 
by the scaling factors of 2 and 3. In all experiments, the 
size of the HR patch is 7 7×  with a 4 pixels overlap. The 
performance of the proposed methods are evaluated by the 
peak signal to noise ratio (PSNR) and structural similarity 
(SSIM) [33] between the luminance components of test 
images and the corresponding reconstructed ones. The basic 
parameters in our proposed algorithm are set as follows: 

1 2 3 1 1 230, 1.5, 5, 0.01, 2, 0.01δ δ λ λ γ γ= = = = = = . h=75 
and maxIter=150. The number of similar patches is set to 12. 
The searching window and the size of learned dictionaries are 
set to 20 20×  and 500.

4-1- Ablation Analysis
We demonstrate the effect of each regularization terms 

in our proposed method, by using an ablation analysis. This 
analysis, in terms of the average PSNR/SSIM on Set14 
dataset, is shown in Table.2. The PSNR/SSIM values are 
limited to (28.26/0.7873) with anisotropic TV and NLM 
terms. The anisotropic TV and the proposed EDD scheme, 
change the results to (28.54/0.8086). For (NLM term and 
EDD simotanously), the quantative results are improved to 
(29.30/0.8212). 

Combination of the NLM with anisotropic TV term and 
EDD achieves the best results (29.51/0.8231) . In Fig.3, we 
compared visually the effect of the various settings on some 
test images. The anisotropic TV and NLM lead to smooth 
results and  the finer structures cannot be reconstructed. The 
anisotropic TV and the proposed EDD scheme fail to recover 
the texures and its reconstructed images have some ringing 
artifacts. NLM and EDD scheme obtain much better results 
with fine structures. Combination of all the regularization 
terms, achieves the best pleasing textures, details and edges 
with  low artifacts.

Table 2. Ablation analysis in terms of average PSNR/SSIM on Set14 database.

 

 

 

 

Fig.2. obtained clustered patches via the proposed EDD method and k_means clustering method: (a) subset 𝑧𝑧1, 45° patches, (b)   
subset 𝑧𝑧3, 22.5° patches, (c) subset 𝑧𝑧5, 0° patches, (d) subset 𝑧𝑧7, 157.5° patches, (e) subset 𝑧𝑧9, 135° patches, (f) subset 𝑧𝑧11, 
112.5° patches (g) subset 𝑧𝑧13, 90° patches, (h) subset 𝑧𝑧15, 67.5° patches, (i) cluster 1, (j) cluster 2, (k) cluster 3, (l) cluster 4. 

 

 

 

 

 

  

              
                (a)                                       (b)                                       (c)                                   (d) 

              
           (e)                                         (f)                                           (g)                                (h) 

              
                             (i)                                   (j)                                               (k)                                     (l)                                  

 

  
Fig.2. obtained clustered patches via the proposed EDD method and k_means clustering method: (a) subset ,  patches, (b)   subset ,  
patches, (c) subset ,  patches, (d) subset ,  patches, (e) subset ,  patches, (f) subset ,  patches (g) subset ,  patches, (h) subset ,  patches, 

(i) cluster 1, (j) cluster 2, (k) cluster 3, (l) cluster 4.

for preserving the sharp edges and the proper merging the local smoothness and nonlocal self-similarity 

regularizations in the proposed model. 

4-4- Discussions: Comparisons Between the Different Sizes of Dictionary, Algorithm Convergence 

and Computational Complexity  

To investigate the effects of the number of the atoms of the learned dictionaries on the recovered results, 

we applied dictionaries with various sizes on the benchmark datasets. In Fig. 6 (left), the PSNR values for 

different sizes of atoms (200, 500, 700,1000) of the learned dictionary on Set5 are shown. As can be seen 

from this figure, the larger atoms lead to better results. In Fig 6 (right), PSNR (dB) values for the proposed 

CCDE-based method of test images for different iteration numbers with scaling factor 𝑑𝑑 = 3 are shown. 

These experiments confirm the good convergence of the proposed method which by incresing the iteration 

numbers, their PSNR converges to a fixed values. The complexity of the CCDE-based method comes from 

five sources: NLM weight, 𝑢𝑢 Sub problem, 𝛼𝛼𝐸𝐸 Sub problem and 𝑥𝑥 Sub problem. For an image with 𝑁𝑁 

pixels, computing NLM weight matrix has 𝑂𝑂(𝑁𝑁𝑐𝑐2(𝑛𝑛 + 16)𝑙𝑙) operations, where 𝑐𝑐2 is the size of the 

searching window, 𝑛𝑛 is the image patch size, 𝑙𝑙 is the number of selected nonlocal neighbors. To solve the 

𝒖𝒖 Sub problem, FIST is used which is computationally efficient and its computing time is about 5 seconds. 

The training times for the CNN-based methods depends on the execution platform. In Table 4, the time of 

the dictionary training and the utilized training data for our proposed method and some other methods are 

shown. Indeed, without complicated training procedure compared with CNN-based methods, our proposed 

method leads to pleasant results over most of the methods. 

5. Conclusion 

Settings Different combinations of Patch_based, Group_based and NLM 
anisotropic TV ✓ ✓  ✓ 
NLM ✓  ✓ ✓ 
CCDE  ✓ ✓ ✓ 
PSNR/SSIM 28.26/0.7873 28.54/0.8086 29.30/0.8212 29.51/0.8231 
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4-2- Comparison with Competitive Techniques
We compare the proposed SISR method both subjectively 

and objectively with the Bicubic, A+ [10], NCSR [21], 
SRCNN [14], FSRCNN [16], VDSR[15]  and SRDM [17]. 
However, in 2×magnification, our proposed methods are 
compared with Bicubic, A+ [10], ASDS [20], NCSR [21] 
and SRCNN [14]. PSNR/ SSIM for all methods and for two 
scaling factors of 2 and 3 are reported in Table 3. For the 
scaling factor of 3 , it can be seen that our proposed method 
outperforms all the current non-CNN-based methods (A+, 
ASDS, NCSR), SRCNN , FSRCNN and VDSR on the most 
benchmarked datasets. Furthermore, the proposed method 
achieves the highest PSNR/SSIM and PSNR over the SRDM 
on Urban100 dataset and BSDS100. The average PSNR/
SSIM gains of SR-EDD over Bicubic, A+, NCSR, FSRCNN, 
SRCNN, VDSR and SRMD on Urban100 dataset can be 
up to 3.68/0.1349, 2.97/0.0798, 0.81/0.0061, 5.15/0.1466, 
1.5/0.0441, 0.6/0.0075 and 0.6/0.0019. The average PSNR/
SSIM gains of SR_EDD over Bicubic, A+, NCSR, ASDS, 
FSRCNN, SRCNN, FSRCNN and SRMD on BSDS100 
dataset can be up to 2.6/0.1052, 1.78/0.0744, 0.79/0.004, 
4.07/0.1138, 0.8/0.0234, 0.36/0.0077 and 0.04/-0.001. In 2
×magnificaction, our SR_EDD algorithm achieves the best 
results compared to the other methods on all datasets. For 
instance, the average PSNR of 29.31 dB and the average 
SSIM of 0.8623 offers the best SR performance on Urban100. 
ASDS have the second best performance. The proposed 
SR_CCDE has an improvement of 0.62dB in PSNR and 
0.014 in SSIM over the average results of ASDS. The visual 
comparison between our proposed algorithm and the other 
methods for the scaling factor of 3 for test images ‘baby’ 
and ‘106024’ are shown in Figs. 4 and 5. The objective 
comparisons show that Bicubic interpolation generates the 
worst results. A+, FSRCNN and SRCNN generate results 
with obvious unpleasant blurring artifacts. NCSR method can 

generate results with fair edges and textures with blurring and 
artifacts. VDSR obtains better results but can’t recover more 
details and can’t reduce the blurring artifacts. By alleviating 
the ringing and blurring effects around some edges, SR_
EDD algorithm obtains superior results than VDSR. SR_
EDD with sharper edges and more fine details achieve the 
superior results than all methods except for SRMD. VDSR 
and SRMD for generating the necessary models with 
complicated structures, utilize high quality images with 
291 training images and DIV2K dataset with 800 training 
images. While our proposed method (for dictionary learning 
step) rely only on 91 training images, the performance of our 
proposed method is comparable with the VDSR and SRDM 
in most of the datasets. The sharper edges and finer structures 
illustrate the high performance of the proposed method which 
is imputed for using directional dictionaries for preserving 
the sharp edges and the proper merging the local smoothness 
and nonlocal self-similarity regularizations in the proposed 
model.

4-4- Discussions: Comparisons Between the Different Sizes 
of Dictionary, Algorithm Convergence and Computational 
Complexity

To investigate the effects of the number of the atoms of 
the learned dictionaries on the recovered results, we applied 
dictionaries with various sizes on the benchmark datasets. 
In Fig. 6 (left), the PSNR values for different sizes of atoms 
(200, 500, 700,1000) of the learned dictionary on Set5 are 
shown. As can be seen from this figure, the larger atoms lead 
to better results. In Fig 6 (right), PSNR (dB) values for the 
proposed CCDE-based method of test images for different 
iteration numbers with scaling factor 3d =  are shown. 
These experiments confirm the good convergence of the 
proposed method which by incresing the iteration numbers, 
their PSNR converges to a fixed values. The complexity of the 

Table 3. PSNR (dB) / SSIM results for various SISR methods with the scaling factors of 2 and 3. (The best results are shown in red 
color and the second best performance are appeared by blue color)

Table 3: PSNR (dB) / SSIM results for various SISR methods with the scaling factors of 2 and 3. (The best results are shown in 
red color and the second best performance are appeared by blue color) 

Urban100 BSDS100 Set14 Set5 Scale Method 

23.52/0.6862 26.33/0.6918 26.38/0.7271 28.78/0.8308 ⤫3 Bicubic 
24.23/0.7413 27.15/0.7226 27.35/0.7549 29.75/0.8420 ⤫3 A+ 
26.39/0.8150 28.14/0.7930 28.82/0.8165 32.46/0.9041 ⤫3 NCSR 
22.05/0.6745 24.86/0.6832 24.44/0.7106 26.23/0.8124 ⤫3 FSRCNN 
25.70/0.7770 28.13/0.7736 28.80/0.8074 32.05/0.8944 ⤫3 SRCNN 
26.60/0.8136 28.57/0.7893 29.46/0.8244 33.25/0.9150 ⤫3 VDSR 
26.60/0.8192 28.89/0.7980 29.91/0.8334 33.85/0.9242 ⤫3 SRMD 
27.20/0.8211 28.93/0.7950 29.51/0.8231 33.32/0.9167 ⤫3 Proposed 
25.83/0.7250 27.42/0.7543 0.7359/28.12 28.91/0.8354 ⤫2 Bicubic 
26.34/0.7726 28.15/0.7771 29.44/0.8063 30.46/0.8636 ⤫2 A+ 
28.69/0.8483 29.52/0.8522 30.83/0.8635 34.32/0.9250 ⤫2 ASDS 
28.48/0.8462 28.96/0.8537 30.77/0.8619 34.51/0.9293 ⤫2 NCSR 
27.45/0.8227 28.55/0.8324 30.14/0.8542 34.12/0.9122 ⤫2 SRCNN 
29.31/0.8623 30.12/0.8602 30.98/08684 35.03/0.9314 ⤫2 Proposed 

Fig.2. obtained clustered patches via the proposed EDD method and k_means clustering method: (a) subset 𝑧𝑧1, 45° patches, (b)   
subset 𝑧𝑧3, 22.5° patches, (c) subset 𝑧𝑧5, 0° patches, (d) subset 𝑧𝑧7, 157.5° patches, (e) subset 𝑧𝑧9, 135° patches, (f) subset 𝑧𝑧11, 112.5° 
patches (g) subset 𝑧𝑧13, 90° patches, (h) subset 𝑧𝑧15, 67.5° patches, (i) cluster 1, (j) cluster 2, (k) cluster 3, (l) cluster 4. 

              

                (a)                                       (b)                                       (c)                                   (d) 

              

           (e)                                         (f)                                           (g)                                (h) 

              

                             (i)                                   (j)                                               (k)                                     (l)                                  
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CCDE-based method comes from five sources: NLM weight, 
u  Sub problem, Eα  Sub problem and x  Sub problem. For 
an image with N  pixels, computing NLM weight matrix 
has ( )( )2 16O Nc n l+  operations, where 2c  is the size of 
the searching window, n  is the image patch size, l  is the 
number of selected nonlocal neighbors. To solve the u  Sub 
problem, FIST is used which is computationally efficient and 

its computing time is about 5 seconds. The training times for 
the CNN-based methods depends on the execution platform. 
In Table 4, the time of the dictionary training and the utilized 
training data for our proposed method and some other 
methods are shown. Indeed, without complicated training 
procedure compared with CNN-based methods, our proposed 
method leads to pleasant results over most of the methods.

 

 

 

 

 

Fig.4. Visual comparisons between different SR methods for the image '106024' of BSDS100 dataset with scaling factor of 3. 

 

  

 

 

 

 

 

 

 

 

 

Original                           Bicubic (30.23/0.8592)                FSRCNN (32.64/0.8751)                        A+ (33.12/0.8869)    

 
NCSR (34.00/0.9051)                            VDSR (34.30/0.9079)                              SRMD (34.42/0.9090)             SR_EDD (34.36/0.9094)                  

                  Fig.4. Visual comparisons between different SR methods for the image ‘106024’ of BSDS100 dataset with scaling factor of 3.

 

 

 

 

 

 

Fig.3. Investigation of the effect of each scheme in the proposed methods, on images of Set14 dataset from top to bottom. 
Columns from (a) to (e) represent the original HR images, obtained images with anisotropic TV and NLM, obtained images with 
anisotropic TV and proposed EDD, obtained images with NLM and proposed EDD and obtained images with TV, NLM and 
proposed EDD algorithms, respectively 

 

 

  

        

                

               

                              (a)                                  (b)                                         (c)                                     (d)                                          (e) 

            Fig.3. Investigation of the effect of each scheme in the proposed methods, on images of Set14 dataset from top to bottom. Columns 
from (a) to (e) represent the original HR images, obtained images with anisotropic TV and NLM, obtained images with anisotropic 

TV and proposed EDD, obtained images with NLM and proposed EDD and obtained images with TV, NLM and proposed EDD 
algorithms, respectively.
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Fig.5. Visual comparisons between different SR methods for image' baby' of Set5 dataset with scaling factor of 3 

 

 

 

 

 

 

                                                                          
original                                                      Bicubic (29.50/0.8365)                         FSRCNN (29.34/0.8401)                         A+ (32.14/0.8624)    

       
NCSR (35.20/0.9216)                    VDSR (35.25/0.9223)                                  SRMD (35.40/0.9250)                  SR_EDD (35.31/0.9228)       

 

 

 

 

 

 

Fig.5. Visual comparisons between different SR methods for image’ baby’ of Set5 dataset with scaling factor of 3

 

 

 

 

 

 

 

 

 

Fig. 6. (left), comparison average PSNR of our proposed method for different sizes of atoms and (right) advancement of PSNR 
values attained by the proposed method for test images for different iteration number for scaling factor 3 on Set5 dataset. 

 

Fig. 6. (left), comparison average PSNR of our proposed method for different sizes of atoms and (right) advancement of PSNR 
values attained by the proposed method for test images for different iteration number for scaling factor 3 on Set5 dataset.

Table 4. Dictionary training time comparison and utilized training datasets for various SISR methodsTable 4: Dictionary training time comparison and utilized training datasets for various SISR methods 
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5- CONCLUSION
In this paper, we first introduced a new supervised 

clustering scheme to learn directional sub-dictionaries by 
applying the curvelet based directional extraction method on 
the set of high-quality training natural images, called CCDE. 
Afterwards a new scheme for high fidelity SISR was proposed. 
The proposed CCDE-based method efficiently preserves the 
sharp edges of patches in 16 main directions from 0°  to 
167.5°  with step size of 11.25°  and describes the local 
smoothness of patches and the nonlocal self-similarity, 
simultaneously in a unified manner. Each input patch is 
reconstructed by all the learned directional dictionaries and 
then to keep its dominant direction, a weighted average of 
reconstructed patches is used. The local smoothness of the 
patches is considered as an isotropic TV- based denoising 
problem, the nonlocal means (NLM) regularization is 
utilized to measure the similarity weight between patches 
according to the pixel values. Experimental results show that 
the superiority of the proposed methods over the state of the 
art methods for scaling factor 2 and 3 in PSNR and SSIM 
measures.

REFERENCES
[1] L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, L. Zhang, 

Image super-resolution: The techniques, applications, 
and future, Signal Processing, 128 (2016) 389-408.

[2] M. Protter, M. Elad, H. Takeda, P. Milanfar, Generalizing 
the Nonlocal-Means to Super-Resolution Reconstruction, 
IEEE transactions on image processing : a publication of 
the IEEE Signal Processing Society, 18 (2009) 36-51.

[3] L. Wang, S. Xiang, G. Meng, H. Wu, C. Pan, Edge-Directed 
Single-Image Super-Resolution Via Adaptive Gradient 
Magnitude Self-Interpolation, IEEE Transactions on 
Circuits and Systems for Video Technology, 23(8) (2013) 
1289-1299.

[4] Q. Song, R. Xiong, D. Liu, Z. Xiong, F. Wu, W. Gao, Fast 
Image Super-Resolution via Local Adaptive Gradient 
Field Sharpening Transform, IEEE Transactions on 
Image Processing, 27(4) (2018) 1966-1980.

[5] D. Tao, J. Cheng, X. Lin, J. Yu, Local structure preserving 
discriminative projections for RGB-D sensor-based 
scene classification, Information Sciences, 320 (2015) 
383-394.

[6] A. Marquina, S.J. Osher, Image Super-Resolution by 
TV-Regularization and Bregman Iteration, Journal of 
Scientific Computing, 37(3) (2008) 367-382.

[7] A. Buades, B. Coll, J. Morel, A non-local algorithm 
for image denoising, in:  2005 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition 
(CVPR’05), 2005, pp. 60-65 vol. 62.

[8] C. Hong, Y. Dit-Yan, X. Yimin, Super-resolution through 
neighbor embedding, in:  Proceedings of the 2004 IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition, 2004. CVPR 2004., 2004, pp. I-I.

[9] R. Timofte, V. De, L.V. Gool, Anchored Neighborhood 
Regression for Fast Example-Based Super-Resolution, 
in:  2013 IEEE International Conference on Computer 
Vision, 2013, pp. 1920-1927.

[10] R. Timofte, V.D. Smet, L.V. Gool, A+: Adjusted 
Anchored Neighborhood Regression for Fast Super-
Resolution, in, 2014, pp. 111-126.

[11] C. Yang, M. Yang, Fast Direct Super-Resolution 
by Simple Functions, in:  2013 IEEE International 
Conference on Computer Vision, 2013, pp. 561-568.

[12] K. Zhang, B. Wang, W. Zuo, H. Zhang, L. Zhang, Joint 
Learning of Multiple Regressors for Single Image Super-
Resolution, IEEE Signal Processing Letters, 23 (2015) 
1-1.

[13] Y. Zhang, Y. Zhang, J. Zhang, Q. Dai, CCR: Clustering 
and Collaborative Representation for Fast Single Image 
Super-Resolution, IEEE Transactions on Multimedia, 
18(3) (2016) 405-417.

[14] C. Dong, C.C. Loy, K. He, X. Tang, Learning a Deep 
Convolutional Network for Image Super-Resolution, 
2014.

[15] J. Kim, J.K. Lee, K.M. Lee, Accurate Image Super-
Resolution Using Very Deep Convolutional Networks, 
in:  2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 2016, pp. 1646-1654.

[16] C. Dong, C.C. Loy, X. Tang, Accelerating the Super-
Resolution Convolutional Neural Network, 2016.

[17] K. Zhang, W. Zuo, L. Zhang, Learning a Single 
Convolutional Super-Resolution Network for Multiple 
Degradations, in:  2018 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2018, pp. 
3262-3271.

[18] Y. Jianchao, J. Wright, T. Huang, M. Yi, Image super-
resolution as sparse representation of raw image patches, 
in:  2008 IEEE Conference on Computer Vision and 
Pattern Recognition, 2008, pp. 1-8.

[19] J. Yang, J. Wright, T.S. Huang, Y. Ma, Image Super-
Resolution Via Sparse Representation, IEEE Transactions 
on Image Processing, 19(11) (2010) 2861-2873.

[20] W. Dong, L. Zhang, G. Shi, X. Wu, Image Deblurring and 
Super-Resolution by Adaptive Sparse Domain Selection 
and Adaptive Regularization, IEEE Transactions on 
Image Processing, 20(7) (2011) 1838-1857.

[21] W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally Centralized 
Sparse Representation for Image Restoration, IEEE 
Transactions on Image Processing, 22(4) (2013) 1620-
1630.

[22] J. Li, J. Wu, H. Deng, J. Liu, A self-learning image 
super-resolution method via sparse representation and 
non-local similarity, Neurocomputing, 184 (2016) 196-
206.

[23] T. Peleg, M. Elad, A Statistical Prediction Model Based 
on Sparse Representations for Single Image Super-
Resolution, IEEE Transactions on Image Processing, 
23(6) (2014) 2569-2582.

[24] A. Beck, M. Teboulle, Fast Gradient-Based Algorithms 
for Constrained Total Variation Image Denoising and 
Deblurring Problems, IEEE Transactions on Image 
Processing, 18(11) (2009) 2419-2434.

[25] X. Li, H. He, R. Wang, D. Tao, Single Image Super-
Resolution via Directional Group Sparsity and Directional 
Features, IEEE transactions on image processing : a 



259

 E. Mikaeli1 et al., AUT J. Elec. Eng., 53(2) (2021) 249-260, DOI: 10.22060/eej.2021.19611.5403

HOW TO CITE THIS ARTICLE
E. Mikaeli, A. Aghagolzadeh, M. Nooshyar,  Learning Curvelet-based Directional Dictionaries 
for Single Image Super Resolution , AUT J. Elec. Eng., 53(2) (2021) 249-260.

DOI:  10.22060/eej.2021.19611.5403

publication of the IEEE Signal Processing Society, 24 
(2015).

[26] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An 
algorithm for designing overcomplete dictionaries for 
sparse representation, IEEE Transactions on Signal 
Processing, 54(11) (2006) 4311-4322.

[27] J. Zhang, D. Zhao, R. Xiong, S. Ma, W. Gao, Image 
Restoration Using Joint Statistical Modeling in a Space-
Transform Domain, IEEE Transactions on Circuits and 
Systems for Video Technology, 24(6) (2014) 915-928.

[28] S. Yang, M. Wang, Y. Chen, Y. Sun, Single-Image 
Super-Resolution Reconstruction via Learned Geometric 
Dictionaries and Clustered Sparse Coding, IEEE 
Transactions on Image Processing, 21(9) (2012) 4016-
4028.

[29] M. Bevilacqua, A. Roumy, C. Guillemot, M.-L. Alberi-
Morel, Low-Complexity Single Image Super-Resolution 
Based on Nonnegative Neighbor Embedding,  (2012).

[30] R. Zeyde, M. Elad, M. Protter, On Single Image Scale-

Up Using Sparse-Representations, 2010.
[31]  J. Huang, A. Singh, N. Ahuja, Single image super-

resolution from transformed self-exemplars, in:  2015 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2015, pp. 5197-5206.

[32] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database 
of human segmented natural images and its application 
to evaluating segmentation algorithms and measuring 
ecological statistics, in:  Proceedings Eighth IEEE 
International Conference on Computer Vision. ICCV 
2001, 2001, pp. 416-423 vol.412.

[33] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image 
Quality Assessment: From Error Visibility to Structural 
Similarity, Image Processing, IEEE Transactions on, 13 
(2004) 600-612.

[34] E. Mikaeli, A. Aghagolzadeh, M. Azghani, “Single 
Image Super Resolution via curvelet based directional 
dictionaries,” 11th Iranian Conf. on Machine Vision and 
Image Processing (MVIP), Qom, Iran, 2020. 



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




