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ABSTRACT: This is a survey on some recent progress in homogeneous Finsler
geometry. Three topics are discussed, the classification of positively curved homoge-
neous Finsler spaces, the geometric and topological properties of homogeneous Finsler
spaces satisfying K ≥ 0 and the (FP) condition, and the orbit number of prime closed
geodesics in a compact homogeneous Finsler manifold. These topics share the same
similarity that the same rank inequality, i.e., rankG ≤ rankH + 1 for G/H with com-
pact G and H, plays an important role. In this survey, we discuss in each topic how
the rank inequality is proved, explain its importance, and summarize some relevant
results.
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1. Introduction

The rank inequality, i.e., rankG ≤ rankH+1 for a smooth coset space G/H with compact G and H, was originated
from the classification of positively curved Riemannian homogeneous spaces [3, 6, 8, 52]. It plays an important role
in this classification project by simplifying and systemizing the case-by-case discussion. The importance of rank
inequality extends to homogeneous Finsler geometry. Three topics are discussed to justify our viewpoint.

The first is the classification of positively curved homogeneous Finsler spaces. After the proof of rank inequality
in this context by S. Deng and Z. Hu [21], there had been big progress in this classification project. More details
and references will be given in Section 5.2. See also the survey [24] and the references therein.

The second is the compactness and rank inequality conjecture for a homogeneous Finsler manifold satisfying
K ≥ 0 (i.e., the non-negatively flag curvature property) and the (FP) condition (see Conjecture 6.2). The (FP)
condition (see Definition 6.1) introduced in [56] and [64] provides new thoughts for studying the positive curvature
problem in Finsler geometry. The combination of K ≥ 0 and the (FP) condition is a reasonable and interesting
approximation for the positive flag curvature property [64]. Solving Conjecture 6.2 opens the gate to a new
classification project [59, 68].

The last topic concerns the orbit number for prime closed geodesics on a closed Finsler manifold. In [58], the
following closed geodesic orbit number conjecture is announced: any closed Finsler manifold, if it admits nontrivial
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continuous isometric actions, must have two orbits of prime closed geodesics, unless it is isometric to a rank-one
Riemannian symmetric space (see Conjecture 7.2). To explore this conjecture, a closed Finsler manifold (M,F )
with dim I(M,F ) > 0 and only orbit of prime closed geodesics has been studied. It has been proved recently in
[58] that in this (M,F ), there exists an orbit G · x = G/H of G = I0(M,F ) containing all closed geodesics, which
satisfies the rank inequality rankG ≤ rankH + 1. Using this rank inequality and the relevant algebraic setup for
case-by-case discussion, we proved the closed geodesic orbit number conjecture for compact homogeneous Finsler
spaces which are either even-dimensional or reversible [58].

To summarize, we expect to see more progress in homogeneous Finsler geometry which are inspired or influenced
by this amazing rank inequality.

This survey is organized as follows. In Section 2, we summarize some preliminaries in general and homogeneous
Finsler geometry. In Section 3, we introduce the algebraic setup relevant to the rank inequality. In Section 4, we
switch to the classification of positive curvature in homogeneous Finsler geometry. In Section 5, we discuss the rank
inequality in the classification of positively curved homogeneous Finsler spaces. In Section 6, we discuss the (FP)
condition, examples and the compactness, and rank inequality conjecture. In Section 7, we reveal the importance
of rank inequality for studying the closed geodesic orbit number conjecture.

2. Preliminaries

In this section, we summarize some fundamental knowledge in general Finsler geometry [11, 48], homogeneous
Finsler geometry [19], and Lie theory [33]. In later discussion, we only consider connected smooth manifolds which
dimensions are bigger than 1.

2.1. Finsler metric and Minkowski norm

A Finsler metric on a smooth manifold M is a continuous function F : TM → [0,+∞) satisfying the following
properties:

1. F is positive and smooth when restricted to TM\0;

2. F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ ≥ 0;

3. With respect to any standard local coordinates (xi, yi), i.e., x = (xi) ∈ M , y = yi∂xi ∈ TxM , the Hessian
matrix (gij(x, y)) = ( 1

2 [F 2(x, y)]yiyj ) is positive definite for any y ∈ TxM\{0}.

We call (M,F ) a Finsler space or a Finsler manifold.
The restriction of F to each tangent space is called a Minkowski norm. Minkowski norm can also be abstractly

defined on any finite dimensional real vector space using similar conditions as (1)-(3) above.
A Finsler metric F is called reversible if F (x, y) = F (x,−y) is always satisfied. The Hessian matrix (gij(x, y))

defines an inner product gy(·, ·) parametrized by the nonzero base vector y, i.e.,

gy(u, v) = gij(x, y)uivj =
1

2
[F 2(y + su+ tv)]st|s=t=0.

Sometimes we call the Hessian (gij(x, y)) or the inner product gy(·, ·) the fundamental tensor.
Riemannian metrics are a special class of reversible Finsler metrics. They are characterized by the property that

the fundamental tensor does not depend on the base vector y. Randers metrics, which have the form F = α + β,
in which α is a Riemannian metric and β is a one-form, are the most simple and the most important irreversible
Finsler metrics [45]. (α, β)-metrics have the form F = αφ(β/α), in which φ(·) is a positive smooth one-variable
function, and α, β are similar to those for Randers metrics [41].

2.2. Geodesic, geodesic spray and S-curvature

Using the locally minimizing principle for the arc length functional l(c) =
∫ b
a
F (ċ(t))dt for a piecewise smooth

curve c(t) : [a, b] → M , a geodesic can be defined on the Finsler manifold (M,F ). Unless otherwise specified, a
geodesic is assumed to have a positive constant speed.

A geodesic c(t) can be lifted to the curve (c(t), ċ(t)) in TM\0 and then described as the integral curve of the
geodesic spray

G = yi∂xi − 2Gi∂yi ,

in which
Gi = 1

4g
il([F 2]xkyly

k − [F 2]xl).
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Though the geodesic spray is presented by standard local coordinates, it is in fact globally and smoothly defined
on TM\0. So a geodesic c(t) can also be determined by standard local coordinates as the solution of the following
ODE system

c̈i(t) + 2Gi(c(t), ċ(t)) = 0, ∀i.

The S-curvature was discovered by Z. Shen when he studied the volume comparison in Finsler geometry [47].
Here we only introduce the S-curvature with respect to the B.H. volume form dµFBH = σ(x)dx1 · · · dxn on (Mn, F ),
in which

σ(x) =
Vol({(yi) ∈ Rn|

∑
(yi)2 ≤ 1})

Vol({y = yi∂xi |F (x, y) ≤ 1})
,

where Vol(·) is the standard Euclidean measure in Rn. The S-curvature S(x, y) : TM\0→ R of a Finsler manifold
(M,F ) is the directional derivative of the distortion function

τ(x, y) = ln

(√
det(gij(x, y))

σ(x)

)

in the direction of G(x, y).

2.3. Riemann curvature and flag curvature

Riemann curvature Ry : TxM → TxM for any nonzero y ∈ TxM is a gy(·, ·)-self-adjoint linear operator, which
appears in the Jacobi equation for the geodesic variations. Using standard local coordinates, it can be presented as
Ry = Rik∂xi ⊗ dxk, in which

Rik(y) = 2[Gi]xk − yj [Gi]xjyk + 2Gj [Gi]yjyk − [Gi]jy[Gj ]yk .

Consider a triple (x, y,P) with the point x ∈M , the nonzero vector (i.e., the flagpole) y ∈ TxM and the tangent
plane (i.e., the flag) P = span{y, u} ⊂ TxM . Then the flag curvature K(x, y,P) = K(x, y, y ∧ u) is defined as

K(x, y,P) =
gy(Ry(u), u)

gy(y, y)gy(u, u)− gy(y, u)2
.

Generally speaking, flag curvature depends on the flag as well as on the flagpole. However, when F is Rieman-
nian, it is reduced to sectional curvature which is only relevant to the flag.

2.4. Homogeneous Finsler geometry

The isometry group I(M,F ) for a Finsler manifold is the group of all diffeomorphisms ρ : M → M satisfying
ρ∗F = F . It is a Lie transformation group [20]. Its Lie algebra can be identified as the space of Killing vector fields
on (M,F ), i.e., each v ∈ Lie(I(M,F )) induces the Killing vector field

V (x) =
d

dt
|t=0(exp tv · x).

A Finsler manifold (M,F ) is called homogeneous if its isometry group I(M,F ) acts transitively on M . A
homogeneous Finsler space (M,F ) can be presented as (G/H,F ) for any Lie subgroup G ⊂ I(M,F ) which acts
transitively on M . As M is assumed connectedness, we may require G to be a connected Lie subgroup of the
connected isometry group I0(M,F ) (which is the identity component of I(M,F )). The presentation G/H for a
homogeneous Finsler space may not be unique. For example, the homogeneous spheres have been classified as
following [9, 43],

Sn = SO(n+ 1)/SO(n), S2n−1 = SU(n)/SU(n− 1) = U(n)/U(n− 1),

S4n−1 = Sp(n)/Sp(n− 1) = Sp(n)U(1)/Sp(n− 1)U(1) = Sp(n)Sp(1)/Sp(n− 1)Sp(1),

S6 = G2/SU(3), S7 = Spin(7)/G2, S15 = Spin(9)/Spin(7).

In the presentation M = G/H for the homogeneous Finsler manifold (M,F ), H is the isotropy subgroup at
o = eH. It is a compactly imbedded subgroup of G [44], so in the Lie algebra level, we have a reductive decomposition

g = h + m (2.1)

for G/H, in which m is an Ad(H)-invariant complement of h = Lie(H) in g = Lie(G). The subspace m can be
canonically viewed as the tangent space To(G/H) at o = eH, with the Ad(H)-action identified with the isotropic
action.
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There is a subtlety that the compactly imbedded subgroup H may not be compact itself, though it has a
compact Lie algebra. For simplicity, you may further assume G to be closed in I0(M,F ), then H is compact and
the existence of the reductive decomposition (2.1) is more obvious [10].

The reductive decomposition for the homogeneous Finsler space (M,F ) may not be unique. Since the restriction
Bg|h×h of the Killing form Bg to h is nondegenerate [44], the canonical reductive decomposition is the unique one
which is Bg-orthogonal. When G or g is compact, the canonical reductive decomposition can be equivalently
determined by its orthogonality with respect to certain Ad(G)-invariant inner product 〈·, ·〉bi on g.

Reductive decomposition is a fundamental technique in homogeneous Riemannian geometry and homogeneous
Finsler geometry. Any homogeneous (i.e., G-invariant) Finsler metric F on G/H can be one-to-one determined
by its restriction to To(G/H), which is an Ad(H)-invariant Minkowski norm [19] (for simplicity, we still use F to
denote this Minkowski norm).

3. Algebraic setup for the rank inequality

Suppose G/H is coset space with compact G and H and satisfies rankG ≤ rankH + 1, in which the rank is
the dimension of a maximal torus subgroup. The rank inequality can help us simplify systemize the case-by-case
discussion for G/H. The following algebraic setup is useful for classifying positively curved homogeneous Finsler
spaces [62, 63], as well as for studying the closed geodesic orbit number for a compact homogeneous Finsler space
[58].

Firstly, we have the canonical reductive decomposition g = h + m for G/H, which is orthogonal with respect to
certain Ad(G)-invariant inner product 〈·, ·〉bi on g.

Then we fix a fundamental Cartan subalgebra t of g, i.e., t is a Cartan subalgebra of g and t ∩ h is a Cartan
subalgebra of h. The root plane decompositions for g and h are for t and t ∩ h respectively.

3.1. Even dimensional case

Assume rankG = rankH. In this case, dimG/H is even and we have t ⊂ h.
With respect to t, the root plane decompositions are the following

g = t +
∑
α∈∆g

g±α, h = t +
∑
α∈∆h

h±α = t +
∑
α∈∆h

g±α, and m =
∑
α/∈∆h

g±α.

Using the chosen bi-invariant inner product 〈·, ·〉bi on g, we can identify the root system ∆g as a subset in t. Using
the restriction of 〈·, ·〉bi on h, we can also identify the root system ∆h as a subset in t. Furthermore, we have the
relation ∆h ⊂ ∆g between the two root systems. Each root plane h±α of h coincides with the root plane g±α of g.

3.2. Odd dimensional case

Assume rankG = rankH + 1. In this case, dimG/H is odd and we have dim t ∩m = 1.
We have the following root plane decompositions,

g = t +
∑
α∈∆g

g±α,=
∑

α′∈t∩h

ĝ±α′ h = t ∩ h +
∑
α′∈∆h

h±α′ , and m =
∑

α′∈t∩h

m̂±α′ .

Here we still use 〈·, ·〉bi and its restriction to h to identify ∆g and ∆h as subsets in t and t ∩ h respectively. Denote
pr : t → t ∩ h the orthogonal projection. Then ĝ±α′ for α′ ∈ t ∩ h\{0} is the sum of all root planes g±α with
pr(α) = α′, ĝ0 = t +

∑
pr(α)=0 g±α, and m̂±α′ = ĝ±α′ ∩ m. Each ĝ±α′ is compatible with reductive decomposition

(2.1), i.e.,
ĝ±α′ = ĝ±α′ ∩ h + ĝ±α′ ∩m = ĝ±α′ ∩ h + m̂±α′ .

When α′ ∈ ∆h, ĝ±α′ ∩ h is the root plane h±α′ of h, otherwise it is just zero.
In ĝ0 = cg(t ∩ h) = t ∩ h + m̂0, m̂0 = cg(t ∩ h) ∩m is a Lie subalgebra. If ∆g ∩m 6= ∅, i.e., there exists a pair of

roots ±α of g contained in the line t ∩m, m̂0 = t ∩m + g±α is of type a1. Otherwise, m̂0 = t ∩m is Abelian.

3.3. Sorting G/H according to regularity

Finally, we sort all the cases of G/H according to the regularity of h in g. We say the subalgebra h is regular in
g (with respect to the chosen fundamental Cartan subalgebra t), when each root plane of h with respect to t ∩ h is
a root plane of g with respect to t.

When rankG = rankH, h is always regular in g. This case is relatively easy to handle.
When rankG = rankH + 1, G/H can be further sorted into three categories:
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Category I. h is regular in g;
Category II. h is irregular in g, and there exist two roots α and β of g from different simple ideals, such that

pr(α) = pr(β) = α′ is a root of h;
Category III. h is irregular in g, and there exist two roots of g from the same simple ideals, such that

pr(α) = pr(β) = α′ is a root of h.

Further discussion for G/H can be carried out case-by-case in each Category.

4. Rank inequality for K > 0 in homogeneous Riemannian geometry

4.1. Classification of positively curved Riemannian homogeneous spaces

A closed manifold with positive sectional curvature is a central topic in Riemannian geometry. On one hand, it
has many intriguing properties, from the view points of differential topology and geometric analysis [71]. On the
other hand, examples are relatively rare. The complete list of positively curved Riemannian homogeneous spaces
(up to local isometries) was found during 1960’s and 1970’s [3, 8, 6, 52], i.e.,

1. compact rank-one Riemannian symmetric spaces

Sn = SO(n+ 1)/SO(n), CPn = SU(n+ 1)/S(U(n)U(1)),

HPn = Sp(n+ 1)/Sp(n)Sp(1), OP2 = F4/Spin(9);

2. Other homogeneous spheres [9, 43], i.e.,

S2n−1 = SU(n)/SU(n− 1) = U(n)/U(n− 1),

S4n−1 = Sp(n)/Sp(n− 1) = Sp(n)U(1)/Sp(n− 1)U(1) = Sp(n)Sp(1)/Sp(n− 1)Sp(1),

S6 = G2/SU(3), S7 = Spin(7)/G2, S15 = Spin(9)/Spin(7),

and the homogeneous complex projective space CP2n−1 = Sp(n)/Sp(n− 1)U(1);

3. two Berger spaces Sp(2)/SU(2) and SU(5)/Sp(2)U(1) [6];

4. three Wallach spaces SU(3)/T 2, Sp(3)/Sp(1)3, F4/Spin(8) [52];

5. Aloff-Wallach spaces SU(3)/S1
k,l, in which k, l ∈ Z satisfy kl(k + l) 6= 0 and S1

k,l = {diag(zk, zl, z−k−l)|∀z ∈
C, |z| = 1} [3].

See also [51], [54], [55] and [66] for some emendations and new observations. Since 1980’s, a few new examples
of closed manifolds with positive curvature have been found among biquotient and cohomogeneity one spaces in
dimension 6, 7 and 13 [5, 18, 25, 26, 32].

4.2. Rank inequality and equivalent statement

Consider a connected Riemannian homogeneous space M = G/H, in which G is a closed connected subgroup of
the connected isometric group of M , then H is a compact subgroup of G [10]. Bonnet-Myers Theorem [42] indicates
the compactness of M . So G is also compact and the rank rankG is defined.

The rank inequality rankG ≤ rankH + 1 was first observed by M. Berger, when he studied positively curved
normal homogeneous Riemannian manifolds [6]. Since normal homogeneous Riemannian metric on G/H is induced
by submersion from a bi-invariant Riemannian metric 〈·, ·〉bi on G (〈·, ·〉bi = |·|2bi is also viewed as an Ad(G)-invariant
inner product on g = Lie(G)), O’Neill formula [31] provides the curvature tensor of G/H, i.e.,

R(X,Y, Y,X) =
1

4
|[X,Y ]|2bi +

3

4
|[X,Y ]h|2bi

for any X,Y ∈ m = To(G/H), where the reductive decomposition g = h + m is canonical. It is obvious to see that,
when rankH ≤ rankG − 2, we can find a linearly independent commuting pair X and Y in m. The tangent plane
spanned by X and Y has zero sectional curvature. To summarize,

Lemma 4.1. [6] A smooth coset space G/H with compact G and H admits a positively curved normal homogeneous
Riemannian metric only when the rank inequality rankG ≤ rankH + 1 is satisfied.

When the positively curved homogeneous metric on G/H is not normal, the rank inequality was proved by N.
Wallach in 1972 [52].
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Theorem 4.2. [52] Any positively curved Riemannian homogeneous space M = G/H with compact G and H
satisfies rankG ≤ rankH + 1.

In [52], N. Wallach also proved the following equivalent statement for Theorem 4.2.

Theorem 4.3. [52] A connected Lie group admitting a positively curved left invariant Riemannian metric must be
SU(2) or SO(3).

To prove Theorem 4.3 from Theorem 4.2, we can just take the trivial H = {e}. To prove the inverse direction,
we need a totally geodesic technique (i.e., fixed point set technique). Let TH be a maximal torus in H. Its fixed
point is nonempty, because it contains o = eH. The component Fixo(TH , G/H) containing o of the fixed point set
of TH in G/H is a totally geodesic submanifold which is locally isometric to a left-invariant metric on CG(TH). The
rank of CG(TH), i.e., rankG− rankH, must be 0 or 1 by Theorem 4.3.

4.3. Proofs of the rank inequality

There are two proof of Theorem 4.3. The first is a topological proof proposed by N. Wallach [52], using
Riemannian submersion and the following observation from M. Berger.

Lemma 4.4. [7] Suppose M is an even dimensional closed Riemannian manifold with positive sectional curvature.
Then any Killing field on M must have a zero.

Proof. [Sketched topological proof of Theorem 4.3 in [52]] Suppose G is a compact connected Lie group endowed
with a positively curved left invariant Riemannian metric. If rankG = 1, then G is SU(2) or SO(3). Assume
conversely rankG > 1. Let T be a maximal torus in G, T ′ ⊂ T a codimension-two sub-torus, and denote t = Lie(T )
and t′ = Lie(T ′). By Riemannian submersion, G/T ′ admits a positively curved homogeneous Riemannian metric
induced from that on G. Any generic vector in t\t′ induces a nowhere vanishing Killing vector field on G/T ′. This
is a contradiction to Lemma 4.4 because dimG/T ′ is even.

�

The computational method uses a technique from B. Wilking [55].
Proof. [Sketched computational proof of Theorem 4.3] Suppose the compact connected Lie group G is endowed

with a left invariant Riemannian metric, corresponding to the inner product 〈·, L·〉bi on g = Lie(G), where L is a
positive definite linear map with respect to the bi-invariant inner product 〈·, ·〉bi. For any vector X,Y ∈ g = TeG,
the homogeneous curvature formula [8] provides

R(X,Y, Y,X) = −3

4
〈[X,Y ], [X,Y ]〉+

1

2
〈[[Y,X], Y ], X〉+

1

2
〈[[X,Y ], X], Y 〉

+〈U(X,Y ), U(X,Y )〉 − 〈U(X,X), U(Y, Y )〉, (4.1)

in which the bilinear function U : g× g→ R is defined by U(u, v) = 1
2L
−1([u, Lv] + [v, Lu]). When rankG > 1, we

can find a linearly independent commuting pair X and Z, such that X is an eigenvector for the smallest eigenvalue
of L. So X and Y = L−1Z are also linearly independent. Calculation following (4.1) indicates R(X,Y, Y,X) ≤ 0
(see [55][66] for the details). Notice that R(X,Y, Y,X) is the nominator of the sectional curvature K(e,X ∧ Y ) =
R(X,Y,Y,X)
|X∧Y |2 , so K(e,X ∧ Y ) ≤ 0, i.e., the left invariant Riemannian metric on G is not positively curved.

�

4.4. Role of rank inequality in the classification

When rankG = rankH, the strong orthogonality provides a very convenient criterion for homogeneous positive
curvature.

Lemma 4.5. [52] Suppose the even dimensional coset space G/H with compact G and H admits a positively curved
homogeneous Riemannian metric. Then it satisfies
Condition (A): there do not exist a pair of linearly independent roots α and β of g such that they are not roots of
h and α± β are not roots of g.
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The classification for the smooth compact coset space G/H satisfying Condition (A) results the Wallach’s list in
[52].

When rankG = rankH + 1, the case-by-case discussion for G/H in each of Category I-III (see Section 3.3)
can be further simplified by totally geodesic subspace, block lemma and other techniques [55]. For almost all
unwanted G/H, algebraic obstacles can be found from a linearly independent commuting pair from the m-factor in
the canonical reductive decomposition for G/H, which spans a tangent plane with vanishing sectional curvature [8].
However, there exist a few exceptional cases, like Sp(2)/U(1) in Category I, which admit homogeneous Riemannian
metrics with positive curvature for all linearly independent commuting pairs in m [66]. For these exceptional
subcases, B. Wilking’s technique (see the computational proof of Theorem 4.3) can provide the analytical obstacle
to homogeneous positive curvature [55, 66].

5. Positive flag curvature in homogeneous Finsler geometry

In Finsler geometry, the positive curvature or positively curved property is referred to metrics or manifolds with
positive flag curvature. Closed Finsler manifolds with positive curvature share many geometric and topological
properties with those in Riemannian geometry. For example, Bonnet-Myers Theorem [42] and Synge Theorem
[50] in Riemannian geometry can be immediately generalized [11], and we can still use the submersion and totally
geodesic techniques [2, 17] in Finsler geometry. On the other hand, the variational method [49] only works partially,
because of the base vector issue in Finsler geometry, so some other important theories, like the triangular comparison
[16] and Frankel Theorem [29], are no longer valid in Finsler geometry.

5.1. Rank inequality for homogeneous positive flag curvature

To systematically study the positive curvature problem in Finsler geometry, classifying the positively curved
homogeneous Finsler spaces is the start point. Due to the complexity of calculation in Finsler geometry, it has not
been touched until the 2010’s. A remarkable progress is the following theorem of S. Deng and Z. Hu [21], which
generalizes Theorem 4.3,

Theorem 5.1. [21] Let G be a connected compact Lie group which admits a left invariant Finsler metric with
positive flag curvature, then G = SU(2) or SO(3).

By the same totally geodesic technique as in Riemannian geometry, Theorem 5.1 is equivalent to the following
rank inequality for positively curved homogeneous Finsler spaces [65].

Theorem 5.2. [65] Let (G/H,F ) be a positively curved homogeneous Finsler space with compact G and H. Then
it satisfies the rank inequality rankG ≤ rankH + 1.

The proof of Theorem 5.1 in [21] is topological, which is similar to that for Theorem 4.3 in [52]. In [35], L.
Huang proposed a computational proof of Theorem 5.1 using his homogeneous curvature formula [34], i.e.,

Theorem 5.3. [34] Let (G/H,F ) be a homogeneous Finsler space with a reductive decomposition g = h+m. Then
for any linearly independent pair y, v ∈ m = Te(G/H), the flag curvature for the triple (o = eH, y,P = span{y, v})
is

K(o, y,P) =
gy([[v, y]h, v], y) + gy(R̃(v), v)

gy(y, y)gy(v, v)− gy(y, v)2
,

in which

R̃(v) = (DηN)(y, v)−N(y,N(y, v)) +N(y, [y, v]m)− [y,N(y, v)]m. (5.1)

Here gy(·, ·) denote the fundamental tensor for the Ad(H)-invariant Minkowski norm F determines in m, η :
m\{0} → is the spray vector field defined by

gy(η(y), v) = gy(y, [v, y]m),

N : m\{0} ×m→ m is the connection operator defined by

2gy(N(y, v), u) = gy([u, v]m, y) + gy([u, y]m, v) + gy([v, y]m, u)− 2Cy(u, v, η(y)),

and (DηN)(y, v) is the directional derivative of N(·, v) in the direction of η(y) at y.
Proof. [Sketched computational proof of Theorem 5.1 in [35]] B. Wilking’s technique is applied as following.

Suppose F is a left invariant Finsler metric on the compact Lie group G with rankG > 1. For simplicity, we
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also use F to denote the Minkowski norm it defines in TeG = g. We fix a bi-invariant inner product on g, i.e.,
| · |2bi = 〈·, ·〉bi. The flag triple (e, y,P = span{y, v}) is determined as following. Firstly, the nonzero y ∈ g is chosen

where the function f(·) = F (·)
|·|bi

achieves its minimum. The fundamental tensor gy(·, ·) at y determines a positive

definite linear operator L for 〈·, ·〉bi, i.e., gy(·, ·) = 〈·, L·〉bi, and y is an eigenvector for the minimal eigenvalue of L.
Nextly, we use the assumption rankG > 1 to find v′ ∈ g\Ry commuting with y. Then y and v = L−1v′ are linearly
independent. Finally, we use the L. Huang’s homogeneous flag curvature formula, i.e., Theorem 5.3, to calculate
the flag curvature K(e, y,P). Notice that the choice of y implies η(y) = 0, so the calculation can be simplified and
is similar to that in the computational proof of Theorem 4.3, where we obtain a non-positive curvature.

�

5.2. Classification of positively curved homogeneous Finsler spaces
To study the classification for homogeneous positive curvature in Finsler geometry, we need to check case by

case each G/H searching for obstacles to positive curvature, where the algebraic setup in Section 3 can be applied
because of the rank inequality in Theorem 5.2. The homogeneous flag curvature formula provides the criteria.
Since the formula (5.1) is still quite complicated, the following simplified version [65] (which can be deduced from
Theorem 5.3) is more useful.

Theorem 5.4. [65] Let (G/H,F ) be a connected homogeneous Finsler space with a reductive decomposition g =
h + m. Then for any linearly independent commuting pair u, v ∈ m = To(G/H) satisfying gu([u,m]m, u) = 0, we
have

K(o, u, u ∧ v) =
gu(U(u, v), U(u, v))

gu(u, u)gu(v, v)− gu(u, v)2
,

where U(u, v) ∈ m is determined by

gu(U(u, v), w) =
1

2
(gu([w, u]m, v) + gu([w, v]m, u)), ∀w ∈ m.

In a series of works, we partially generalized the classification for positively curved homogeneous spaces from
Riemannian geometry to Finsler geometry:

1. when the positively curved (G/H,F ) is normal homogeneous or generalized normal homogeneous (i.e., δ-
homogeneous [14, 68]), the classifications are complete, which coincide with M. Berger’s list [6], i.e., Sn, CPn,
HPn, OP2, two Berger spaces Sp(2)/SU(2) and SU(5)/Sp(2)U(1), and the addon SU(3) × SO(3)/U(2) =
SU(3)/S1

1,1 by B. Wilking [62, 68];

2. when the positively curved (G/H,F ) is even dimensional, the classification list is complete, which coincide
with N. Wallach’s list [52], i.e., S2n, CPn, HPn, OP2, and the three Wallach spaces SU(3)/T 2, Sp(3)/Sp(1)3

and F4/Spin(8) [65];

3. whenG/H is odd dimensional and F is positively curved and reversible, then there are two possibilities [63, 67].
Either G/H admits positively curved homogeneous Riemannian metric, i.e., it belongs to L. Bergery’s list [8],
or it belongs to one of following five candidates,

Sp(2)/diag(z, z3) with z ∈ C,
Sp(2)/diag(z, z) with z ∈ C,
Sp(3)/diag(z, z, q) with z ∈ C, q ∈ H,
SU(4)/diag(zA, z, z̄3) with A ∈ SU(2), z ∈ C,
G2/SU(2) with normal SU(2) in SO(4) ⊂ G2 corresponding to a long root;

4. If we further assume that (G/H,F ) in (3) is of (α, β)-type, then only two undetermined candidates remains
[67]:

Sp(2)/diag(z, z) with z ∈ C,
Sp(3)/diag(z, z, q) with z ∈ C, q ∈ H;

5. If we assume (G/H,F ) is a positively curved homogeneous (α, β)-space with vanishing (or equivalently,
isotropic [60]) S-curvature [47], then G/H can be completely classified [61], i.e., it is one of the odd dimen-
sional homogeneous spheres S2n−1 = SU(n)/SU(n − 1) = U(n)/U(n − 1) and S4n−1 = Sp(n)/Sp(n − 1) =
Sp(n)U(1)/Sp(n− 1)U(1), or one of Aloff-Wallach spaces;

6. If we further assume (G/H,F ) in (4) is Randers, then the Killing navigation process [27, 30, 37] can be applied
to determine all positively curved metrics [36].
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6. Homogeneous Finsler manifold satisfying K ≥ 0 and the (FP) condition

6.1. (FP) condition

Though flag curvature in Finsler geometry is a perfect generalization for sectional curvature in Riemannian
geometry, it is much more local because it depends not only on the flag but also the flagpole. This observation
inspires a new positive curvature property in Finsler geometry.

Definition 6.1. [64] We say the Finsler manifold (M,F ) is flagwise positively curved or it satisfies the (FP)
condition, if for any x ∈ M and any tangent plane P ⊂ TxM , we can find a nonzero y ∈ P, such that the flag
curvature K(x, y,P) > 0.

It is easy to see that in Riemannian geometry, a metric is flagwise positively curved iff it is positively curved.
The (FP) condition in Finsler geometry is much weaker than the positive flag curvature property and metrics

satisfying the (FP) condition are not hard to find. For example, for any smooth compact coset space G/H with
a finite fundamental group, G/H and G/H × S1 admit (generally non-homogeneous) flagwise positively curved
Finsler metrics; any Lie group G with dimG > 1 admits left invariant metrics satisfying the (FP) condition if its
Lie algebra g is compact and c(g) < 2 [56]. It is believed that we can get a flagwise positively curved Finsler metric
by generically perturbing any non-negatively curved Finsler metric.

6.2. Homogeneous Finsler spaces satisfying K ≥ 0 and the (FP) condition

The combination of the (FP) condition and the non-negatively curved condition is believed to be an interesting
and reasonable approximation for the positive flag curvature property [64]. We can use the Killing navigation
process [27] to find many compact coset spaces which admit homogeneous Finsler metrics satisfying K ≥ 0 and the
(FP) condition, but do not admit positively curved homogeneous Finsler metrics. Here are some explicit examples
[64],

SU(p+ q)/SU(p)SU(q), with p > q ≥ 2 or p = q > 3,

Sp(n)/SU(n), with n > 4,

SO(2n)/SU(n), with n = 5 or n > 6,

E6/SO(10) and E7/E6.

6.3. Compactness and rank inequality conjecture

It is intriguing to explore what geometric or topological properties of positively curved homogeneous Finsler
metrics are preserved by homogeneous Finsler spaces satisfying K ≥ 0 and the (FP) condition. So we proposed the
following compactness and rank inequality conjecture in [64].

Conjecture 6.2. [64] Suppose (M,F ) is a homogeneous Finsler manifold satisfying K ≥ 0 and the (FP) condition,
then M is compact. Further more, if we present M = G/H with compact G and H, then we have rankG ≤ rankH+1.

Conjecture 6.2 can be viewed as the generalizations for the Bonnet-Myers Theorem and the rank inequality for
positively curved homogeneous Finsler spaces.

Until now, Conjecture 6.2 has been proved for some special cases.
Recall that a (generalized) normal homogeneous Finsler metric F on G/H is induced by submersion from a bi-

invariant metric F̄ on G. Notice that though we require F to be smooth, F̄ could be singular. Normal homogeneous
and generalized normal homogeneous Finsler space are always non-negatively curved and they can be presented as
G/H with compact g = Lie(G) [62, 68]. Conjecture 6.2 has been proved for these cases.

Theorem 6.3. [68] Let (G/H,F ) be a normal or generalized normal homogeneous Finsler manifold satisfying the
(FP) condition, then G/H is compact with compact g = Lie(G), and the rank inequality rankG ≤ rankH + 1 is
satisfied.

Theorem 6.3 has the following immediate consequence.

Corollary 6.4. [68] The following statements for the smooth compact coset space G/H with compact G and H are
equivalent:

1. G/H admits positively curved normal homogeneous Riemannian metric;

2. G/H admits positively curved (generalized) normal homogeneous Finsler metric;
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3. G/H admits positively curved (generalized) normal homogeneous Finsler metric satisfying the (FP) condition.

It provides a complete classification for normal and generalized normal homogeneous Finsler spaces with an
even dimension which satisfy the (FP) condition, i.e., homogeneous S2n, CPn, HPn and OP2.

Normal homogeneity and generalized normal homogeneity is special cases of the geodesic orbit property [40][69],
i.e., any geodesic is the orbit of a one-parametric isometric subgroup. In [59], Conjecture 6.2 is proved for geodesic
orbit Finsler spaces.

Theorem 6.5. [59] Let (M,F ) be a geodesic orbit Finsler manifold satisfying K ≥ 0 and the (FP) condition, then
M is compact. If we present M = G/H with compact G and H, then the rank inequality rankG ≤ rankH + 1 is
satisfied.

Following after Theorem 6.5, we can get an incomplete classification for geodesic orbit Finsler spaces, i.e.,

Corollary 6.6. [59] If the even dimensional smooth compact coset space G/H admits a geodesic orbit Finsler
metric satisfying K ≥ 0 and the (FP) condition, then it admits a positively curved metric, i.e., G/H must be
one of homogeneous S2n, CPn, HPn and OP2, or one of the three Wallach spaces SU(3)/T 2, Sp(3)/Sp(1)3 and
F4/Spin(8).

The classification in Corollary 6.6 is incomplete because we can not determine if the three Wallach spaces admits
geodesic orbit Finsler metrics satisfying K ≥ 0 and the (FP) condition. In Riemannian geometry, the geodesic orbit
metrics on the three Wallach spaces are normal homogeneous [4], which are not positively curved [4]. But in Finsler
geometry, there exists many other geodesic orbit Finsler metrics which are not normal homogeneous or generalized
normal homogeneous [72].

7. Existence of two closed geodesic orbits

7.1. Orbit number of prime closed geodesics

Closed geodesic is another important topic in Finsler geometry [39]. The project of estimating the number of
closed geodesics on a closed Finsler manifold attracts many attentions. A. Katok found Finsler spheres with only
finitely many closed geodesics [38]. Katok spheres are examples of Randers spheres with constant flag curvature
[15]. Recently, A. Katok’s observation have been generalized to describe geodesic behaviors on other Finsler spheres
with constant curvature [12, 57].

When we count the number of closed geodesics, repeating rotations are ignored, i.e., we only count those prime
ones. However, a reversible closed geodesic, i.e., both c(t) and c(−t) are closed geodesics, possibly with nonconstant
speed, it is counted twice. The existence of the first prime closed geodesic on a closed Finsler manifold has been
well known since 1960’s [28]. The existence of the second closed geodesic on a closed Finsler manifold is much
harder, which has been extensively explored in recent years [13, 22, 46]. More accurate estimates are conjectured
for Finsler metrics on compact rank-one symmetric spaces Sn, CPn, HPn and OP2 based on Katok spheres and
other Randers metric induced from the standard Riemannian symmetric metrics by Killing navigation [70]. For
example, D. Anosov conjectured the number of closed geodesics on a Finsler sphere (Sn, F ) is at least 2[n+1

2 ] [1].
Since closed geodesics on a closed Finsler manifold (M,F ) can be viewed as the critical points for the energy
functional defined on the free loop space ΛM , Morse theory and equivariant topology are the usual tools studying
these closed geodesic problems [53].

Now we assume the closed Finsler manifold (M,F ) admits a nontrivial continuous isometric action, i.e., its
connected isometry group G = I0(M,F ) has a positive dimension. Then we observe that the Lie method plays a
dominant role and closed geodesics can be easily found. For example,

Lemma 7.1. [58] Let (M,F ) be a closed Finsler manifold with dim I(M,F ) > 0. Then there exist two different
closed geodesics on (M,F ).

Proof. Denote G = I0(M,F ) the connected isometry group, and g = Lie(G). Since G is compact and has a
positive dimension, we can find a nonzero vector v ∈ g which generates an S1-subgroup. Let V be the Killing field
induced by v and f1(·) = F (V (·)). At any critical point of f1(·) where f1(·) is positive (the maximum point of f1(·)
for example), V generates a closed geodesic (see Lemma 3.1 in [23]). Consider f2(·) = F (−V (·)) instead, similar
argument proves −V generates another closed geodesic.

�
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Meanwhile, it is easy to see closed geodesics appear in orbits. The free loop space ΛM of maps c(t) : R/Z→M
admits the natural action Ĝ = G× S1, i.e. ∀g ∈ G = I0(M,F ), t′ ∈ S1 = R/Z, (g · c)(t) = g(c(t+ t′)). This action
preserves the subset of closed geodesics in ΛM . When dimG > 0, to avoid a trivial infinity for the number of closed
geodesics, it is more reasonable to estimate the number of Ĝ-orbits of prime closed geodesics on (M,F ) [57].

Inspired by [13, 22, 46] and other literature, we proposed the project to explore the existence of two orbits of
prime closed geodesics on a closed Finsler manifold. However, this is not always true. When (M,F ) is isometric to
one of the compact rank-one Riemannian symmetric spaces, Sn, RPn, CPn, HPn and OP2, it has only one orbit of
prime closed geodesics. Until now, there are no other known examples. So we conjecture

Conjecture 7.2. [58] Suppose the closed connected Finsler manifold (M,F ) satisfies that dim I(M,F ) > 0 and it
has only one orbit of prime closed geodesics, then it is isometric to a Riemannian symmetric Sn, RPn, CPn, HPn

or OP2.

7.2. Rank inequality for only one orbit of prime closed geodesics
To study Conjecture 7.2, we assume conversely that the connected closed Finsler manifold (M,F ) has only one

Ĝ-orbit of prime closed geodesics. Then as shown in Section 7.1, we can use a nonzero vector in g = Lie(G) to
generate two different closed geodesics, which are homogeneous, i.e., orbits of one-parameter subgroups in G. The
following properties of (M,F ) can be derived from this observation.

Lemma 7.3. [58] Suppose (M,F ) is a closed Finsler manifold with dim I(M,F ) > 0 and has only one orbit of
prime closed geodesics. Then G = I0(M,F ) is semi-simple, all the closed geodesics on (M,F ) are homogeneous,
i.e., orbits of one-parameter subgroups in G, and the union of all closed geodesics is a G-orbit in M .

Amazingly, the rank inequality appears here.

Theorem 7.4. [58] Suppose (M,F ) is a closed Finsler manifold with dim I(M,F ) > 0 and has only one orbit of
prime closed geodesics. Let N = G · x = G/H with G = I0(M,F ) be the orbit containing all closed geodesics. Then
we have the rank inequality rankG ≤ rankH + 1.

Proof. [Sketched proof of Theorem 7.4][58] To prove the rank inequality, we denote c(t) : R/Z → M a closed
geodesic passing x, H the isotropy subgroup at x, and two compact subgroups of G,

H1 = {g ∈ G|∃t0 ∈ R/Z with g(c(t)) = c(t+ t0),∀t},
H2 = {g ∈ G|g(c(t)) = c(t),∀t}.

Obviously H2 = H1 ∩H is a normal subgroup of H1 and H1/H2 = S1. Denote hi = Lie(Hi).
By the compactness of G, U =

⋃
g∈G Ad(g)h1 is a closed subset in g. Further more, We must have U = g,

otherwise we can find a nonzero vector v ∈ g\U which generates an S1-subgroup. The Killing vector field V on
(M,F ) induced by v can generate some nonconstant closed geodesic passing g · x for some g ∈ G. Then v is
contained in Ad(g−1)h1, which contradicts v ∈ g\U = g\

⋃
g∈G Ad(g)h1.

To summarize, h1 contains a generic vector in g which generates a dense one-parameter subgroup in a maximal
torus of G. So H1 must contain a maximal torus of G, i.e., rankH1 = rankG. Then we have

rankH ≥ rankH2 = rankH1 − 1 = rankG− 1,

which ends the proof.

�

7.3. Compact homogeneous Finsler spaces with only one closed geodesic orbit
Now we assume (G/H,F ) is a compact homogeneous Finsler manifold with G = I0(G/H,F ), which only has

one orbit of prime closed geodesics. Theorem 7.4 provides the rank inequality rankG ≤ rankH + 1. Then we can
use the algebraic setup in Section 3 to build a case-by-case discussion and prove Conjecture 7.2 in the following
special cases.

Theorem 7.5. [58] Assume (M,F ) is a compact connected homogeneous Finsler space with only one orbit of prime
closed geodesics. If dimM is odd, we further assume F is reversible. Then (M,F ) must be a Riemannian symmetric
Sn, RPn, CPn, HPn or OP2.

Notice that Theorem 7.5 is not a trivial fact when F is reversible or Riemannian. Though any reversible closed
geodesic provides two different prime closed geodesics (corresponding to its two directions), it is possible that both
are contained in the same closed geodesic orbit, as any compact rank-one symmetric space shows.
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