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1. Preliminaries

Let M be a connected manifold of dimension n and « : T My — M be the natural projective map, where T M, :=
TM\ {0}. 7 pulls back TM to a vector bundle 7*TM over T'My. The fiber at a point (z,y) € T My is defined by

T T M| (g = {(z,y,v) |[ve T,M} =T, M.

In other words, 7*T'M]|(,,, is just a copy of T, M. Similarly, we define the pull-back cotangent bundle 7*7™M
whose fiber at (z,y) is a copy of T* M. That is,

T T M|y = {(z,9y,0) |0 € Ty M} =T, M.
7*T*M can be viewed as the dual vector bundle of 7*T M by setting

(z,y,0)(z,y,v) :==0(v), 0e€T;M, veT,M.
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Take a standard local coordinate system (2%, y%) in TM. Let {52, 8%@} and {dx?, dy'} be the natural local frame
and coframe for T'(T'My) and T*(T M) respectively. Let

0
0; = <5C,y, axl|x) .

Then {0;} is a local frame for 7*T M. Dually, put
dzt = (J;,y,dxi\x) )

Then {dx'} is a local coframe for 7*T* M.

The vertical tangent bundle of M is defined by VI'M := span{aiyi}. VTM is a well-defined subbundle of
T(TMy) and we can obtain a decomposition T(TMy) = 7*TM & VT M.

For a Finsler manifold (M, F), let

where G* = G%(z,y) are defined by
G = LI ~ 17}
We call G the spray induced by F and G* the spray coefficients of F. Define N Jl = gTG; and let
S0 w9
szt T Oxt Coyd”

Then {%7 a%,} form a local frame for T(TM). Further, HTM := span{ai,-} is a well-defined subbundle of

T (T My) and is called the horizontal tangent bundle of M. Then we obtain a decomposition for T(T'My), T (T My) =
HTM ®VTM.
The following maps are natural and are important for our discussions below.

(1) Define a vector bundle map p : T(TMy) — #*TM by

0 0
p (W(w,y)> =0, p (8yi|(x’y)) =0.
It is clear that kerp = VT M.

(2) Define a linear map H : 7*TM — HT M with the following properties

H(D)) =

Obviously, H is an isomorphism.

2. Gradient vector fields and Laplacian on Finsler manifolds

Let M be an n-dimensional manifold. A Finsler metric F' on M is a non-negative function on 7'M such that F’
is C*° on TM\{0} and the restriction F, := F|p,a is a Minkowski function on T, M for all x € M. For Finsler
metric F' on M, there is a Finsler co-metric F* on M which is a non-negative function on the cotangent bundle
T*M given by

F*(x,) .= sup ——=, VEe€TiM.
yET, M\{0} F('ra y)
We call F* the dual Finsler metric of F. Finsler metric F' and its dual Finsler metric F'* satisfy the following
relation.

Lemma 2.1. (Lemma 3.1.1, [13]) Let F be a Finsler metric on M and F* its dual Finsler metric. For any vector
y € T, M\ {0}, x € M, the covector £ = gy(y,-) € T M satisfies

Flo,y) = F*(2,6) = 2 (2.1)

Conversely, for any covector { € T M\{0}, there exists a unique vectory € T, M\{0} such that& = g,(y,) € Tx M.
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Naturally, by Lemma 2.1, we define a map £ : TM — T*M by

L(y) := { 81’1(3/7), zig,

It follows from (2.1) that
F(z,y) = F*(z, L(y))-

Thus £ is a norm-preserving transformation. We call £ the Legendre transformation on Finsler manifold (M, F).
Take a basis {b;}?_; for TM and its dual basis {6"}}_, for T*M. Express { = L(y) = &;0", we have

& = gij(@,9)y,

where g;;(z,y) := % [Fz]yiyj (z,y). The Jacobian of L is given by
o5
oyl 9ij (@, y)-

Thus £ is a diffeomorphism from T'M \ {0} onto T*M \ {0}. Let

1

g*kl(xag) = 5 [F*z}gk& (xvg)

For any & = L(y), differentiating F%(z,y) = F*?(z, L(y)) with respect to y* yields

1 1. .,
which implies
g kl(x’g)gl = 5 [F 2]€k (IL’,g) = ig k(z,y) [FQ]yqi (lE,y) = yk (23)
Then, it is clear that
i 9
skl i k99
- = - = 0.
g& oy~ Y By
Differentiating (2.2) with respect to y/ gives
__xkl xkl 9
gi5(@,y) = g7 (@ g (xy)gin(@,y) + 97 (2,06 7 (2.9)
9™ (@, &) gir (2, 9) g5 (. y).
Therefore, we get
g™ (x,€) = g (z.y). (2.4)

Given a smooth function f on M, the differential df, at any point z € M,

_of
- 9zt

is a linear function on T, M. We define the gradient vector Vf(z) of f at x € M by Vf(x) := L~ (df (z)) € T. M.
In a local coordinate system, by (2.3) and (2.4), we can express V f as

df (z)dx’

Vf(x) = { gf“”“vf) e igﬁf\ . 25)
where My = {z € M|df(z) # 0}. Further, by Lemma 2.1, we have the following

dfz(v) = gvy, (Vfz,v), YveT,M
and

dfa(V fz)

F(z,Vf,) = F*(z,df) = m
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By definition, a smooth measure m on M is a measure locally given by a smooth n-form
dm = o(z)dz' - - - da".

The restriction m, of m to T, M is a Haar measure on T, M. For every Finsler manifold (M, F), there are several
associated measures, including Busemann-Hausdorff measure m gy and Holmes-Thompson measure mgr. A Finsler
manifold (M, F') equipped with a smooth measure m is called a Finsler measure space and denoted by (M, F,dm).

Let us consider an oriented manifold M equipped with a measure m. We can view dm as an n-form (volume

form) on M. Let X be a vector field on M. Define an (n — 1)-form X |dm on M by
X|dm(Xa, -+, Xp) i=dm(X, Xa, -+, Xp).

Define
d(X |dm) = div(X)dm.
We call div(X) the divergence of X. Clearly, div(X) depends only on the volume form dm. In a local coordinate

system (z?), express dm = o(x)dx! ---dx™. Then for a vector field X = X* 8‘21 on M,

_18(0 l)_aXi+£"80
o Oxt Ozt o Ozt
Applying the Stokes theorem to n = X |dm, we obtain

div(X)

/ div(X)dm = / d(X |dm) =0, if OM =0, (2.6)
M M
/ div(X)dm:/ d(X |dm) = X|dm, if OM # 0.

M M oM

One can also define divX in the weak form by following divergence formula:

/M ¢ divX dm = — /M dp(X) dm

for all ¢ € C3°(M), where C°(M) denotes the set of C*°-functions on M with compact support.

Now we introduce the Laplacian on a Finsler measure space (M, F,dm). There are some different definitions on
Laplacian in Finsler geometry (e.g. see [1][5][15]). The following definition is from [4].

Given a smooth measure dm = o(z)dx! ---dz™ and C*¥ (k > 2) function f on M, define the Finsler Laplacian
Af of f by

Af = div(Vf).
By (2.5), the Laplacian of f is expressed by
10 ) 10 . of
Af g (eV'f) p (Ug <x’vf)8xj) , (2.7)

where Vif := g% (z,Vf) of — g*ij(ac,df)%. From (2.7), Finsler Laplacian is a nonlinear elliptic differential

oxd
operator of the second order.

Remark 2.2. The following are some remarks on Finsler Laplacian.

(i) As we know, for any smooth function ¢ on M,

div(eVf) = eANf +dp(Vf).

If OM = (), applying the divergence formula (2.6) to the above identity yields

/M pAfdm = — /M dp(V f)dm. (2.8)

Actually, (2.8) gives the definition of non-linear Laplacian A f on the whole M in the distribution sense.
(ii) Let dm = e?dmp and A denote the Laplacian associated with the Finsler measure dmg. Then

Af = Dpf+dp(V]).
Note that Af and Apf are the divergences of the gradient V f with respect to m and mpg respectively.
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(iii) The Finsler p-Laplacian A, f of f is formally defined by
Apf = div [FP~(z, VF)Vf].

In the distribution sense, the definition of Finsler p-Laplacian A, f is given by the following identity

| ottin=— [ P2 Viap(vidu, Ve e G,
M M

When p =2, A, is exactly the usual Finsler Laplacian.

3. Energy functionals and eigenvalues

The variational problem of the canonical energy functional also gives rise to the Laplacian. Let H' denote the
Hilbert space of all L? functions f such that df € L2. Denote by H{ the space of functions v € H! with fM udm =0
if )M = () and with ujgps = 0 if M # (. The canonical energy functional £ on Hj is defined by

Joy [F* (2, du)] dm.

Eu) := [y udm

For functions u, ¢ € H}, by (2.3), we have

8[F*2]

dife [F**(z, du + edp)] |c—o = o, (, du)% = 2V'u(z, du)% = 2dp(Vu).
Thus, for any u € Hy with [, u*dm = 1,
d
du€(p) = — [E(u~+ €p)] |e=0 = 2/ dp(Vu)dm — 2)\/ updm, Yo € Hy, (3.1)
dE M M

where A = £(u). From (2.8), we can rewrite (3.1) as follows
1
§du5(<p) = f/[Au + M) dm, Vo€ H).

Hence, it follows that a function u € H{ satisfies d,,€ = 0 with A\ = £(u) if and only if
Au+ Au = 0.

In this case, A and u are called an eigenvalue and an eigenfunction of (M, F, dm), respectively. Thus an eigenfunction
u corresponding to an eigenvalue A satisfies the following equation

1 0
o(x) Ox?

(o(z)V'u(z)) + Au=0,

where Viu(z) = g% (x, Vu)% = g*(x, du)%.

Denote by &, the union of the zero function and the set of all eigenfunctions corresponding to A. We call &,
the eigencone corresponding to A.

Assume that M is compact without boundary. Let

[oy [F* (2, du)]* dm

M (M) = .
1(M) weC>= (M) ianeRfM |u — A|2dm

From [4] and [13], we can find the proof on the fact that Ay (M) is the minimum of the energy functional £. In the
following, we give a different proof for this fact.

Proposition 3.1. Ay := A\i(M) is the smallest eigenvalue of (M, F,dm), that is, Ay = inf,c g1 E(u).

Proof. Write
/ lu — \*dm = / uzdm—2>\/ udm+)\2/ dm
M M M M

= a—2\b+ N,
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where a := [, u*dm, b:= [, udm,c:= [,,dn =m(M). Let f(\) :=a —2Xb+ X%c. By f'(\) = —2b+ 2c), we

have the following
inf / lu — \*dm = (/ lu — )\|2dm)
AER M M

=a —2m(M)"'b? + m(M)~1v?
2
:/ uzdm—m(M)*1 (/ udm> g/ u2dm.
M M M

F*(z,du)]* d
MO = g Jul @ dwldm
uweHL(M) Sy utdm uweHL(M)

A=t

Thus

O

We call \; the first eigenvalue of (M, F,dm). They are natural problems to determine the lower bound of the
first (nonzero) eigenvalue of Laplacian on Finsler manifolds and to study the structure of the first eigencone for a
general Finsler metric ([14][16][17]).

4. Hessian

Let (M, F) be a Finsler manifold of dimension n and « : TM \ {0} — M be the projective map. The pull-
back 7*T M admits a unique linear connection, which is called the Chern connection. The Chern connection D is
determined by the following equations

DYY — Dy X = [X,Y],
Zgv(X,Y) =gv(DyX,Y) + gv(X,D}Y) +20v (DY V,X,Y)

for Ve TM\ {0} and X,Y,Z € TM, where

o 1 BF (2, V) s
Cv(X,Y,Z) :=Ciiplax, V)XYiZk = = ——_0 __ xiyigk
VXY, Z) = Cign(@, V) 1OVIQVIOVH
is the Cartan tensor of F and DYY is the covariant derivative with respect to the reference vector V.
Let (M, F) be a Finsler manifold. There are two ways to define the Hessian of a C? function on M. Let f be a
C? function on M. Firstly, the Hessian of f can be defined as a map D?f : TM — R by

2
D*f(y) = 55 (Fod oo, yETM, (a.1)

where ¢ : (—¢,e) — M is the geodesic with ¢(0) = z, ¢(0) =y € Tz M (see [13]). In local coordinates,

D) = ag(;;j(x)éi(o)c‘j(owgi(x)éi(m
2 f

o of .
— Lo T

_ aZf 8f m 1,7

Here, I‘fj (z,y) denote the Chern connection coefficients of F', which depends on the tangent vector y € T,, M.

There is another definition of the Hessian in Finsler geometry, by which the Hessian of a C? function u on M
is corresponding to a symmetric matrix (um (@, Vu)), where “|” denotes the horizontal covariant derivative with
respect to the Chern connection of the metric. Concretely, the Hessian V2u of u is defined by

V2u(X,Y) = gy (DY"Vu,Y) (4.2)

for any X,Y € TM ([11][16][20]). In a local coordinate system, let X = X* 82“ Y = Yj%. By the definition,
0

u (Vi) . . :
DY'Vu = {(((hj)XJ + (VFu) jk(a:,Vu)Xj} pyk
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Thus, we have

IVu (D;"VU,Y) = <8(8Vx]u) + (VFu) ;-k(x, Vu)) XIYg(x, Vu)
= (Viu);(z, Vu)gu(z, Vu) X7V (4.3)

Here, we have used the facts that Viu = " (z, Vu)£2% and

3(Vlu) - ik il au

W(x’ Vu) = =2Ckim(x, Vu)g" (z, Vu)g’ (z, VU)@

= —2Ckm(z, Vu)(Viu)g™* (z, Vu) = 0.
Further, let (Vu);(z, Vu) := g;;(z, Vu)(V/u). Then
; ou ou
(Vu);(z,Vu) = gij(a:,Vu)gjk(z,Vu)@ =55 = wpi ().

Thus it follows (4.3) that o
gvu (DX"“Vu,Y) = up (2, Vu) XY

Hence, by (4.2), we have the following proposition.
Proposition 4.1. Let u be a C? function on Finsler manifold (M, F'). Then, for any X,Y € TM, we have

V2u(X,Y) = up;(z, Vu) XY (4.4)

It follows from (4.4) that the Hessian V2w of a C? function u is determined completely by the following symmetric
matrix

Hess(u) := (uy;;(z, Vu)) . (4.5)

Remark 4.2. When F is a Riemann metric, for any C? function f on M, the Hessians of f defined by (4.1) and
(4.2) respectively are identical.

Theorem 4.3. ([13][20]) On M; ={x € M | Vf]|, # 0}, we have

Af = V[ (easea) = S(Vf) :=trys V[ = S(V]),
where eq, ..., ey, is a local gy g-orthonormal frame on My and S denotes the S-curvature.

5. Lie derivatives on Finsler manifolds

Lie derivatives have close connections with Laplacians and Hessians of smooth functions on the manifolds and
they are also important tools for studies on Ricci soliton and Ricci flow on Finsler manifolds. However, up to
now, there are not yet exact definitions for various Lie derivatives on Finsler manifolds. Further, some wrong
computations about Lie derivatives on Finsler manifolds can be found in some literatures. These cases motivate us
to optimize and improve the various definitions of Lie derivatives on Finsler manifolds.

Let V = V? a(?ci be a vector field on M and {p;} the local 1-parameter transformation group of M generated

by V, V(x) = d“";iim)h:o. The Lie derivative of a tensor in the direction of V' is defined as the first-order term in a
suitable Taylor expansion of the tensor when it is moved by the flow of V. The precise formula, however, depends
on what type of tensor we use ([12]).

In the following, we mainly consider the Lie derivative on a Finsler manifold (M, F) of dimension n. For each

¢, it is naturally extended to a transformation ¢; : TM — T M defined by

bie.1) = (puloh (90 0) = (). 250

It is easy to check that {¢:} is a local 1-parameter transformation group of TM. Further,

| (e )| - (vt ()]
- (v 2),
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Then V := Vi(x) a?ni +y™ (‘gf) a?ﬁ is the vector field on T'M induced by {@;}. We call V the complete lift of V.

If f: TM — R is a function, then f (¢¢(z,y)) = f(z,y) +t (L f) (z,y) + o(t) or
(Lo f) (x,y) = lim f(@ulz,y)) — flz.y)

t—0 t

Thus the Lie derivative Ly, f is simply the directional derivative df (V), that is,

Lof=Vf.

When we have a vetor field Y € T(T'M) things get a litle more complicated as Y|, (5,4 can’t be compared
directly to Y|, since the vectors live in different tangent spaces. Thus we consider the curve t — @} (Y3, (z.4))
that lies in T, (T M), here @} := ($¢)y ! = (p—t)+. In other words we define

@i (Yiguww) = Yy
: .

(L5Y) |y = lim
This Lie derivative turns out to be the Lie bracket ([12]),
LoY =[V,Y]. (5.1)

If £ € T2(TM) is a tensor of (0, k)—type over T M, its Lie derivative L& with respect to V is the tensor of the
same type given by

k
(‘C‘A/f)(yh 7Yk) = V(&(Yla >Yk)) - Zf(ylv o 7£V}/;7 . 7Yk)7
i=1
that is,
k
(‘C\}'S)(Yh aYk) = £V (5(3/17 7Yk)) _Zg(yh 7£f/)/la 7Yk7)7
i=1

where Y; € T(TMy), 1 <i<k. R
Let n € T} (I'M) be a tensor of (1, k)—type over TM. The Lie derivative L of n with respect to V' is defined
by ([9]) .
(‘Cf/n)(}/la o aYk) = Vﬂ?(Yh e aYk):| - ZU(Yh e "CVK e 7Yk) (52)
i=1
for Y; € T(T'My), 1 < i < k. Clearly, Ly is still a tensor of (1,k)—type over TM. Obviously, (5.2) can be also

rewritten as
k

('C\A/n)(Ylv"' ’Yk) = ’CV (n(yla 7Yk)) —ZW(YM“' 7'6\7}/1""' 7Yk)'
=1

As natural applications of the definitions above, when the tensors that we discuss are restricted to the vector
bundle 7*T'M and its dual 7*1T"M on T'M, we firstly give the following convention: if X € 7*T'My, the Lie
derivative of X with respect to V is given by

LoX =p [V,X} e T T M. (5.3)

Here, our convention is different from that in [9].

Based on convention (5.3), firstly, we give Lie derivatives of some fundamental tensors on #*T'M and its dual
m*T*M. For y = ¢ a?ci € T,M, let Y = (2,4,y) = y'0il(zy) € ™*TMy and § = L(Y) = yida?|,,) € 7 T* Mo,
where y; := ¢;;(z,y)y’. Further, let

Lo = (Lyy )i, L€ = (Loyp)da®
and ) .
‘CVg = (ﬁvgw)dxl X dx’.
Here, g = gij(z, y)dz' ® da’ is the the inner product on 7*T My. Then, it is easy to show that
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Loy’ =0, (5.4)
Loye =YY" Vijm + Vinir),

where V; := g;;(z,y)V7. Here we have used the fact that 8 o gjm =Vik — gﬂI‘ kV Further, the Lie derivative of
the Finsler metric F' is given by

LoF=VF=F "Wy

More general, the Lie derivative of an arbitrary tensor field Y; on #*T'M with respect to the complete lift V of
a vector field V = V¥(z)52; on M is defined by

(L) (2 = lim &t (Yilgi@) — Yil@y)
4 (z,y) -— 7

t—0 t

where I denotes a mixed multi-index. In this case, in the local coordinates (x%,y*) on T M, the Lie derivative of
an arbitrary mixed tensor field, for example, a tensor T' of (1,2)-type with the components T}, (x,y) on 7*T'M, is
given by

LT = (LyTh) 0 ® da’ @ da”.

Here,
; - ove . ave_ . 9Vi
LoTie = V(Ti) + 55 Tar+ 5o T = 5 ik
_ VmT'L Vl aTZ Tm i Tz T m
- k|m+y ( m)al |m+ mk \j+ |k
where “|” denotes the horizontal covariant derivative with respect to the Chern connection (see [2][8]).

Now let us define the Lie derivative of Chern connection D with respect to V. For ¢ € T(T'Mp) and X € m*TM,
define L, D by ([9][12])

(EVD)CX = (LyD) (¢ X)
= Ly (DeX) = DrycX — De(LyX)
= Ly (DeX) WX D¢(LyX) (5.7)
Write Chern connection 1-form w;* F; L (z,y)dak. Put
(Lo D)0, %) = (LT (5.8)
By (5.3), we have
- oV’
[,‘78]‘ = p[V,aj] = —%81‘.
Further,
% T m v’
EV(Dajak) = £V( kjai) = (Vrkj)ai - kjamimah (5-9)
l
GQV’ , ovm
From (5.7) and (5.9)-(5.11), we obtain
(LyD)(0j,0r) = Ly(Do;0k) — Dro;0k — Do, (L 0k)
o m OV oVt Vi , ovm
= <(V1‘k ) — Ki g +P“a - +W+ij8xk> 0.
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From (5.8), we obtain

: PPV v’ ovt  _,ovi L oTy 9Vt .
Cvrjk - 6xjaa:k + Fl] a L + Fkl a J Pk]ﬁ + V 8,]j‘l + y 8x$ Pk gl (512)
where Pkijl = a(;—y;“," determine the Landsberg curvature of F.
Note that s 8
7 Vv mii VZ mii
‘j - (5 7 V F — ax V FTYL]'
We get
oV} 5 (OViN V™. ST
b (2 )y i ym
Sxk Sak \ OxJ Sk~ dxk
PV avm 0Ty,
= — 4 —T¢ 4 ym T
OxkOxI + Oxk ~ + Sk
Further, we have
i _ |J i i
itk = gk TV Tk — Vim L
82VZ 5Fm] aTm ai m
= m+v Sk +V aj mk_v am® jk
8Vm i OV’” i ovi
8 e 8xj e — %I‘jk. (5.13)
Then, by comparing (5.12) and (5.13), we can get
8Vl i m 5ij l i lari
‘]lk £ ij 6x5 ystZkl + V v 5:17 + VTF Z V Z, V axl .
On the other hand,
Rj kmv =V (5.’Ek 51.m lmrjk

- oxk Yk ayr o oxrm + m + lm=~ jk | *

Here, Rjikm = Rjikm(gc7 y) are the coefficients of Riemann curvature tensor with respect to Chern connection. Thus
we can get

Vi = Bk V™ = Lyl — 50y ~ V"N, ay
; ovr” o
= ‘CVI‘;k) - (a S + le'\’l ) élekT

= Lol —y™Vi P,
Hence, we have the following

Theorem 5.1. The Lie derivative of Chern connection with respect to the complete lift V of a vector field V =
Vi(z )sz on M is determined by

LTl =R V™ + Vi + 9" Vi, Pl (5.14)

Remark 5.2. Let G =3/ 8(2@' —2G* 82i be the spray induced by Finsler metric F, where G*(x,y) = %F;k(:ﬁ, y)yyk.
By (5.1), we have

R oy, _avm nOVE | 2
OxtOxI v dxm + OxI -1 dzm [ Oyk (5-15)
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Let
0

From (5.12) and (5.15), we have

~, k . o . —
LyG 0zt 0xI oxm oxi =~ ™ 7 dxm

= fyiijVFfj.

217k k m k
—yiyj{ oV +V’”ap” oV e OV }

Further, by (5.14), we know the following
LyGF = —(RE, V™ + Vi)
Obuviously, CVGk #* % (EVF%) Yyl
It is natural to establish a connection between Lie derivative and Hessian (or Laplacian) of a C? function on

the manifold. Firstly, given a C? function u = u(x) on M, let us determine the Lie derivative of the fundamental

tensor with respect to the complete lift Vu of the gradient vector field Vu. Recall that Vu = g% (z, Vu) g;,; % and

o

Viu(z) = g% (x, Vu) i " (z, du)
(Vu); = gij(z, Vu) (V) = uj;(z).

ou

oxI’

The complete lift Vu of Vu is given by Vu = (Viu)(z) 22 +y™ (8(827?)) 621" Let

(V)i = gim (2, 9)(V"0)(2) = gim (2, ) (gmk(x’vu);;k) .

By (5.6), we have

L, 9ij(w,y) = (ﬂ)i\j(x7 y) + (@)ju(ﬂ%y) + 29" (V') (2, y) Clij (2, ). (5.16)

Here, by the definitions, we have

(Tu)is(e) = gonl) (07 (@, V) (2 9) o
+im (2, 9)9™" (2, Vu)uj (2, )
Ttz = (o TG @)= (0 V), ) g
+g'" (@, Vu)upm (2, y).
Further,
(47 @, V), (@y) = —g™ (@, Vu)g™(z, Vu) (g.s(2. V0),; (2,9)

I(V'u)
OxJ

Ogrs
= —gmr(x,Vu)gks(x,Vu){ aicj (z,Vu) 4+ 2C,g(z, Vu)

15 (2, V)T (2,9) = g, Vu)TL (2,9) }

0Grs A(Viu
fgmr(a:,Vu)gks(x,Vu){ ai:j (x, Vu) + 2C,5(x, Vu) (8mj )}

mr k ks m
+g (J?,V’U/)Frj(l‘,y) +g (J?,V’U/)st(l‘,y).
In particular, it is easy to see that -
(V)i (z, Vu) = u));(z, Vu).

Thus, by (5.16), we get
Ls, 9ij(x, Vu) = 2up);(z, Vu) + 2(V™ )0 (2, Vu)Ci(z, Vu).
Then, by (4.5), we know that the Hessian in Finsler geometry can also be determined by Lie derivative.
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Proposition 5.3. Let u = u(z) be a C? function on Finsler manifold (M, F). Then the Hessian of u is determined
by

. Le,9(z, Vu) = (V"™ w)ujpim (z, Vu)CF; (z, V) ,

Hess(u) = 3

where g(z, Vu) := (g;j(x, Vu)).

Corollary 5.4. ([7]) Let u = u(x) be a C? function on Riemannian manifold (M, g). Then the Hessian of u is
determined by

1
Hess(u) = §EVug.

6. Estimates of eigenvalues on compact Finsler manifolds

For an n-dimensional Finsler manifold (M, F, dm) equipped with a smooth measure m and for any v € T, M\{0},
let 1 : (—e,&) — M be the geodesic with 7(0) = v and decompose the measure m along n as

dm = e~ ¥ny/det (gi;(n,n)) dz'dx? - - - da",

where ¥, = 9, (n(t),n(t)) : (—e,e) — R is a C* function. Then, for N € R\{n}, define the weighted Ricci
curvature ([10])

4 2
Ricy (v) := Ric(v) + ¢, (0) — %

As the limits of N — oo and N | n, we define the weighted Ricci curvatures as follows.

Ricoo (v) := Ric(v) + ¢ (0),

[ Ric@w) +90(0) i (0) =0,
Ricn(v) := { o if 47 (0) # 0.

We say that Ricy > K for K € R if Ricy(v) > KF?(z,v) for all z € M and v € T, M. Notice that the quantity
¥;,(0) = S(w,v) is just the S-curvature with respect to the measure m and ¢;/(0) = S(z,v) = S, (z,v)v™, where
“|” denotes the horizontal covariant derivative with respect to the Chern connection ([3][10]). Hence we can rewrite
Ricy(v) as

. S 2
Ricy (v) := Ric(v) + S(z,v) — Z\(ZL—UT)L

The following is a new observation for weighted Ricci curvature on Finsler maniflods. Let (M, F,m) be an n-

dimensional Finsler manifold with dm = o(x)dz! - - - dz". Let Y be a C* geodesic field on an open subset U C M

and § = gy. Let
dm = e ¥Voly, Vol; =/det(gi; (x,Yy))dx' ---dz",

T det (g (z,Yz))

For y =Y, € T, M (that is, Y is a geodesic extension of y € T, M), we know that ([13])

S(z,y) = ylr(z,Y)] = dy(y)

where 9 is given by

=171 (,Y,) (distortion).

and

S(x,y) = y[S(z,Y)] = y[Y'(¢)] = Hesst)(y).
Hence )
dy(y)
N-n’
In Riemann geometry, Bochner formula is a bridge to use the analytic tools to study the geometry and topology
of a manifold. In Finsler geometry, the Bochner-Weitzenbock formula and the corresponding Bochner inequality on
Finsler manifolds have been established by Ohta-Sturm in [11]. For our aim, we need the following formula.

Ricy (y) = Ric(y) + Hessy(y) —
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Lemma 6.1. (Integrated Bochner-Weitzenbock formula, [11]) Given u € HZ (M) N CY(M) such that Au €
HL (M), we have

loc
_ /M do (VW {F%QV“)D dm > /M p {d(Au)(Vu) + Riew (V) + (A];‘)Q } dm

for N € [n,00] and all nonnegative functions ¢ € HX(M) N L>(M).

By using above integrated Bochner-Weitzenbock formula, we can get the estimate of eigenvalues on compact
Finsler manifolds as follows.

Theorem 6.2. Let (M, F,dm) be a compact Finsler manifold and satisfy Ricy > K > 0 for some N € [n,o0].
Then, for any non-zero eigenvalue X\ > 0 corresponding to the eigenfunction u € H*(M) N CY(M), Au = —Au, we

have
KN

N-1

A>
When N = oo, we have A > K.

Proof. By the assumption and Lamma 6.1, we have

_ /M do <VW [F2(2W)D dm > /M ¢ {d(Au)(Vu) KPRV + B } dm.

Taking the test function ¢ = 1 in the above inequality, we get

/M {d(Au)(Vu) + KF?(Vu) + %@2 } dm < 0.

Since Au = —Au, we have

/M d(Au)(Vu)dm = — /M(Au)zdm =-\? /M u*dm

and
2

A
7)\2/ u2dm+K/ FQ(Vu)dm+—/ u*dm < 0,
M M N Ju

which implies that

N -1
K/ F2(Vu)dm < M\ / udm.
M N M

Then, we obtain
2> KN [, F*(Vu)dm
—“N-1 fM u2dm

_ fM F2(Vu)dm

By the assumption again, A = £(u) > 0. Thus we conclude the following

S w?dm
KN
A> —.
-~ N-1
In particular, we can get A > K when N = co. This completes the proof of Theorem 6.2. O
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