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1. Introduction

H. Yamabe attempted to seek Riemannian metrics with constant scalar curvature in a conformal class in [11]. A
bundle of works of N. Trudinger [10], T. Aubin [1] and R. Schoen [9] gives an affirmative answer to the Yamabe
Problem, which is a milestone in Riemannian geometry. In Finsler realm, X. Cheng and M. Yuan [4] studied the
Yamabe problem for the scalar curvature defined by H. Akbar-Zadeh, and obtained a negative answer for Randers
metrics. In the view of calculus of variations, L. Zhao and the first author defined a Finsler scalar curvature Scal(z)
and proved that a Finsler metric with constant scalar curvature is a critical point of the total scalar curvature
functional

1
SU) = anE /M Scal(x) djur

in its conformal class([5]). The Yamabe invariant is defined as Y (M, F) = inf, S(e*™® F). In order to have a
lower bound of S in the conformal class [F] of the metric F', the condition C-convez is introduced in [5] which is
conformally invariant. By introducing another conformal invariant C' (M, F), L. Zhao and the first author partially
solved the Yamabe problem in Finsler geometry.

Theorem 1.1 ([5]). Let (M",F) be a compact C-convex Finsler manifold with n > 3. If Y(M,F)C(M,F) <
Y (S™), then there exists a metric F' conformal to F such that Scalp(x) =Y (M, F).
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In [6], L. Zhao and the first author introduce the notion of strongly C-convexity (see (2.1) in §2) which is a
bit more stronger than C-convexity. In this paper, we shall study the strong C-convexity of Randers metrics and
obtain the following result.

Theorem 1.2. A Randers metric a + 8 is strongly C-convex if and only if

1/2
Sn3 — 16n2 +8n +2\°
||5||Q<Bn::<1_<n n? + 8n + )) |

nt +3n3 —9n?2 + 7Tn
where the dimension n > 3.

As a conclusion, we can give a statement to the Yamabe Problem of Randers metrics.

Corollary 1.3. Let F' = a+ 3 be a Randers metric on a compact manifold M™ with n > 3. If |||la < By and
Y(M,F)C(M,F) <Y(S"), then there exists a metric F' conformal to F such that Scalg(x) =Y (M, F).

The contents of this paper are arranged as follows. In §2, we give a brief review of Finsler metrics and give the
precise definition of strongly C-convex. In §3, we study the strongly C-convexity of Randers metrics. Throughout
this paper, we always assume that the dimension n > 3.

2. Finsler metrics

Let M be an n-dimensional differentiable manifold with n > 3. The points in the tangent bundle TM are
denoted by (x,%), where x € M and y € T, M. Let (2%;y") be the local coordinates of TM with y = y*0/0x".
Let F': TM — [0,+00) be a Finsler metric on M. The fundamental form of F is

, 1
9 = gir(,y)da’ @ dz*, gip == {2F2] -
ik
vy
Here and from now on, the lower index z?,y* always means partial derivatives, such as Fyi = g—;, F, = gfi,

._ _O°F?
[FQ]yiyk = dyioygFo and etc.
The canonical projection 7 : TM\{0} — M gives rise to a covector bundle 7*T*M, on which there exists the
Hilbert form w = £;dx" where ¢; = F:, whose dual is the distinguished section of 7*T'M

) oy
(=0"— ith ¢ :==.
ozt F
The Cartan tensor (Cartan torsion) and the Cartan form are respectively
A= Agdet @ di? @ de®, Ay = L [F?
= Ajjrds’ @ da? @ dx”, ijk._z[ ]yiyjyk,
I=Idx', I;:=Aijeg™™, (9%) = (g) 7"

The spray coefficients are given as
i1
G' = 19 l{[Fz]xkylyk - [F2]afl}

which determine the Berwald connection coefficients in the following way

i _ i
ik = Gyaye-

The flag curvature tensor (Riemann curvature tensor) is given by
while the Ricci curvature is defined as the trace
. 1
Ric(x,y) := ﬁR i

The most important non-Riemannian curvature in Finsler geometry is the Landsberg curvature, which is defined
as the derivative of the Cartan torsion
Liji == Aijlml™
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@.”

where “:” is the horizontal covariant derivative with respect to the Berwald connection. The mean Landsberg tensor
is
J = Jypda®, Ty = g Lij.
On the punctured bundle T'M\{0}, there is the Sasaki type metric g;,dz’ @ dz* + gik%yi ® %k, which induces
a Riemannian metric on the projective sphere bundle SM

) 5yi 5yk
~ % k
Hence the volume form of SM can be expressed as [3, 7]
Gik
dusy = Qdn A dx, € :=det (?)

where ‘ ' e
dn = z:(—l)’_lyldy1 A Adyt A ANdy"™, de=dzt A Ada™.

The volume form of M induced by SM can be defined by

1
dup = op(z)dz, op(z):= / Qdn,
Wn—1 Sz M
where wy,_1 is the volume of the (n — 1)-dimensional standard sphere.

By integrating along the fibre, the scalar curvature can be defined as

n/ Ric - Qdn / g Jij - Qdn
Scal(z) = Se M + 2n_Js.m
o n—2
Qdn Qdn
So M SoM

as the dimension n > 3. In order to obtain the existence of Finsler metrics with constant scalar curvature Scal(z),
the concept of C-convexity is introduced in [5]. Precisely, a Finsler metric is strongly C-convez if the tensor

€ = gi (01 + 0T + AT AT*) (2.1)

n
(n—1)(n—-2)
is positive definite, while C-converity means the positivity of the tensor
ij 1 ij
= ¢ - Qdn.
fst Qdn Js,m

We shall point out that the C-convexity does not make sense as n = 2.
One can find that a metric is strongly C-convex if its Cartan torsion is sufficiently small. In the next section,
we shall study the stongly C-convexity of Randers metrics and obtain Theorem 1.2.

3. Strongly C-convexity of Randers Metrics

Let F = a+ 3 be a Randers metric where a = \/a;;4y'y7 and 8 = b;y* with b = \/a¥b;b; < 1 and (a™) = (ar) .
In this section, we shall investigate the positivity of (€¥) of F = o + 3.
It is well-known that the Cartan tensor of a Randers metric is reducible

1
Aijie = o {Lihix, + Lihig + Ixhij}

where h;;: = FFyi,; = gi; — £;£; is the angular tensor, and the Cantan form is
1
Ii: nt <blﬁaw)
2 a

Being aware of h7hS = n — 1 and hih?® = g% — (107 one can get

ATAY = m{ﬂlﬂlzg” +(n+5)I'F = 2|20}
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where

I11|? = 1,97 = (nzl) b11£§3§ < (”21) (1-V1i=w), (3.1)

which can be found in [8]. Thus, we reach

(n T 12— 1><n—2>)9”

o . n+5 . . 2||_r||2 o
P+ —J1 0 — —— 07 ).
( T are (n+ 12

¢l = (1 —2||1)2

T -Dm-2)

For investigating the positivity, one can apply the continuity method. Let us consider the family F} = o + ¢
where t € [0, 1]. Tt is clear that (€¥) of Fy is (a%/) which is positive definite. Hence, once we obtain the invertibility
of (€¥) for every Fy, we shall have the positivity of (¢¥) for every F;. Thus we shall calculate the determinant
det(€%) by applying the following lemma.

Lemma 3.1 ([2]). Let H = (H%) be a symmetric n x n matriz and V. = (V%) be an n-vector. Put G =
H + §V*VI where § is a complex number. Assuming that H is invertible with H=' = (H;;), it holds

det(GY) = (1 + 6v) det(H™),
where v = V;V" and V; = H;;VI. Moreover, if 1 +6v # 0, G is invertible and the inverse G l= (Gij) is given by

ViV,
1+d6v’

Gij = Hij —

In order to apply the above lemma, we rewrite €% in the following form

Y= K 0 — I'+ ——=r +-—0 2
€7 = pog" + p1 p2< L + (3.2)
where

n

po=1-2||I|?

(n+1)2(n—1)(n—-2)’

n (n+1)2 212
(n—l)(n—Q)( 15 +(n+1)2)’
_ n(n+5)

P2 12— D(n—2)

p1L =

Lemma 3.2. The coefficient po is positive when n > 4. In dimension n =3, po > 0 if and only if b < %.

Proof. By (3.1), we have || I||*< @, thus for n > 4 we have

Po:1—2W||2(n+1)2(n—1)(n—2) e e-y

For n = 3, we use the estimate ||I||*< @(1 — V1 —b?) where the equality can be achieved. Thus py > 0 if and
only if

3 3
min po =1 — EmyaxHIHQ: 1- 5(1 —V1-52)>0

which implies b2 < %.

In the remaining part of this section, we shall assume pg > 0. Therefore, by putting
H' = pog” + p1£'t = po (gij + plgl[j) :
Po
and according to Lemma 3.1, we have

det(HY) = (po)™ det(g) (1 + Z;) .
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One can easily find that 1+ £2 > 0. Thus (H) is invertible with the inverse
~ 1 P1 glf i
Hij = —gij — o
Top”? (o)1

Now, applying Lemma 3.1 to
s , 12 . . 1)2 .
¢ = HY — p, Iz+(n+ )EZ I]+(n+ )EJ 7
n+5 n+5

we obtain

n—+5 n—+5
(n+1)*  po }
(n+5)% po + p1
n(n+1)32
2n3 +4n2 — 12n + 10
) n(n+ 5)|1)? }
(n+1)*(n —1)(n - 2) — 2n||I|]?

Theorem 3.3. A Randers metric F' is strongly C-convez if and only if
1/2
b B (1 (871607 +8n+2 2
ne nt 4+ 3n3 —9n2 +7n

Proof. By the decomposition (3.2) and n > 3, the positivity of (€%) shall imply po > 0. In fact, since n > 3, by
picking a covector (V;) such that

det(€) — det(FT) {1 — poH <1i + Wﬁ') (p’ + Wﬁjﬂ

— (o)™ det(g") [1 T
Po

=(po)" det(g") {1 -

where b = ||8]|«-

1)? .
D7y o,
n+95
we have €7V, V; = pog¥V;V;. Thus the positivity of (¢¥) does imply pp > 0. Hence, if F is strongly C-convex, we
have pg > 0 and det(€%) > 0. Therefore, one shall get
B n(n+1)? B n(n +5)|1]1”

2n3 +4n? —12n4+10  (n+1)%2(n—1)(n — 2) — 2n||I||?

The inequality (3.3) is equivalent to

0V, =0, (Ii +

> 0. (3.3)

(n+1)%(n—1)(n—-2)(n(n —2) — 1)

I? <
Il 2n(n3 4+ 3n2 —9n+17)

Since max,||1]|* = %(1 — /1 —b?), the above inequality holds if and only if

(n+1)2 (n+1)2%mn—1)(n—2)(n(n—2)—1)

1—+/1—052
2 ( )< 2n(n3 +3n2 —9In +7) ’

from which we can get

3 _ 1602 2\°
b2<1<8n 61 +8n+> (3.4)

nt 4+ 3n% —9n? + Tn

Conversely, let us assume that 3 satisfies (3.4). A simple calculation shows that b? < % as n = 3. Hence, pyg is

positive according to Lemma 3.2. Since (3.15) is equivalent to (3.18), we have det(€%) > 0 in this case. Now, put

F, = a+tpB fort € [0,1], and denote €% of F; by €¥(t). It is clear that t3 also satisfies (3.18) since ||t8]|a < ||8]|a-

Hence, for every t € [0,1] we have det(€%(¢)) > 0 and thus the eigenvalues of €% (¢) are nonzero. Note that the

eigenvalues of €% (t) depend continuously on ¢, and €% (0) = a¥ is positive definite. As ¢ changes from 0 to 1, none
of these eigenvalues can become negative. Thus €% is positive definite.

O
Remark. In order to have an intuition, we list below the decimal values of several B,,’s.

n=3 | n=4| n=5|n=10 | n=100 | n = 1000
B, | 0.2773 | 0.4869 | 0.6098 | 0.8464 | 0.9971 0.9999

As n grows, the condition on 8 becomes weaker. While it is critical as the dimension is low.
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