تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,035 |
تعداد دریافت فایل اصل مقاله | 4,882,773 |
بررسی تجربی عملکرد حرارتی لوله گرمایی نوسانی در زاویههای نزدیک به افق | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 8، دوره 53، شماره 11، بهمن 1400، صفحه 5445-5460 اصل مقاله (1.13 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2021.19538.7082 | ||
نویسندگان | ||
رستم اکبری کنگرلوئی1؛ مجید عباس علیزاده* 2؛ احد رمضانپور3 | ||
1گروه علوم مهندسی، دانشکده فنی و حرفهای تبریز، دانشگاه فنی و حرفهای،ایران. | ||
2معاون آموزشی دانشکده فنی و مهندسی دانشگاه ارومیه | ||
3استادیار، دانشکده علوم و مهندسی، دانشگاه آنگلیا روسکین، چلمزفورد، انگلستان | ||
چکیده | ||
لولههای حرارتی نوسانی با ساختاری ساده و مقرون به صرفه، میتوانند حرارت قابل توجهی را انتقال دهند. در کابردهای صنعتی یکی از ضعفهای عمده لولههای حرارتی نوسانی عملکرد نامطلوب آنها در زوایای نزدیک افق میباشد. مطالعات پیشین عمدتاً تمرکز خود را در بررسی عملکرد آنها در زوایای60،90 ،30 و صفر معطوف ساختهاند. بر اساس نتایج گزارش شده توسط این پژوهشها، لولههای حرارتی نوسانی در محدوده زاویه صفر تا 30 درجه کارکرد ضعیفی از خود نشان میدهد. از سوی دیگر بررسی دقیقی در این محدوده جهت نمایان ساختن علل این پدیده، صورت نگرفته است. هدف اصلی این پژوهش بررسی تجربی عملکرد لوله حرارتی نوسانی در زوایای انحراف نزدیک به افق و ارائه محدوده زاویه بحرانی میباشد. برای این منظور ابتدا بهترین درصد پرشدگی (60%) تعیین گردیده و به ازای این درصد، در زوایای مختلف صفر تا 90 درجه عملکرد لوله حرارتی نوسانی مورد ارزیابی قرار گرفت. نتایج حاصل نشان داد که با کم کردن زاویه لوله حرارتی نوسانی از 90 درجه تا حدود زاویه 15 درجه ، اختلاف مقاومت حرارتی به ازای توانهای حرارتی مختلف بسیار کم بوده ولی از زاویه 10 تا صفر درجه این اختلاف افزایش مییابد. همچنین بررسیهای بیشتر نشان داد که اختلاف مقاومت حرارتی زوایای 15، 10و 5 با متوسط مقاومت حرارتی به ترتیب 3، 12 و 36 درصد است. نهایتاً مشخص گردید که ضعف اصلی لولههای حرارتی نوسانی از زاویه حدود 10 تا صفر درجه میباشد. | ||
کلیدواژهها | ||
تجربی؛ مقاومت حرارتی؛ لوله حرارتی نوسانی؛ پرشدگی؛ زاویه انحراف | ||
عنوان مقاله [English] | ||
Experimental Investigation of Thermal Performance of Pulsating Heat Pipe at Angles Close To the Horizon | ||
نویسندگان [English] | ||
Rostam Akbari kangarluei1؛ Majid Abbasalizadeh2؛ Ahad Ramezanpour3 | ||
1Department of Engineering Sciences, faculty of Tabriz, Technical and vocational University (TVU), Iran. | ||
2Vice-Dean of Education, Technical Faculty, Urmia University | ||
3School of Engineering and the Built Environment, Anglia Ruskin University (ARU), Bishop Hall Lane, Chelmsford, Essex, UK | ||
چکیده [English] | ||
Pulsating heat pipes can transfer a considerable amount of heat during their simple structure and low cost. In industrial applications, one of the significant weaknesses of pulsating heat pipes is their poor performance at angles close to the horizon. Previous studies have mostly been at 90, 60, 30, and 0-degree angles and have reported the weakness of pulsating heat pipes in the 30 to zero angle range, but detailed studies have not been performed in this range. Therefore, the primary purpose of this study is to experimentally investigate the performance of pulsating heat pipes at angles of deviation close to the horizon and provide a more accurate critical inclination angle. The performance of pulsating heat pipe was evaluated for the best filling percentage (60%) at different angles 0 to 90 degrees. The results showed that by reducing the pulsating heat pipe angle from 90 degrees to 15 degrees, the difference in thermal resistance for different heat input powers was very small, but this difference increased from an angle of 10 to 0 degrees. Further studies showed that the percentage of difference in thermal resistance between angles 15, 10, and 5 with the average value of thermal resistance is 3%, 12%, and 36%, respectively. Thus, it was found that the main weakness of pulsating heat pipes is from an angle of about 10 to 0 degrees. | ||
کلیدواژهها [English] | ||
Experimental, Thermal resistance, Pulsating heat pipe, Filling ratio, Inclination angles | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] J. Lim, S.J. Kim, Effect of a channel layout on the thermal performance of a flat plate micro pulsating heat pipe under the local heating condition, International Journal of Heat and Mass Transfer, 137 (2019) 1232-1240. [2] Q. Wu, R. Xu, R. Wang, Y. Li, Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe, International Journal of Heat and Mass Transfer, 100 (2016) 892-898. [3] M.A. Nazari, M.H. Ahmadi, R. Ghasempour, M.B. Shafii, How to improve the thermal performance of pulsating heat pipes: A review on working fluid, Renewable and Sustainable Energy Reviews, 91 (2018) 630-638. [4] J. Qu, Q. Wang, Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling, Applied energy, 112 (2013) 1154-1160. [5] H. Akachi, Structure of heat pipe, United States patent, Patent No. 4921041, (1990). [6] Y.-H. Lin, S.-W. Kang, H.-L. Chen, Effect of silver nano-fluid on pulsating heat pipe thermal performance, Applied Thermal Engineering, 28(11-12) (2008) 1312-1317. [7] M.A. Nazari, M.H. Ahmadi, R. Ghasempour, M.B. Shafii, O. Mahian, S. Kalogirou, S. Wongwises, A review on pulsating heat pipes: from solar to cryogenic applications, Applied energy, 222 (2018) 475-484. [8] H. Jin, G. Lin, A. Zeiny, L. Bai, J. Cai, D. Wen, Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids, International Journal of Heat and Mass Transfer, 139 (2019) 789-801. [9] J. Zhao, W. Jiang, Z. Rao, Thermal performance investigation of an oscillating heat pipe with external expansion structure used for thermal energy recovery and storage, International Journal of Heat and Mass Transfer, 132 (2019) 920-928. [10] H. Wang, J. Qu, Y. Peng, Q. Sun, Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application, Energy Conversion and Management, 189 (2019) 215-222. [11] A. Wei, J. Qu, H. Qiu, C. Wang, G. Cao, Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management, International Journal of Heat and Mass Transfer, 135 (2019) 746-760. [12] H.J. Mosleh, M.A. Bijarchi, M.B. Shafii, Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers, Energy conversion and management, 181 (2019) 653-662. [13] F. Mobadersani, S. Jafarmadar, A. Rezavand, Modeling of A Single Turn Pulsating Heat Pipe based on Flow Boiling and Condensation Phenomena, International Journal of Engineering, 32(4) (2019) 569-579. [14] C. Jung, S.J. Kim, Effects of oscillation amplitudes on heat transfer mechanisms of pulsating heat pipes, International Journal of Heat and Mass Transfer, 165 (2021) 120642. [15] X. Sun, S. Li, B. Jiao, Z. Gan, J. Pfotenhauer, B. Wang, Q. Zhao, D. Liu, Experimental study on hydrogen pulsating heat pipes under different number of turns, Cryogenics, 111 (2020) 103174. [16] H. Yang, J. Wang, N. Wang, F. Yang, Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer, Energy and Buildings, 197 (2019) 1-6. [17] J. Qu, X. Li, Q. Xu, Q. Wang, Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves, Heat and Mass Transfer, 53(11) (2017) 3383-3390. [18] R. Borkar, P. Pachghare, Thermo-Hydrodynamic Behavior of Methanol Charged Closed Loop Pulsating Heat Pipe, Frontiers in Heat Pipes (FHP), 5(1) (2014). [19] B. Markal, R. Varol, Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures, International Communications in Heat and Mass Transfer, 121 (2021) 105084. [20] Y. Ji, C. Chang, G. Li, H. Ma, An Investigation on Operating Limit of an Oscillating Heat Pipe, in: International Heat Transfer Conference Digital Library, Begel House Inc., 2014. [21] J. Lee, Y. Joo, S.J. Kim, Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes, International Journal of Heat and Mass Transfer, 124 (2018) 1172-1180. [22] H. Yang, S. Khandekar, M. Groll, Operational limit of closed loop pulsating heat pipes, Applied Thermal Engineering, 28(1) (2008) 49-59. [23] M. Li, L. Li, D. Xu, Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe, Cryogenics, 100 (2019) 62-68. [24] Z. Xue, W. Qu, Experimental study on effect of inclination angles to ammonia pulsating heat pipe, Chinese Journal of Aeronautics, 27(5) (2014) 1122-1127. [25] A.I. Nowak, C. Czajkowski, P. Błasiak, S. Pietrowicz, Thermal Performances Of A Pulsating Heat Pipe With Different Inclination Angles, Filling Ratios and Working Fluids. [26] H.R. Goshayeshi, M. Goodarzi, M.R. Safaei, M. Dahari, Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field, Experimental Thermal and Fluid Science, 74 (2016) 265-270. [27] S.A. Jahan, M. Ali, M.Q. Islam, Effect of inclination angles on heat transfer characteristics of a closed loop pulsating heat pipe (CLPHP), Procedia Engineering, 56 (2013) 82-87. [28] S. Khandekar, Thermo-hydrodynamics of closed loop pulsating heat pipes, (2004). [29] J. Wang, H. Ma, Q. Zhu, Y. Dong, K. Yue, Numerical and experimental investigation of pulsating heat pipes with corrugated configuration, Applied Thermal Engineering, 102 (2016) 158-166. [30] C.-H. Sun, C.-Y. Tseng, K.-S. Yang, S.-K. Wu, C.-C. Wang, Investigation of the evacuation pressure on the performance of pulsating heat pipe, International Communications in Heat and Mass Transfer, 85 (2017) 23-28. [31] C.M. Douglas, Design and analysis of experiments, (2001). | ||
آمار تعداد مشاهده مقاله: 564 تعداد دریافت فایل اصل مقاله: 634 |