تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,041 |
تعداد دریافت فایل اصل مقاله | 4,882,776 |
مدل آسیب میکرومکانیکی برای پلاستیسیته مواد بهمنظور پیشبینی شکست تحت بارهای برشی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 5، دوره 53، شماره 12، اسفند 1400، صفحه 5679-5702 اصل مقاله (3.35 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2021.19546.7050 | ||
نویسندگان | ||
حامد قلی پور1؛ فریدرضا بیگلری* 2؛ کامران نیک بین3 | ||
1دانشگاه صنعتی امیرکبیر، دانشکده مهندسی مکانیک، تهران، ایران | ||
2صنعتی امیرکبیر*مهندسی مکانیک | ||
3Imperial College-مهندسی مکانیک | ||
چکیده | ||
در این مقاله به مدل مکانیک آسیب مبتنی بر میکرومکانیک جیتی ان جهت اضافه کردن قابلیت پیشبینی و محاسبه آسیب تحت بارهای برشی پرداختهشده؛ تا از آن بهمنظور مدلسازی آسیب و شکست در شرایطی که بارهای برشی و آسیب برشی غالب است استفاده گردد. در توسعه مدل جیتی ان، نظر به اینکه آسیبهای مختلف مفاهیم فیزیکی و اثرات تضعیف متفاوتی دارند لذا یک پارامتر آسیب برشی مستقل و مجزا بهعنوان تابعی از کرنش پلاستیک معادل ماتریس ارائه گردید. مدل آسیب جیتی ان اصلاحشده با توسعه کد در محیط نرمافزار آباکوس پیادهسازی شد. جهت آنالیز آسیب با مدل جدید، 16 پارامتر ورودی مدل برای ماده تعیین گردید. پس از توسعه مدل، توسعه کد و تعیین پارامترهای ورودی، ابتدا مدل اصلاحشده بر روی تک المان آزمایش شد. بررسی نتایج نشان داد که جوابهای مدل توسعه دادهشده مطابقت کاملی با نتایج مدل جیتی ان پایه و روابط تحلیلی به ترتیب تحت بارگذاریهای کششی و برشی دارد. درنهایت مدل توسعه دادهشده در بارگذاری برشی و روی نمونه برشی مورد آزمایش قرار گرفت. مشاهده گردید مدل اصلاحشده تحت بارگذاری برشی ضعف مدل جیتی ان پایه را رفع کرده و بهخوبی بروز آسیب و تضعیف خواص مکانیکی ماده را تحت شرایط برشی حاکم پیشبینی میکند. | ||
کلیدواژهها | ||
مکانیک آسیب؛ مدل جیتی ان؛ تابع تسلیم؛ آسیب برشی؛ بارگذاری برشی | ||
عنوان مقاله [English] | ||
Micromechanical Damage Model for Plasticity of Metals to Predict Failure under Shear Loads | ||
نویسندگان [English] | ||
Hamed Ghoolipour1؛ FaridReza Biglari2؛ Kamran Nikbin3 | ||
1Amirkanir University of Technology, Mechanical Engineering Department, Tehran, Iran | ||
3Imperial College-مهندسی مکانیک | ||
چکیده [English] | ||
The present work deals with the Gurson-Tvergaard-Needleman micromechanics based damage model to add the ability to predict damage under shear loads and use it in modeling damage and failure under shear dominated loading conditions. In the development of the Gurson-Tvergaard-Needleman model, since different damages have different physical concepts and attenuation effects, so an independent shear damage parameter was presented as a function of an equivalent plastic strain of the matrix. The modified Gurson-Tvergaard-Needleman damage model was implemented by developing a code in the Abaqus software. To use the modified Gurson-Tvergaard-Needleman model, 16 input parameters of the model were determined for the material under study. After modifying the model, developing the code, and determining the input parameters, it was first tested on a single element. The results of the developed model showed complete agreement with the results of the basic Gurson-Tvergaard-Needleman model and analytical solutions under tensile and shear loads, respectively. Finally, the developed model was tested in shear loading on the shear specimen. It was observed that the modified model eliminates the weakness of the base Gurson-Tvergaard-Needleman model and well predicts the occurrence of damage and weakening of the mechanical properties of the material under the prevailing shear conditions. | ||
کلیدواژهها [English] | ||
Damage mechanics, Gurson-Tvergaard-Needleman model, Yield function, Shear damage, Shear loading | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] J. Lemaitre, A continuous damage mechanics model for ductile fracture, Journal of engineering materials and technology, 107(1) (1985) 83-89. [2] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology, 99(1) (1977) 2-15. [3] C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, Journal of Engineering Materials and Technology, 102(3) (1980) 249-256. [4] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, 17(4) (1981) 389-407. [5] V. Tvergaard, Influence of void nucleation on ductile shear fracture at a free surface, Journal of the Mechanics and Physics of Solids, 30(6) (1982) 399-425. [6] A. Needleman, V. Tvergaard, An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids, 32(6) (1984) 461-490. [7] Q.-Y. Song, A. Heidarpour, X.-L. Zhao, L.-H. Han, Experimental and numerical investigation of ductile fracture of carbon steel structural components, Journal of Constructional Steel Research, 145 (2018) 425-437. [8] C. Ruggieri, Numerical investigation of constraint effects on ductile fracture in tensile specimens, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2) (2004) 190-199. [9] B. Qiang, X. Wang, Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: A numerical investigation using GTN models, Engineering Fracture Mechanics, 213 (2019) 264-279. [10] P. Zhao, Z. Chen, C. Dong, Failure analysis based on microvoids damage model for DP600 steel on in-situ tensile tests, Engineering Fracture Mechanics, 154 (2016) 152-168. [11] T.-S. Cao, E. Maire, C. Verdu, C. Bobadilla, P. Lasne, P. Montmitonnet, P.-O. Bouchard, Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests–Application to the identification of a shear modified GTN model, Computational Materials Science, 84 (2014) 175-187. [12] K. Nahshon, J. Hutchinson, Modification of the Gurson model for shear failure, European Journal of Mechanics-A/Solids, 27(1) (2008) 1-17. [13] L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials, Engineering Fracture Mechanics, 75(11) (2008) 3343-3366. [14] K.L. Nielsen, V. Tvergaard, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, Engineering Fracture Mechanics, 77(7) (2010) 1031-1047. [15] M. Achouri, G. Germain, P. Dal Santo, D. Saidane, Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process, Computational Materials Science, 72 (2013) 62-67. [16] Z. Xue, J. Faleskog, J.W. Hutchinson, Tension–torsion fracture experiments–Part II: Simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain, International Journal of Solids and Structures, 50(25) (2013) 4258-4269. [17] L. Malcher, F.A. Pires, J.C. De Sá, An extended GTN model for ductile fracture under high and low stress triaxiality, International Journal of Plasticity, 54 (2014) 193-228. [18] J. Zhou, X. Gao, J.C. Sobotka, B.A. Webler, B.V. Cockeram, On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions, International Journal of Solids and Structures, 51(18) (2014) 3273-3291. [19] W. Jiang, Y. Li, J. Su, Modified GTN model for a broad range of stress states and application to ductile fracture, European Journal of Mechanics-A/Solids, 57 (2016) 132-148. [20] J. Lemaitre, H. Lippmann, A course on damage mechanics, vol. 2Springer, in, Berlin, 1996. [21] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta metallurgica, 32(1) (1984) 157-169. [22] W. Lode, Versuche über den Einfluss der mittleren Hauptspannung auf die Fliessgrenze, ZAMM, 5 (1925) 215-220. [23] S.M. Graham, T. Zhang, X. Gao, M. Hayden, Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality, International Journal of Mechanical Sciences, 54(1) (2012) 172-181. [24] J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Computer Methods in Applied Mechanics and Engineering, 51(1-3) (1985) 31-49. [25] J. Zhou, X. Gao, M. Hayden, J.A. Joyce, Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect, Engineering Fracture Mechanics, 85 (2012) 103-116. [26] L. Xue, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading, International Journal of Solids and Structures, 44(16) (2007) 5163-5181. [27] X. Gao, G. Zhang, C. Roe, A study on the effect of the stress state on ductile fracture, International Journal of Damage Mechanics, 19(1) (2010) 75-94. [28] H. Gholipour, F. Biglari, K. Nikbin, Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests, International Journal of Mechanical Sciences, 164 (2019) 105170. [29] H. Gholipour, F. Biglari, Experimental Study and Numerical Simulation of Ductile Fracture on In-Situ Tensile Specimens Using GTN Micromechanical Damage Model, Modares Mechanical Engineering, 20(8) (2020) 2087-2099. [30] Q. Yin, B. Zillmann, S. Suttner, G. Gerstein, M. Biasutti, A.E. Tekkaya, M.F.-X. Wagner, M. Merklein, M. Schaper, T. Halle, An experimental and numerical investigation of different shear test configurations for sheet metal characterization, International Journal of Solids and Structures, 51(5) (2014) 1066-1074. [31] Q. Yin, C. Soyarslan, K. Isik, A. Tekkaya, A grooved in-plane torsion test for the investigation of shear fracture in sheet materials, International Journal of Solids and Structures, 66 (2015) 121-132. [32] S. Gatea, H. Ou, B. Lu, G. McCartney, Modelling of ductile fracture in single point incremental forming using a modified GTN model, Engineering Fracture Mechanics, 186 (2017) 59-79. [33] C.C. Roth, D. Mohr, Determining the strain to fracture for simple shear for a wide range of sheet metals, International Journal of Mechanical Sciences, 149 (2018) 224-240. [34] S. Baltic, J. Magnien, H.-P. Gänser, T. Antretter, R. Hammer, Coupled damage variable based on fracture locus: Modelling and calibration, International Journal of Plasticity, 126 (2020) 102623. [35] N. Aravas, On the numerical integration of a class of pressure‐dependent plasticity models, International Journal for numerical methods in engineering, 24(7) (1987) 1395-1416. [36] Z. Zhang, On the accuracies of numerical integration algorithms for Gurson-based pressure-dependent elastoplastic constitutive models, Computer methods in applied mechanics and engineering, 121(1-4) (1995) 15-28. [37] Z. Zhang, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Computer Methods in Applied Mechanics and Engineering, 121(1-4) (1995) 29-44. [38] B.C. Simonsen, S. Li, Mesh‐free simulation of ductile fracture, International Journal for Numerical Methods in Engineering, 60(8) (2004) 1425-1450. [39] M.B. Bettaieb, X. Lemoine, L. Duchêne, A.M. Habraken, On the numerical integration of an advanced Gurson model, International journal for numerical methods in engineering, 85(8) (2011) 1049-1072. [40] K. Nahshon, Z.J.E.f.m. Xue, A modified Gurson model and its application to punch-out experiments, 76(8) (2009) 997-1009. [41] J. Dong, S. Wang, J. Zhou, C. Ma, S. Wang, B. Yang, Experimental and numerical investigation on the shearing process of stainless steel thin-walled tubes in the spent fuel reprocessing, Thin-Walled Structures, 145 (2019) 106407. [42] A. Standard, B831-14, Standard Test Method for Shear Testing of Thin Aluminum Alloy Products, ASTM International, West Conshohocken, PA, (2005). [43] A. Mendelson, Plasticity; theory and application, Macmillan, 1968. [44] M. Achouri, G. Germain, P. Dal Santo, D. Saidane, Experimental characterization and numerical modeling of micromechanical damage under different stress states, Materials & Design, 50 (2013) 207-222. | ||
آمار تعداد مشاهده مقاله: 473 تعداد دریافت فایل اصل مقاله: 685 |