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ABSTRACT: In this paper, an aerothermoelastic analysis of functionally graded plate containing
porosities in yawed hypersonic flows is investigated. Due to some incorrect manufacturing processes,
two different types of porosity, namely, even and uneven distributions are taken into account. The third-
order piston theory is utilized to estimate the unsteady aerodynamic pressure induced by the hypersonic
airflow. The material properties of a plate are assumed to vary across the thickness direction according to
a simple power law. Based on classical plate theory, the motion equations are developed with geometric
nonlinearity taking into consideration of von Karman strains. The formulations are established based
on Hamilton’s principle while the generalized differential quadrature method is employed to solve the
nonlinear aerothermoelastic equations. Due to lower computational efforts, the method of generalized
differential quadrature is used to obtain accurate results. Moreover, the assumed mode method along
with the Runge-Kutta integration algorithm is used as a solution method. The reliability and precision
of the obtained results are validated by published literature. Then, the influence of porosity distribution,
porosity coefficient, and yawed flow angle are discussed in detail. In general, this paper shows that even
porosity distribution would have a more destabilizing effect compared with the uneven porous model.
And also, for both porosity distributions, the chaotic behavior appears in higher top surface temperature
but even porosity distribution has a profound effect on chaotic motion.
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1- Introduction

The Functionally Graded Material (FGM) is a newfangled
composite material that is produced of two or more
constituent phases with a continuous variation of material
properties to reduce the stress intensity observed in the
conventional laminated composites [1]. The FGM structures
are extensively employed in aerospace engineering due
to their great performances in simultaneous mechanical,
aerodynamic, and thermal loadings. The panel flutter
phenomenon is a kind of dynamic instability problem inflight
space vehicles with high speed, which critically influences
the skin structures and generally induces fatigue failure [2].
Therefore, it is necessary and meaningful for investigators to
analyze the aerothermoelastic of FGM plates. Piston theory
is an applied tool for estimating aerodynamic force dealing
with the aeroelasticity issue of aerospace structures. In the
supersonic regime, the first-order piston is suitable and
predicts only the threshold of flutter and provides no sign
over the post-flutter instability zone. But, in the hypersonic
regime, the nonlinear coupling effects are a key factor in the
aeroelastic response [3, 4].

Studies on flutter behaviors of plates and shells have
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been performed in the past years [5]. Across the consecutive
progress of FGMs, numerous examinations have been
conducted on flutter problems until now. The thermal effects
are essential since the temperature environment causes
dramatic influences on the static and dynamic behaviors
of flight structures in supersonic/hypersonic regimes [6].
Acroclastic study of FG flat panels including thermal effects
was studied by Prakash and Ganapathi [7]. Sohn and Kim
[8] investigated divergence and flutter stability of FG panels
including thermal effects. It is claimed the critical dynamic
pressures for the flutter of FG panels are also higher than
that of isotropic metal panels. Li and Song [9] analyzed
the aerothermoelastic properties of laminated panels. They
found the outer layer ply angle of the laminated panel is more
important than that of the inner layer for the flutter instability.
The aerothermoelastic behavior of composite laminated
trapezoidal panels considering the compressibility of
supersonic airflow and shock wave were studied by Jiang and
Li[10]. They realized, by increasing the ply-angle, the critical
buckling temperature rises first and then reduces quickly.
Khalafi and Fazilati [11] investigated aeroelastic analysis of
variable stiffness composite laminated skew panels exposed
to yawed airflow. It is claimed the fiber orientations role at
two ends of the Variable Stiffness Composite Laminated
(VSCL) skew plate on its instability behavior is remarkable.
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Acroelastic analysis of elastically restrained stiffened FG
plates including the thermal environment was studied by Su
et al. [2]. They showed the enhancement of elastic restraints
increase frequency parameters and critical aerodynamic
pressure. The effect of the boundary relaxation on the
flutter instability and divergence of composite laminated
panels was examined by Chai et al. [12]. The influence of
in-plane stresses on the aeroelastic characteristic of constant
stiffness and variable stiffness composite panels, subjected to
supersonic airflow, was studied by Rasool and Singha [13]. It
is claimed the constant-stiffness cross-ply laminates suggest
more endurance to flutter instability for the case of square
composite plates. Supersonic flutter analysis of a laminated
composite plate by considering material uncertainty was
examined by Swain and et al. [ 14]. They found the perturbation
technique is highly efficient than the conventional Monte
Carlo simulation method. It should be mentioned that
these aforesaid publications are approximately limited to
the number of approximate methods such as the Rayleigh-
Ritz method, Galerkin method, finite element method, and
the differential quadrature method [15]. The linear and the
nonlinear deformation behavior of FG spherical shell panels
are examined by Kar and Panda [16]. They found with the
increase in curvature ratio, the deflection parameters increase
under mechanical load, however, a reverse trend is found in
the case of thermo-mechanical load.

Up to now, few scholars have been carried out on the
nonlinear complication of the post-flutter zone, which is
crucial for aerospace structure [17]. The nonlinear flutter
behavior of a two-dimensional simply supported symmetric
composite laminated plate was investigated by [18]. They
used Von Karman’s large deflection plate theory for structural
dynamics, first-order piston theory for aerodynamic forces,
and applied the Galerkin method to decrease the governing
equations to a set of nonlinear ordinary differential equations
in time. Ibrahim et al. [19] studied aerothermoelastic analysis
for temperature-dependent FGM panels. They also utilized
the first-order piston theory to model aerodynamic pressure.
Sohn and Kim investigated the nonlinear thermal flutter of
functionally graded panels under a supersonic flow. They
used the Newton—Raphson method to obtain approximate
solutions. The problem of nonlinear aeroelasticity of a general
laminated composite plate in supersonic airflow was examined
by Kouchakzadeh et al. [20]. They obtained the aerodynamic
damping has a more significant influence on Limit Cycle
Oscillation (LCO) amplitude for small fiber angles and
high aerodynamic pressures. Navazi and Haddadpour [21]
studied nonlinear flutter investigation of homogeneous and
FGM plates in supersonic airflow utilizing coupled models.
Aerothermoelastic analysis of nonlinear composite laminated
panel with aerodynamic heating in hypersonic flow was
investigated by Song and Li [22]. They showed with the
increase of the dimensionless aerodynamic pressure, the
LCO amplitude of the panel increases, which means that the
aeroelastic stability is declined, and it will be intensified if the
thermal influence is considered. Shahverdi and Khalafi [23]
showed that the post-flutter behavior of a functionally graded
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curved panel may be led to a chaotic motion in presence of
thermal loads. Chai et al. [24] studied the nonlinear dynamic
characteristics of lattice sandwich composite panels resting
on Winkler—Pasternak elastic foundations under simultaneous
aerodynamic and thermal loads in supersonic airflow. They
found the Winkler foundation cannot enhance the flutter
bounds of the lattice sandwich composite panel effectively.
Xia et al. [25] found the asymmetry of FG material has little
effect on the simple harmonic LCO flutterbut has significant
effects on the non-simple harmonic LCO flutter. Ye and Ye
[26] showed the temperature-dependent variation of the
thermal expansion coefficient has a crucial effect on reducing
the critical buckling temperature elevation.

Furthermore, porosities are a quite common phenomenon
in functionally graded materials due to incorrect
manufacturing processes and technical problems [27-30].
Duc et al. [31] studied the nonlinear dynamic response of
functionally graded plates with porosities on the elastic
foundation. The aeroelastic analysis of FGM plate with
porosities in the thermal environment and resting on elastic
foundations was studied by Zhou et al. [32]. The observed
influence of porosity may lead to a decrease of stability
margin when the plate is subjected to large thermal loads.
The aeroelastic flutter analysis of thick plates with porosities
which is surrounded by piezoelectric layers in supersonic
flow was studied by Bahaadini et al. [33]. They found the
natural frequencies, as well as flutter aerodynamic pressure
of thick FG plates with porosities, reduce as the coefficient
porosity expansions.

Rahmanian et al. [34] investigated the aeroelastic stability
of tapered/skew variable stiffness composite cantilevered
plates. They found taperness/skewness, as well as variable
stiffness lamination parameters, have significant effects on
the aeroelastic stability margins.

From the review of the literature, we can conclude that the
study of coupled nonlinear geometric structure and nonlinear
piston theory (third-order) are limited, and nonlinear flutter
analysis of porous functionally graded plate in yawed
hypersonic flow has not been addressed in the existing open
literature.

The objective of this paper is to investigate the critical
flutter point and nonlinear flutter of a porous functionally
graded plate that is subjected to yawed hypersonic flow.
Material properties of the functionally graded plate are
dependent on temperature and the distribution of their
constituents are graded along thickness direction by a
simple power law. Two types of FG porous distributions,
namely even porosity and uneven porosity distribution was
considered in this paper. The third-order piston theory is used
to calculate the aerodynamic force. Hamilton’s principle is
employed to formulate the equations of motion. Based on
the generalized differential quadrature method, the nonlinear
aerothermoelastic equation is transferred to ordinary
differential equations. Moreover, the assumed mode method
along with the Runge-Kutta integration algorithm is used as
a solution method.

The manuscript is organized as follows. In Section 2,
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Fig. 1. Geometry and coordinate system of an FGM plate with porosities in hypersonic airflow.

material properties, porous distributions, and the third-order
piston theory is presented. Based on von Karman’s nonlinear
hypothesis, the aeroelastic equations of a Functionally
Graded Porous (FGP) plate are proposed in Section 3. The
method of Generalized Differential Quadrature (GDQM) is
introduced in Section 4 and this method is used to discretize
the aeroelastic equation. Finally, some important conclusions
are drawn in Section 5.

2- Theory and Formulation
2- 1- Structural model
The schematic view of a porous FGM plate with a length
a, width b, and thickness /# which is subjected to a hypersonic
airflow is demonstrated in Fig. 1. The Cartesian coordinate
(x; v; z) is located on the mid-surface of the plate. Variables
u, v, and w represent the displacements of an arbitrary point
of the rectangular plate in x, y, and z directions, respectively.
The plate is made of functionally graded material in the
thickness direction. The temperature-dependent properties of
constituent materials can be written as follows [7]

P=F P\T"'+1+RT+PT*+PT" , (1)

where P, P, P, P, and P, are the temperature
coefficients of the constituent materials, and 7 is the Kelvin
temperature.

As presented in Fig. 1, two types of porosity distributions
along the thickness direction, namely even and uneven, are
considered in this study. The effective material property of
the FGM plate takes the modified form as follows [35]:

P(z,T) :Pm(T)[Vm(Z)—%]+R(T)[K(Z) —%] ()

where a is the porosity volume fraction and P and P,

are material properties of metal and ceramic, respectively. V
and V_ are the volume fractions of metal and ceramic and are
related by:

V47, =1 3)

The volume fractions of the ceramic and the metal can be
written as follows

V((z>=[7+7]ﬂ, VoAV, =1 @)

The continuous variation of the elastic modulus E, the
mass density p, Poisson’s ratio v, and thermal expansion
coefficient o, the thermal conductivity K due to the graded
porosity can be described as [29]

For even porosity model:

EGzT)= E.QT)-E,T)V,+

E ()~ E)+E,T)
pG.T)= p.T)=p, )V, +

£. )= 0.T)+0,T)
Ve T)= V) =v,[T)V, +

a (5)

V@)= V)4, (0)

K(z)= K, -K, V, +
o

K,— K +K,

o (.T)= &, T)~a, T)V, +

aT,m(T)—% o, T)+o, T)

For uneven porosity model:
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E@zT)=ET)-E,T)V . +E,T)-
%EC(TH-E,"(T) 1-2[z|/ h
p@z,I)= p.T)-p,T)V, +p,T)—
2 0. +p, @) 12/
Wz T)= v.)—v, @)V, +v,(T)—
%VC(T)+VM(T) 1-2[z|/h (6)
K@z)= K, —K, V. +K, —
%Kc-'er 1-2[z|/h
o (.= o, (T)—a,, )V, +

O‘T,m(T)*%(O‘T,C(THO(T,W(T))U*2\2 |/ h)

For dynamic modeling and deriving the kinetic and
potential energy terms for the FGP plate, the following
assumptions are made in thin or classical plate theory [36]:

The thickness of the plate (/) is small compared to its
lateral dimensions.

The middle plane of the plate does not undergo in-plane
deformation.

The displacement of the mid-surface of the plate is small
compared to the thickness of the plate.

The influence of transverse shear deformation is neglected.

The transverse normal strain under transverse loading can
be neglected.

Based on assumptions of CPT, the following displacement
field is presumed,

ow,(x,,2,1)
ox

ow,(x,y,z,t) (7)
dy

”(xsyszaf):uo(X,y,Z,f)_Z

V(x:yazat):VO(xayazat)iz

w(x, y,2,t) = wy(x, y,t)

where u, v, and w, are the displacements on the middle
surface of the FGM plate in the x, y, and z directions
respectively. To model the geometric nonlinearity due to
large deflection, von Karman strain-displacement relations
can be expressed as

0 0

Sxx 8xx Kxx

e t=1e" 14 21K° 8

wl— |7w »w ®)
0 0

Eu € Ky

where a"ﬁx and éfy are normal strains, égy is the shear strain
at the middle surface of the plate and also &7, & , and &
are the bending strains of the middle surface, which can be

written as

Bu, _Ozwo

80 ox KO axz

. o, N *w,
e B MR U B ©)

80 y KO y

vy Oy | U O,

ay  Ox Oxdy

The FG plate under the thermal loads will produce thermal
strain and thermal stress when the temperature increase 4(z),
it can be written as,

SQ(Z,T ) fon
e, (z.1)t=—{a, (AT(z), (10)
el (z,7) 20,

A(z) = T(2)-T, being the temperature rise from the stress-
free temperature (7). Based on the plane stress condition, the
thermoelastic constitutive for the FGP plate can be written as
follows [37]:

O |On @u O )lea| [1
0, 1= 0, 0, O N Lo (z,T)AT (11)
0 0 Oullle. 0

xy Xy

where Q, are the reduced stiffnesses and are defined as

_ _ E(,T)
Q“_QZZ_I—VZ(Z,T)’

_E(Z,T)VZ(Z,T)
le_ l—Vz(Z,T) (12)
0, =1

T 204v(z.T))

The force and moment resultants are defined as

N| [A B]| ¢ N’
-

where the thermal stress resultants vectors, N” and M’ are
introduced as:

N«Zj‘(
" 0, 0O, [(XT (z ,T)]AT dz
Py 0, Oynllo(@.T)
o (14)
MT _ l xx ] _
M
" 0, O, [(XT (z ’T)]AT 2 dz
S Q21 sz o (z,T)
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And also A,-,-’ D[/, and B, are the extensional, bending, and
bending-extensional coupling stiffnesses coefficients given
by

hi2

4, = [0y,
—h/2
hi2
B, = fQijzdz, (15)
—h/2
hi2
D, = fQi/.Z *dz

—h/2

2- 2- Aerodynamic modeling

In the present study, the fluid-structure effect due to
external aerodynamic pressure loading in a hypersonic regime
can be taken into account using third-order piston theory [38].
This pressure is expressed as:

110w Ow ow .
—|——+—cosA+—sin A\ |+
M\U 0t 0Ox dy
2
y+1{1ow ow ow .
AP =2g| T2 =22 4 P cos A+ o sin A 16
4 4 [U@t+8xcos +8ysm ]+ (16)
s s 3
v+l ld—erd—w s/\+d—s1n/\
12 U ot ox dy

where y is the adiabatic exponent, U is the free-stream
free stream velocity, M is Mach number, A is airflow yaw
angle (according to Fig. 1) and ¢ is dynamic pressure.

2- 3- Temperature distribution

It is assumed that the temperature varies only across the
thickness direction and is also determined by solving the
following steady-state one-dimensional heat conduction
equation:

d dar
——|K(z)—/|=0 17
ke a7
with the boundary condition

[Tm, z=—h/2
T:

T, =h/2 (18)

c

The solution of the heat conduction equation can be
expressed as [32]

o1

— 7
T=T,+T-T, # (19)
— 7
4, K(2)

3- Governing Equations

Based on von Karman’s nonlinear hypothesis, the
aeroelastic equations of an FGP plate can be formulated
utilizing the extended Hamilton’s principle [37, 39]. The
aeroelastic equations by considering body moments and
inertial forces in the x and y directions, and neglecting surface
shearing forces, yield:

ON ON

XX Xy — 0
ox ady
ON N ON —o
dy Ox
: ‘ )2 (20)
aMxx +20Mxy +0Myy +N ow +
Ox? oxdy oy’ ox?
a2 a2 2,
pIYIALENY AV SR
Y Ox Dy Ty ot
where
2
I, = fp(z,T)dz (21)

—h/2

The governing equations of porous FGM plate under
hypersonic airflow loads in terms of the displacement can be
obtained by inserting for the force and moment resultants as
follows:

0x4+ (‘)xzz‘)yz—}_(‘)y4 A
ow ;0w 9w

[04w , 0w oﬂv”Dl,ArBf‘]_
11

T
N”(‘)x2 N”(’)xz—'_i)x2><
p 1[0w ’ 1(ow
ol alar) Tealy )
‘]:"ﬁ’ ow ow e
11(‘)3672_ 12(,)})72 (22)

a (v ) L Yow]
Ow pa el P2\ ox 2200
+02ff ) V) |axay +
il o o

12 axz —Pn 0)}2
Ow  pa b ow ow ow ow
2 A, ———2B,——|dxdy +1,—
OxOyﬁ\ﬁ![ “ox dy “axay] R

63
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1({1ow oOw ow .
—|———+——cosA+—sinA |+
M[U Jt Ox dy ]
2
y+1{10ow Ow ow
2 cos\ —sm/\ =0
2 4[U8t+0x o ]+
3
v+l i(lv—i—a—wcos/\—i—a—wsin/\
12 U ot 0Ox dy

For the sake of convenience, the following dimensionless
parameters can be introduced as follows:

T T S W R X |
, 3 2, o o
1/2 T o2 NT b2 (23)
T= t Dm 3 s Rr Ntva s RX — W
p,ha D, D,

Subsequently, by substituting Eq. (33) into Eq. (32), the
dimensionless form of the equation can be obtained as:

A4W 2 4W 4A4W D,
({44‘2&‘02 2+£()4 L+
o0& b} 0&°0n b) on" ||D,
I, W _, oW (a] OW _
p,h Ot * E? o) on?
2) 4 o
3 "\b) on
2« 2 313 [« 2
2D [daV?] A ;bg [d;:]
" " d&dn+
o abh W, a’h W
"D, 98 ""bD, on
@t (ow Y abh® (oW )
~F (2 A = [T
O o e (56 =55 (v wany 2D
oo ah oW, abh OW
12me E)fz 22 Dm 0n2
372 «
4, LW OW oy 0 OW ey ¢
o.fon bD, OE On bD, 0E0n
3
MMy +D)[0 " ow dW
ZAWT NI cosA 7 197 sinA
2a | o€ P AM or Ton SoA Tt
2
MMy +D)[0 Pow  ow
Rl ) A 7 197 inA
da | oE G| AM or Ton A+
A %cos/\—o—[ ] %-i-%sm/\ =0
0 M) o oon

The boundary conditions considered here for the four
edges are simply supported and are given by

a2
%‘Ezo,l =0, W‘E:O,l =0
2 (25)
%‘U:O,] =Y W‘n:i’),]: 0

4- Solution Procedure

The Generalized Differential Quadrature Method
(GDQM) provides accurate results with lower computational
efforts compared to the analytical/semi-analytical methods.
Therefore, in the present study, GDQM is applied to discretize
the aeroelastic equation. The derivative of a function for
spatial variables at a discrete point is approximated by a
weighted linear sum of the function values at all discrete
points in the solution domain [40]. The following relations
are valid for the r-th derivative of a function W(s), which is
calculated as:

-3,

(26)

where N is the number of grid points, Aij(.’)s represent
the weighting coefficients of the summation, which can be
obtained for the first-order derivatives as follows:

MP(x,)

(r =x )M O(x,)
for i=k and i,k=12,.N

A[/(.') = (27)

N

_ Z c“’

s=ls=i

for i=k and i,k=12,.N

where the function M and the derivatives of it are given
by:

M, (x)=]]& —x,),
K% (28)
MO x)= H (x —x,)

s=lg=j

To obtain weighting coefficients of linear combinations of
partial derivatives and integrals, the following relationships
would be utilized [41].

TSy
— = A AW, (29)
Ox"dy k=1 =1 !
ffW(x y)axdy = ZZA%C/(CI (30)
k=1 1=l
which ¢, and ¢, are calculated as:
¢, =H" —H)® = [1(x)ax (1)

0
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b

o =H —H" = [1r.()dy (32)

0

HI(.\') — (A (x )71
(33)
Hl(}) (A(l)} )*

The coupled nonlinear Partial Differential Equations
(PDE) are reduced into nonlinear Ordinary Differential

Equations (ODE) by the DQM method.

N
D AxiW,, +

ki=1

I, » Deq a) d ()4 @)
7W+D7 b ZZA zkl ZWklkZJ’_J’_

kl=1k2=1
a 4
(&) v

S S e, AL A AL,

kn' " pm

m kdman=1 p=1

ah?
A,

2bD

Z Z e, A A APW W W,

m k=] lp,q\,l

Z Zc‘c A APW W, —

m kIn=1 p=1

B, bD Z ZC c A(z))"Ai(Iz)kaqW,/- +

m k1=lpg=l

b

N M

372
24 o Z Z IS A(I)YA(I»AI(/:?XAJ(;);WMW Wklkz_

66
bD,, JeLn=1p,k2,g=1

3h N M

a () (m (x4 (Dy
43665 § § A Ay gy AW, Wiia +
m kkLn=1p k2=l
Ot N M (34)

BLST S e AL A AL, +

m k=l pgis=l

abhz N
”20 > ZCC/;“"A;},”A“”W W, -

T pm
m komon=lpg=l

lsz Z Z c CPA,(MZ)YA(Z)‘W W, —

m k= lpqll

Z Zc c, A ADW W, —

D, &2 1pg=l

RS ADW,, R [ ]ZA,‘?;WM+

k1=l k2=1

)\[ Alﬂ)kaI] + (7)1/2W ]

k1=1

2
)\[M ]Y-i—l[ZAL(ka“/_i_( )I/ZW] I

k=1

3
h)y+1 . IR
oA -

k1=1

Sor ik,l,m,nkl1=12,.,N
and JDsq,S,t,k2=12,...M

65

By incorporating the boundary conditions into Eq. (34)
and doing some manipulations, the final equation can be
expressed as:

N2 a 4 M2
o dw,. +|-— dw, +
W I() Deq k=3 n [b k=3 T +
pmh a 2N-2M=2

2[1)_] deklkz

k1=3k2=3
abh? N2 M2

All 2D Z d4WkanmW[j +

m k,.m,n=3 p=3
3h2 N-=2 M=2

A12 2bD Z Z dSWkamnle -

m k=3 m,n,p=3

1, o

-2 M=2 (35)
Z dl(Wks‘WptW +

k=

a 4 M2
Rx d14ij _Ry [5] ZdISWik +
k=3

Mz

M 127
dléWklj —I—(W)IZW]‘F

<

Ry +1(& B |
) s i +

a k=1

y+1 S M 12 3_
a] [ZC k1j +(W) W] =0

k1=l

>

The constant coefficients are defined in Appendix.

5- Numerical Results and Discussion

All the above-mentioned details on algorithms and
formulations are adopted in a single code. All the calculation
codes are compiled and implemented through MATLAB
software. In what follows, convergence and accuracy of
aeroelastic behaviors of FG plates are presented. The FGM
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Table 1. Temperature dependent coefficients of Si3N3 (ceramic) and SUS304 (metal).

Material Properties Py P, P P P;
SUS304 E(Pa) 201.04E9 0 3.079E-4 -6.534E-7 0
a(1/K) 1.23E-5 0 8.086E-4 0 0
Si3N3 E(Pa) 348.43E9 0 -3.07E-4 2.16E-7 -8.946E-11
a(1/K) 5.8723E-6 0 9.095E-4 0 0
Table 2. Converge of critical dimensionless dynamic pressure
)vcr
sampling points n=0 n=0.5 n=1 n=5 n=inf
7x7 718.47 609.59 575.02 517.92 443.76
9x9 714.34 605.16 566.87 510.32 438.05
11x11 714.26 605.08 566.79 510.16 437.90
13x13 714.23 605.07 566.78 510.13 437.89
15%15 714.22 605.07 566.77 510.13 437.89
Table 3. Comparison of critical dimensionless dynamic pressure
/lcr
Volume fraction n=0 n=0.5 n=1 n=>5 n=inf
Present 792.81 682.50 642.82 586.25 512.13
Sohn and Kim [8] 792.7 681.4 641.3 584.9 511.1

is made of Si,N, and SUS304 with material properties given
in Table 1.

In order to determine the minimum required number of
sampling points, the convergence study is presented in Table 2.
As seen from this table, convergence is achieved considering
11x11 sampling points in the computational domain. So at the
rest of the manuscript and in all of the numerical results and
evaluations, only 11x11 sampling points in the computational
domain will be considered.

By using 11x11 sampling points in the computational
domain, the governing aerothermoelastic equation was
solved to evaluate the flutter instability [42]. It should be
noted the sampling point distribution plays a key role in
the nonlinear analysis [23]. The numerical simulations are
obtained by fourth-order Runge—Kutta method and the
nonlinear aeroelastic equations of the FG plate are analyzed
to identify the Limit Cycle Oscillation (LCO) and complex
chaotic behaviors of the system.
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5- 1- Structural and aeroelastic model verification

The comparison study is accomplished between the obtained
results of this research and the results reported by Sohn and
Kim [8] which studied the dynamic stabilities of Functionally
Graded (FG) panels that are subjected to combined thermal and
aerodynamic loads. They used the Newton—Raphson method
to obtain solutions of the nonlinear governing equations. The
characteristics of the system are: a/b=1(aspect ratio), a/h=100
(length/ thickness ratio). Table 3 shows a good agreement for
different values of volume fraction exponent in this comparison,
which indicates that the proposed method and formula derivation
are valid.

The second comparative study is devoted to the amplitudes
of LCOs at (= 0.75 and # = 0.5 in supersonic airflow for an
FGM square plate. Figure. 2 shows good agreement between the
results of the present work and Navazi and Haddadpour [21]. We
can see that the present method has good accuracy and reliability
to deal with the flutter behavior of the FGM plate.
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Fig. 2. LCO amplitudes of an FG plate in supersonic airflow.

Table 4. Critical dimensionless dynamic pressure for different porosity coefficients and porosity distributions

Aer
Volume fraction n=0 n=0.5 n=1 n=>5 n=inf
Perfect 0=0.0 792.81 682.50 642.82 586.25 512.13
Even 0=0.1 714.26 605.08 566.79 510.16 437.90
0=0.2 641.21 532.81 498.24 438.87 368.55
Uneven 0=0.1 771.48 661.13 620.89 565.23 491.61
0=0.2 752.34 642.19 603.71 546.68 473.63

5- 2- Aeroelastic stability analysis

Table 4 presents critical dimensionless dynamic pressure
for different porosity coefficients and porosity distributions.
For both distributions, it is found that the critical
dimensionless dynamic pressure of porous plates decreases
with increasing porosity coefficient (). It is concluded from
these tables that, even the porosity model has a greater effect
on critical dimensionless dynamic pressure. Fig. 3 shows the
dimensionless dynamic pressure with the flow yaw angle for
different porosity coefficients and porosity distributions. It
can be known from the figure that with the change of the flow
yaw angle, the dimensionless dynamic pressure increases
first and then decreases for the flow yaw angle of 0 and 90°.
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In this examination, the amount of angle increase is equal
to 3 degrees. From Fig. 3 it can be seen that the maximum
difference of dimensionless dynamic pressure is obtained
with the flow yaw angle equal to 45 degrees. Besides, uneven
porosity distribution leads to more stabilized configurations
compared with the even porous model.

This is since the porosities in the even model are regularly
distributed through the thickness of the plate, whereas in the
uneven model, porosities are particularly distributed close
to the middle surface of the plate. A final remark is that the
dimensionless dynamic pressure increases with decreasing
of the top surface temperature of the plate (7)) for the same
volume fractions.
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Fig. 3. LCO Dimensionless critical flutter pressure with change in flow yaw angle for n =1.
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5- 3- Nonlinear flutter analysis

To observe the effects of upper surface temperature
(ceramic)andporosity simultaneously ontheaerothermoelastic
behavior of FG plate, the bifurcation diagrams plotting the
maximum deflection amplitude at the gauge point versus the
upper surface temperature for perfect (¢=0), even porous
(¢=0.1) and uneven (a =0.1) with two value in yaw angle
(4=0, 30°) are plotted in Fig. 4. To this end, for each case
the variation of the critical free-stream pressure is obtained
by increasing the outer surface temperature, 7, while the
bottom surface temperature, 7 is defined as the reference
temperature and equal to 300 K. Accordingly, it is expected
that the temperature-dependent material variation decreases
the critical flutter dynamic pressure. At low temperatures, the
plate is aeroelastic stable. The plate can oscillate for some
time when disturbed, but the damping will finally dissipate
the motion. The temperature rise will cause a decrease in the
structural rigidity of the FG plate. As shown in Fig. 4, the
temperature-dependent material variation increases flutter
instability and asymmetric limit cycle oscillation occurs and
the amplitudes will continue to rise with the increase in the
change rates of the material mechanical properties.

It is obvious that as the temperature increases, simple
LCO with the harmonic motion becomes an asymmetric limit
cycle oscillation, and with more increases to come narrow-
band chaotic motion and wide-band chaotic motion. At first
sight, one may observe that porosity coefficients have a major
influence on the stability margins and chaotic motions. It
can be seen that for both porosity distributions, the chaotic
behavior appears in higher temperatures but even porosity
distribution may lead to more reduction in the start of chaotic
motion. It should be stated that the effective stiffness to
effective mass ratio is the highest at uneven models. Based
on the reported results, as the flow yaw angle increases, the
wide-band chaotic motion happens at the higher value of
upper surface temperature.

The phase plots corresponding to different upper surface
temperature (4) with even porosity ¢=0.1, 4=30, A=400,
M=5, and n =1 in gauge point are shown in Fig. 5. Firstly, the
plate undergoes simple LCO and after that, with further 4c
multiple periodic motions occur.

Considering a slight change in 4c structural nonlinearity
remarkably enhances with the rise of temperature and the
amplitude of simple LCO increase Bifurcation diagram of
FG plate with even porosity under increasing dimensionless
dynamic pressure (4) for various yaw angles (4), with M=6,
T =T =300, and n =10 are calculated and shown in Fig. 6.
It is found that by increasing porosity coefficient (o) the
bifurcation point shifts to the left side of the bifurcation
diagram and flutter occurs at the lower value of dimensionless
dynamic pressure. According to the illustrated plot in Fig.
6, increasing porosity coefficient lead to an increase of the
harmonic oscillation amplitude, and also this phenomenon
shifts to the left side of this diagram. The last finding is that
by increasing dimensionless dynamic pressure, the harmonic
oscillation amplitude decreases. To deeper understanding, Fig.
7 illustrates nonlinear flutter response and phase diagram for
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different values of dimensionless pressure with 4=0, a=0.2,
M=6, and n =10. It is observed from Fig. 7 that at A = 700,
the oscillation of the plate is an LCO whose dimensionless
amplitude is 1.3. By increasing the dimensionless pressure
the motion of the plate is still an LCO, but the amplitude
increases to 1.5. Gradually increasing the dimensionless
pressure to 4 = 1000, the chaotic motion of the plate occurs.
It is interesting that at A= 1100, wide-band chaotic motion
changes to narrowband chaotic motion.

6- Conclusion

In this study, the nonlinear flutter characteristics of the
porous FGM, under simultaneous actions of the thermal
Loads and yawed hypersonic airflow are investigated. The
governing equations are obtained using Von Karman’s
large deflection and third-order piston theory. The
material properties of the plate are assumed to vary across
the thickness direction according to a simple power-law
distribution. Two types of FG porous distributions, namely
even porosity and uneven porosity distribution were
considered in this paper. The nonlinear geometric partial
differential equations due to the stretching effect have
been expressed by assumptions with Von Karman’s strain-
displacement relation to obtain unsteady aerodynamic
pressure in the hypersonic regime. Hamilton’s principle
is employed method, the non-linear aerothermoelastic
equation is transferred to ordinary differential equations.
Based on the generalized differential quadrature method,
the nonlinear aerothermoelastic equation is transferred to
ordinary differential equations. Moreover, the assumed
mode method along with the Runge-Kutta integration
algorithm is used as a solution method. Then, the influence
of porosity distribution, porosity coefficient, and yawed
flow angle were discussed in detail and the following
conclusions can be made:

It is observed that the critical dimensionless dynamic
pressure decreases with increasing both the volume
fraction exponent and porosity coefficient.

Even porosity distribution would have a more
destabilizing effect compared with the uneven porous
model.

The maximum dimensionless dynamic pressure in even
and uneven porosity models is obtained with the flow yaw
angle equal to 45°.

The dimensionless dynamic pressure increases with
decreasing of the top surface temperature of the plate.

For both porosity distributions, the chaotic behavior
appears in higher top surface temperature but even porosity
distribution has a profound effect on chaotic motion.

As the flow yaw angle increases, the wide-band chaotic
motion takes place at the higher value of the upper surface
temperature of the plate.

The bifurcation diagram of the FG plate with even
porosity under increasing A shows, increasing porosity
coefficient leads to an increase of the harmonic oscillation
amplitude, and also this phenomena shifts to the left side
of this diagram.
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