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ABSTRACT: In this paper, a new hierarchical robust nonlinear control scheme is designed for the 
horizontal plane path following control problem of an underactuated autonomous underwater vehicle 
in the presence of the model uncertainties and fast-time-varying external disturbances. First, the path 
following error model is established based on the virtual guidance method. Afterwards, the controller 
design starts at a kinematic level and evolves to a dynamic setting, building on the kinematic controller 
derived, using backstepping technique and a disturbance observer-based sliding mode control, 
respectively. A Lyapunov-based stability analysis proves that all the signals are ultimately bounded, 
and path following errors converge to an arbitrarily small neighborhood of the origin. Following 
achievements are highlighted in this paper: (I) in order to simplify the control design, the derivative 
of the virtual control is estimated by the disturbance observer which avoids explosion of complexity 
without common filtering techniques; (II) the proposed controller can be easily implemented with no 
information of the bounds on the parameter uncertainties and external disturbances in a continuously 
changing environment. Furthermore, computer simulations have shown that the overall closed-loop 
system achieves a good path following performance, which proves the feasibility and good robustness 
of the proposed control law.   
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1- Introduction
Autonomous Underwater Vehicles (AUVs) have been 

invaluable tools for researching on marine environment. 
This class of underwater vehicles has proven its merit in a 
wide range of applications such as inspection, exploration, 
oceanography, biology, and so on [1]. The motion control 
of AUVs is challenging due to the nonlinear coupled terms, 
uncertain hydrodynamic parameters, and significant external 
disturbances. In addition to these, due to the consideration 
of weight, cost, and energy consumption, most AUVs are 
underactuated (i.e., they have fewer actuators than the 
number of degrees of freedom). Hence, one cannot control 
every state variable directly and the effects of disturbances on 
the uncontrollable variables are not easy to be compensated 
either [2]. Therefore, due to the low maneuverability 
character of underactuated AUVs, it is particularly important 
to investigate path following control. In the path following 
problem, the vehicle is regulated to follow a path in the 
absence of the temporal specifications. Typically, smoother 
convergence to a path can be achieved when path following 
strategies are used instead of trajectory tracking controllers, 
and the control inputs are less likely to reach saturation.

Backstepping Control (BSC) has provided a powerful 

tool to design controllers for underactuated AUVs by 
setting candidate Lyapunov functions, and later producing 
a stabilizing control law [3, 4]. However, there are some 
problems with the traditional BSC. One is the so-called 
“explosion of complexity”, which results from tedious 
differential calculations of virtual controls, especially when 
the system order grows. In recent years, novel strategies 
introducing “command filters” have been used sometimes to 
deal with this problem [5, 6]. 

Another problem of the traditional BSC is that its 
robustness against the uncertainties requires further strength. 
As a common solution, Disturbance Observer- based (DO) 
controllers have been widely used for AUV control, where 
DO plays a key role. In references [7-9], different types of 
DOs were introduced to provide an adequate estimation 
for the dynamic uncertainties and external disturbances. In 
reference [10], a path following controller was designed 
for an underactuated AUV with the dynamic and velocity 
measurement uncertainties. The method consists of a DO-
based kinematic controller and a linear-parameter-varying-
based dynamic controller. In reference [11], an adaptive 
Extended State Observer (ESO) was proposed to estimate 
the unknown submarine velocity, parameter uncertainties 
and external disturbances for an AUV trajectory tracking 
problem. Guerrero et al. developed an adaptive DO based 
on the generalized super-twisting algorithm through ESO *Corresponding author’s email: vali@mut.ac.ir
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technique [12]. The developed DO was introduced into 
BSC and nonlinear proportional-derivative control laws. 
Although the DO-based control methods have better control 
performance, the design process is often more complicated, 
and/or the control scheme needs the adjustment of many 
controller gains, which can be time-consuming.

Compared to the conventional BSC, adaptive controllers 
are considered to be better for the systems exposed to 
uncertainties since they can enhance their performance with 
little or no information of the bounds on uncertainties. For 
instance, one can refer to [13], model-based output feedback 
control [14], and adaptive output feedback control based 
on the dynamic recurrent fuzzy neural network [15] for 
underactuated AUVs. In reference [16], a neural network and 
an adaptive compensator were used for the approximation of 
the unknown dynamics, and the compensation of the unknown 
effects like external disturbances and the reconstruction error 
of the neural network, respectively. However, these adaptive 
controllers impose intensive computational burden in the case 
of higher order systems and are effective only for constant or 
slowly-varying disturbances.

Unlike the above adaptive controllers, robust adaptive 
control approaches have shown the special characteristics 
in motion control of underactuated AUVs with uncertain 
dynamics and environmental disturbances. In reference [17], 
a robust adaptive controller was proposed by using Lyapunov 
direct method, BSC, and parameter projection techniques. A 
novel and adaptive dynamical SMC scheme was presented for 
the trajectory tracking control problem of an underactuated 
AUV in the presence of systematical uncertainty and 
environmental disturbances [18], where the robustness of 
the controller was enhanced by the combination of BSC 
and SMC. It used a virtual velocity variable to represent the 
attitude error in order to avoid the representation singularities 
and simplify the analytical expression of the control law. In 
reference [19], an adaptive robust path following controller 
was presented by integrating BSC and SMC, and fuzzy logic 
was used to deal with the problem of nonlinearity, uncertainties 
and external disturbances. Wang et al. proposed a robust 
adaptive controller based on the command filtered BSC for 
path following task, where a neuro-adaptive technique was 
employed to deal with the problem of parameter uncertainties 
and external disturbances [5].

The SMC-based control strategies suffer from the 
chattering phenomenon. As usual, this problem can be tackled 
by approximating discontinuous function by continuous 
terms [20], and by increasing the order of the sliding surfaces 
[21, 22]. As an alternative way, one can use intelligent 
control approaches like fuzzy logic and neural network 
control to estimate uncertainty items online to reduce system 
chattering [19, 23]. However, checking the stability of these 
intelligent controllers has been found to be very difficult 
[24]. In addition, the controllers based on neural networks 
or fuzzy systems greatly depend on the number of the neural 
network nodes or the number of the fuzzy rule bases, thereby 
resulting in more computational burden and online learning 
time. It should be mentioned that, in practice, a simpler 

controller with less computational burden is acceptable for its 
implementation [25].

Motivated by aforementioned considerations, in this 
paper a nonlinear robust control with a hierarchical structure 
is proposed for path following of an underactuated AUV on 
the horizontal plane exposed to the dynamic uncertainties and 
fast-time-varying external disturbances. First, we establish the 
path following error model based on the “virtual guidance” 
method, then we design the control law using BSC and SMC 
strategies with respect to the kinematic and dynamic models 
of the system. The disturbances of the ocean currents can vary 
considerably even on a small journey, making it difficult to 
obtain the bounds on uncertainties. In order to overcome this 
problem, a new DO is proposed in this paper that accurately 
estimates the whole effects of the uncertainties and includes 
the effects of them in the control inputs. Additionally, the 
chattering problem can be obviated with the presence of 
DO. Thus, the proposed controller can be designed without 
knowing the exact parameters of the dynamic model and 
the bounds on the uncertainties. Meanwhile, is relatively 
easy to be applied. The stability of the proposed controller is 
also discussed by Lyapunov stability criteria to demonstrate 
the ultimate boundedness of all the path following errors. 
Based on the stability analysis result, the characteristics of 
the closed-loop system and tuning guidelines of the control 
gains are addressed. The work presented here has several 
advantages over many techniques available in the literature 
such as [3, 5]. These advantages include easy derivation of 
the control law and low computational burden. To illustrate 
the effectiveness of the developed controller, simulation 
results for path following problem of an underactuated AUV 
on the horizontal plane are presented and discussed. The main 
contributions of this paper are as follows:

Unlike the conventional SMC, no knowledge of bounds 
on the parameter uncertainties and time-varying external 
disturbances is required.

Unlike the other approaches based on BSC, there is no 
need for analytical calculation or command filtering to obtain 
the derivative of virtual control. 

The proposed controller has a strong robustness against 
the parameter uncertainties and time-varying external 
disturbances, and has characteristics such as simplicity and 
continuous control signals.  

Stability of the overall system is proved. 
The remainder of this paper is structured as follows. A 

brief introduction to the AUV dynamics is presented in section 
 2. Section  3 details the design of the proposed method. In 
section  4, the stability of the developed method is addressed 
by Lyapunov sense. Simulation results and a brief discussion 
of the proposed control system are presented in section  5 and 
section  6, respectively. Finally, the conclusions are given in 
section  7.    

2- Problem Formulation
2- 1- Underactuated AUV Modelling

The motion equations of an underactuated AUV on 
the horizontal X-Y plane are presented in this section. 



Z. Fereidan Esfahani et al., AUT J. Model. Simul., 53(2) (2021) 179-196, DOI: 10.22060/miscj.2021.19741.5244

181

The kinematic and dynamic equations for the AUV can be 
developed using an earth-fixed coordinate frame { }E  and 
a body-fixed coordinate frame { }B , as depicted in Fig. 1. 
By assuming that (I) is the Center of Mass (COM) of the 
vehicle is coincident with the origin of { }B , (II) the mass 
distribution is homogeneous, and (III) the hydrodynamic drag 
terms of order higher than two are negligible, the AUV model 
can be given as follows.

The AUV kinematic equations are [5]:   
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The AUV dynamic equations are [26]:    
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where x  and y  denote coordinates of the AUV in { }E
, and Bψ  is the yaw angle that parameterizes the rotation 
matrix from { }B  to { }E . u  and v  denote the surge 
(forward) and sway (lateral) velocities expressed in { }B
, respectively. r  denotes the angular velocity (yaw rate); 

the variables uτ  and rτ  represent the control force along 
the surge motion of the AUV, and the torque control that is 
applied in order to produce angular motion around the bz  
axis of { }B , respectively; ( ) , , ,iD t i u v r=  represent the 
external disturbances induced by ocean currents, waves 
and wind; The constants 0, 1, 2,3if i> =  and , 1, 2,3iim i =  
represent the combined inertia and added mass terms. Note 
that since there is no actuator

for direct controlling the lateral motion, the AUV model 
is an underactuated dynamical system, and that u  and r  are 
the kinematic system inputs.  

2- 2- AUV Path Following Error Dynamics
The path following error model in the horizontal plane 

is presented in this section [3] (See Fig. 1). In general, a 
path following controller should compute: (I) the distance 
between the COM of the vehicle Q , and the virtual guidance 
point P , on the path, and (II) the angle between the total 
velocity vector of the vehicle and the tangent to the path at 
P , making both close to zero. This intuitive explanation 
motivates the development of a kinematic model in terms of 
the Serret-Frenet (SF) coordinate frame { }F  that progresses 
along the path; { }F  plays the role of the body axis of the 
virtual guidance vehicle that should be followed by AUV. 
Using this set-up, the mentioned distance and angle form 
the coordinates of the path following error space where the 
control problem is formulated. Let *

B Bψ ψ β= +  be the 
angle of the total velocity vector, where ( )atan /v uβ =  is the 
drift (side-slip) angle, with the assumption that 0u v+ ≠
. Thus, the path following error coordinates can be defined 
as ( ), ,e e ex y ψ , where ( ),e ex y  are the coordinates of the 
vehicle in { }F , and *

e B Fψ ψ ψ= − , where Fψ  is the angle 

 

Fig. 1: Diagram of two-dimensional path following of the AUV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Diagram of two-dimensional path following of the AUV.
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of the tangent to the path at P .   
In the path following problem, the path is parameterized 

by a scalar parameter s , which s  may be defined as the 
arc length from a given point. In order to describe the path 
precisely, we define ( )c s  as the path curvature at P . 
Afterwards, the velocity of P  is ( )/ ( ,0,0)T

F
d dt s= P  in 

{ }F , and the angular velocity of { }F  can be expressed as 
( )(0,0, )T

F c s s= ù . It is also straightforward to compute the 
velocity of Q  in { }F  as:            
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where l  denotes the vector from P  to Q
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Let 2 2
BU u v= +  be the total velocity. Later, we rewrite 

the kinematic Eq. (1) with respect to BU  as:
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Hence, the path following error dynamic model can be 
obtained using Eq. (4) and Eq. (5) as:  
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Remark 1: The term β  in the third relation of Eq. (6) 
is the hiding acceleration (u  and v ) terms which can be 
obtained by differentiating or direct measuring. The former 
may accentuate high-frequency noises and the latter increases 
the costs. Here, we obtain eψ  in two steps to bypass these 
issues: first by integrating the term ( )r c s s− 

, then by adding 
β  to the integrated term.     

2- 3- Control Objective 
In this paper, the control objective can be expressed as 

follows: Consider the vehicle’s model with the kinematic 
and dynamic equations given by Eq. (1) and Eq. (2). Given 
a path (parameterized in terms of its length) to be followed 
and a desired profile for the forward velocity, 0 du< . Derive a 
feedback control law for the thrusting force uτ , the heading 
torque rτ , and the rate of progression s , of the virtual 
guidance point P , along the path so the path following 
error variables ex , ey , eψ , and du u−  converge to a 
neighborhood around the origin that can be made arbitrarily 
small in the presence of the dynamic uncertainties and fast-
time-varying external disturbances,.   

3- Path Following Controller Design
This section introduces a nonlinear robust double-

closed-loop strategy to steer the dynamic model of the AUV 
described by Eq. (1) and Eq. (2) along a desired path. The 
first step in the proposed scheme with a specific hierarchical 
structure is related to the design of a virtual control input 
using BSC technique in the outer closed-loop that ensures the 
path following errors converge to zero. Afterwards, the true 
control inputs are built on the virtual control derived using 
the DO-based SMC approach in the inner closed-loop.    

3- 1- Kinematic Control
First, by considering the path following error dynamics in 

Eq. (6), the kinematic controller is designed to compute the 
progression rate s  of the virtual guidance point P , along 
the path and the yaw rate r , as the virtual control inputs. 
The kinematic control is synthesized using conventional 
BSC. In the kinematic design, it is conventional to assume 
that the actual surge velocity u  is equal to the desired surge 
velocity du  [3] in order to allow the system to be considered 
as autonomous.

3- 1- 1- Position Control 
Consider the candidate Lyapunov function 1V  as:
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Differentiating 1V  with respect to time and using Eq. (6) 
yields:
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Consider the progression rate s  of the virtual guidance 
point P , along the path and the desired approach angle cψ  
as the virtual control values:  
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where xK  and yK  are the positive constants that will 
be selected later. The desired approach angle, cψ , is useful 
in shaping the transient response during the path approach 
phase [3].  

Let suppose that e cψ ψ= , since 0e cy ψ ≤  for all ey , then 
substituting Eq. (9) in Eq. (8) yields:
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Therefore, the system can be asymptotically stabilized 
using Eq. (9) if lim e ct

ψ ψ
→∞

= .     

3- 1- 2- Attitude Control 
By considering that cψ  is not a true control, we have to 

introduce the angular error variable e cψ ψ ψ= −  and try to 
stabilize it. Define the candidate Lyapunov function 2V  as: 
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Differentiating 2V  along with Eq. (6) yields:  
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By considering the yaw rate r  as the virtual control input, 
its desired value cr  can be given by:
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where Kψ  is a positive constant to be selected later. Later, 

substituting Eq. (13) in Eq. (12) yields:   
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where e cr r r= − . Therefore, it can be concluded that 
the system asymptotically follows the desired approach angle 
if lim ct

r r
→∞

= .    
Remark 2: It should be noticed that Eq. (13) appears in 

a noncausal form. In fact, the term β  contains acceleration 
terms, and through them a loop are formed that makes r  
dependent on itself. An approach is suggested by Lapierre 
and Soetanto where the dynamic model is used to yield an 
algebraic solution for r  [3]. However, considering a dynamic 
model to estimate system accelerations can be problematic in 
the case of uncertain dynamics. Here, we obtain β  by passing 
β  through a high-pass filter to avoid this problem, effectively 
simplifying the expression of the kinematic control cr .      

3- 2- Dynamic Control
The feedback control laws in the first equation of Eq. 

(9) and Eq. (13) are only applied to the kinematic model of 
the vehicle. Here these control laws will be extended to deal 
with the AUV’s dynamics. In the kinematic design, the total 
velocity of the AUV was left free, but implicitly dependent 
on the desired surge velocity du . In the dynamic design, the 
surge velocity u  will be explicitly taken into account. Notice 
that the AUV’s yaw rate r  was supposed to be a true control 
input. This assumption is removed here by considering the 
dynamics of the AUV. In this section, the true control inputs 
of the AUV will be derived so that du u−  and cr r−  get 
close to zero. Here SMC along with the DO is introduced for 
the dynamic control law. The key idea of this section is to 
estimate the whole uncertainties by DO, and to later use the 
estimated values in the true control inputs to negate the effect 
of the uncertainties.

3- 2- 1- Sliding Mode Control
In the sliding mode approach, suitable sliding surfaces of 

the desired dynamics are defined, and the control laws are 
derived that sliding conditions are always satisfied [19]. This 
makes the system insensitive to uncertainties and to behave 
according to the definition of the sliding surfaces. In this 
section, the sliding surfaces are defined and the control law 
is derived. 

We define the sliding surfaces as:  
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where u de u u= − , r ce r r= − . Differentiating Eq. (15) 
with respect to the time and using Eq. (2) yields:  
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where u duα =  , r crα =  , and , , ,i ia b i u r=  are defined 
to shorten the equations as:   
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We rewrite Eq. (16) with respect to the known and 
unknown components:  
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Where:
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where , ,ˆ ,ˆ  i ia b i u r=  are the nominal constant values, 
and , , ,i ia b i u r∆ ∆ =  are the additive uncertainties with 
unknown bounds in the dynamic equations. , ,id i u r=  
are terms due to the uncertainties and external disturbances 
(and also the acceleration commands) that will be named the 
lumped uncertainties henceforth:       
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Remark 3: Notice that the acceleration command cr  is 
incorporated in the lumped uncertainty term and so its effect 
will be included in the true control input by DO, and thereby, 
obviating the need for analytical operations or command 
filtering. 

The true control inputs to be designed are composed 
of two components, eq

iτ  and n
iτ . The former is used for 

compensating the known terms, and the latter is used for 
compensating the lumped uncertainty term in the dynamics 
of the sliding surfaces:   
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With:
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where , ,ˆ  id i u and r=  are the estimations of the lumped 
uncertainty terms by DO, and , ,iK i u r=  are positive 
constants to be selected later. The procedure to estimate 
the lumped uncertainties by DO is described in the next 
subsection. Substituting Eq. (21) and Eq. (22) in Eq. (18) 
yields:  
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Equation (24) will be used in designing of DO.
Let  ,ˆ ,i i id d d i u r= − =  be estimation errors. 

Afterwards, substituting Eq. (24) in Eq. (23) yields the 
dynamics of the sliding surfaces excited by the estimation 
errors: 
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Equation (25) will be used in the stability analysis.
If DO behaves so that the estimation errors tend to zero, 

the sliding surfaces will tend to zero, thereby the AUV 
will be placed on the target path and will progress with the 
desired surge velocity in spite of the parameter uncertainties 
and external disturbances. Next, we will design the DO for 
estimating the lumped uncertainties so that the estimation 
errors tend to zero.  

3- 2- 2- Disturbance Observer 
The DO designed here is a modified version developed by 

Chen et al. [27]. The estimations of the lumped uncertainties 
can be expressed as: 
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where ( ) , ,i ip S i u r=  are linear or nonlinear scalar 
functions of the sliding surfaces. Now, the auxiliary variables, 

( ) , ,i t i u rγ = , have to be updated in such a way that the 
estimation errors, , ,id i u r= , tend to zero. Differentiating 
Eq. (26) yields:  
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where / , ,i ip S i u r∂ ∂ =  are called the DO gains. We 
substitute Eq. (24) in Eq. (27) to yield:
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As mentioned, the auxiliary variables have to be updated 
in such a way that the estimation error dynamics are stable. 
Therefore, the update law for ( ) , ,i t i u rγ =  can be suggested 
as:       
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Substituting Eq. (29) in Eq. (28) yields:
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We subtract both sides of Eq. (30) from , ,id i u r=  to 
obtain the estimation error dynamics excited by the rates of 
the lumped uncertainties:  
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Equation (31) recommends that for stability of the 
estimation errors, , ,id i u r= , the choice of ( ) , ,i ip S i u r=  
have to be so that / , ,i ip S i u r∂ ∂ =  are positive functions. 
In addition, from this equation, it can be found that for the 
estimation errors to be bounded, it is necessary to make the 
following assumption.

Assumption 1: The values of the lumped uncertainties can 
be arbitrarily large, but their rates are bounded: 
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where , ,i i u rµ =  are positive constants. 

4- Stability Analysis
In this section, the stability conditions are discussed and 

the ultimate bounds on the relevant variables are obtained. 

Consider candidate Lyapunov function 3V  as:  
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Differentiating 3V  along with Eq. (14), Eq. (25) and Eq. 
(31) yields:   
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By using Young’s inequality, ( )2 21
2

AB A B≤ +  and Eq. 
(32) we get: 
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To make ensure that the whole system is stable, the control 
parameters and DO gains can always be selected as:
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From Eq. (35), it can be concluded that the dynamics 
of the estimation errors, , ,id i u r= , the sliding surfaces, 

, ,iS i u r= , and the angular error variable ψ  are not 
asymptotically stable but can be ultimately bounded in the 
sense of Corless and Leitman [28], provided that the control 
parameters are adopted appropriately by satisfying Eq. (36). 
By avoiding the details of derivation, the ultimate bounds on 
the mentioned variables can be given as:   
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Additionally, it is straightforward to calculate the ultimate 
bounds on the path following errors as:
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Thus, we conclude that the above variables are ultimately 
bounded and their ultimate bounds can be made arbitrarily 
small by appropriately selecting the control parameters. 

5- Simulation Results  
In this section, to evaluate the control performance of the 

proposed controller, numerical simulation of the closed loop 
system is carried out under three different conditions as given 
in Table (1), and a comparison of the controller is done with 
conventional BSC [3]. The model is represented in Eq. (1) 
and Eq. (2), and the model parameters can be found in [26]. 
The planar target path is parameterized as:    
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where s  is updated using Eq. (9). The desired surge 
velocity is 1 /du m s= , ( ) ( )/ , ,i i i i ip S p S S i u r= ∂ ∂ = , 
and the controller design parameters are listed in Table (2). 
The initial position, attitude angle, and the initial velocity of 
AUV are given by:   
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We suppose there are inaccuracies of the order of 30% 
in all the AUV’s hydrodynamic parameters. In addition, the 
effect of the constant external disturbances is selected as 

50 , 50 , 40 u v rD N D N D Nm= = = , and the fast-time-varying 
external disturbances is considered as follows:   

Table 1. Simulation conditions for performance evaluation of the controllers. 

Condition  Description  Time period (s)  

  1 no parametric uncertainties and external 

disturbances  
 0 60t  

  2 30% parametric uncertainties and constant 

external disturbances  
 60 120t  

  3 30% parametric uncertainties and time-

varying external disturbances 
120 200t  

 

Table 1: Simulation conditions for performance evaluation of the controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The control parameters.

 2.2xK    1.1yK   20K  / 300u up S   
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Table 2: The control parameters. 
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The simulation results given by the conventional BSC and 
the proposed controller schemes are shown in Fig. 2 to Fig. 6. 
Fig. 2 and Fig. 3 show the path following performance under 
all the condition described in Table 1. It can be seen that the 
proposed controller succeeded in following the position and 
orientation of the virtual vehicle under all the conditions, 
although the conventional BSC can only exactly follow the 
path under the ideal condition (condition (1)). However, under 
the uncertain condition with constant external disturbances, 
conventional BSC produces a slightly steady state error in 
position and orientation following, whereas the performance 
gets degraded greatly in the presence of fast-time-varying 
external disturbances. The time history of the true control 
inputs during path following control can be observed in Fig. 
5. 

As can be seen from the simulation results, under the 
guidance of the proposed controller, the AUV can almost 
accurately complete the planar path following in the presence 
of the model perturbations and external disturbances. As 
shown in Fig. 3 and Fig. 4, the path following errors, ex
, ey , eψ , and the surge velocity error, du u−  eventually 
converge to a small area around the origin under the proposed 

controller. This is equivalent to state that: (I) the AUV’s 
COM approaches the position of the virtual target, and (II) 
the AUV moves with the desired forward velocity along the 
path. Moreover, the control law developed is not sensitive to 
the parameter uncertainties and external disturbances, which 
indicates that the proposed controller offers strong robustness 
to the uncertainties in hydrodynamic parameters and constant 
as well as fast-time-varying external disturbances. 

6- Discussion
Fig. 6 shows that under uncertain condition with constant 

external disturbances (condition (2)) the estimation errors are 
null (after the transient phases). This can be inferred from 
Eq. (31) where the estimation error dynamics are excited 
by the rate of the lumped uncertainties. This means in the 
case of constant or slowly-varying disturbances (i.e. ( 0id ≈
)), the DO is able to estimate the lumped uncertainty almost 
accurately and the path following errors asymptotically 
converge to zero. The disturbances induced by the waves 
and the wind are rarely constant, but the fast-varying 
sinusoidal type is a common model to include the effects of 
environmental disturbances in the motion control problems 
of the AUVs [7, 29].

7- Conclusions  
In this paper, a nonlinear robust controller using BSC and 

a new DO-based SMC are proposed for the horizontal plane 
path following of an underactuated AUV. The path following 

 

Fig. 2: Path following of the AUV in XY-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Path following of the AUV in XY-plane.
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Fig. 3. Path following errors of the AUV: (a) xe, (b) ye and (c) ψe. (Continude)   
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Fig. 3: Path following errors of the AUV: (a) 𝑥𝑥𝑒𝑒, (b) 𝑦𝑦𝑒𝑒 and (c) 𝜓𝜓𝑒𝑒.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Path following errors of the AUV: (a) xe, (b) ye and (c) ψe.    

 

 

 

Fig. 4. Velocity response curves of the AUV: (a) surge velocity, (b) sway velocity and (c) yaw 
rate. (Continude)   
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Fig. 4: Velocity response curves of the AUV: (a) surge velocity, (b) sway velocity and (c) yaw rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Velocity response curves of the AUV: (a) surge velocity, (b) sway velocity and (c) yaw 
rate.    
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Fig. 5: Control inputs of the AUV: (a) force and (b) moment.    

 

 

 

 

Fig. 5. Control inputs of the AUV: (a) force and (b) moment.   
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error model of the AUV in SF coordinate frame is established 
based on virtual guidance method. The control scheme is made 
up of a double-looped structure: a kinematic controller and a 
dynamic controller. First, a kinematic controller is designed 
based on BSC to guarantee the position errors to go close to 
zero. Afterwards, a dynamic controller is developed using the 
DO-based SMC by considering the output of the kinematic 
controller as a reference velocity command. By using the 
designed kinematic and dynamic controllers, the stability 
of the whole closed-loop cascaded system is proved by 
Lyapunov stability criteria. The performance of the presented 
control scheme is validated by the computer simulations under 
different conditions and compared with conventional BSC. 
The proposed controller greatly reduces the complexities of 

the control law derivations in the approaches based on the 
traditional BSC and meanwhile ensures rigorous robustness 
of the scheme thanks to its simple and effective compensation 
using the DO.    

Future research will address the extension of these results 
by designing a path following controller for three-dimensional 
maneuvers.   
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Fig. 6: Estimation errors. Fig. 6. Estimation errors.



Z. Fereidan Esfahani et al., AUT J. Model. Simul., 53(2) (2021) 179-196, DOI: 10.22060/miscj.2021.19741.5244

193

Nomenclature

AUV Autonomous Underwater Vehicle 
BSC Backstepping Control 
COM Center of Mass 
DO Disturbance Observer 
ESO Extended State Observer 
SMC Sliding Mode Control 

 B  body-fixed frame 

 E  earth-fixed frame 

 F  Serret-Frenet frame   

,u v  surge and sway velocities in  B  

BU  AUV’s net velocity 

r  AUV’s yaw rate 

 ,x y  AUV’s coordinates in  E   

B  AUV’s yaw angle 

 , 1,2,3if t i   unknown nonlinear dynamics of the AUV 

 , , ,iD t i u v r  external disturbances 

, u r   control inputs 

, 1,2,3iim i   combined inertia and added mass  

Q  AUV’s center of mass  

P  virtual guidance point  

( , )e ex y   AUV’s coordinates in  F   

e  yaw angular error 

F  desired angle 

*
B  Angle of the total velocity vector 

  drift angle 

s  arc length 

 c s  path curvature at P  

s  update rate of  P  along the path  

Fω  angular velocity of  F   

l  vector from P  to Q  

R  rotation matrix from  E  to  F  

du  desired surge velocity 
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