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ABSTRACT: Nolan and Ojeda-Revah in [16] proposed a regression model with
heavy-tailed stable errors. In this paper, we extend this method for multivariate
heavy-tailed errors. Furthermore, A likelihood ratio test (LRT) for testing significant
of regression coefficients is proposed. Also, confidence intervals based on fisher in-
formation for [16] method, called NOR, and LRT are computed and compared with
well-known methods. In the end, we provide some guidance for various error distri-
butions in heavy-tailed cases.
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1. Introduction

Stable distribution was introduced by Paul Lévy in his study of sums of independent and identically distributed
terms in the 1920’s. The stable distribution provides heavy-tails, and a dataset including outliers can be well
modeled by stable distributions.
A d-dimensional random vector EEE is called stable if EEE has a characteristic function, ϕEEE (ttt), of the form

exp

(
−
∫
Sd
ψα (〈ttt, sss〉) Λ (dsss) + i 〈ttt, δδδ〉

)
where

ψα (u) =

{
|u|α

(
1− isgn (u) tan

(
πα
2

))
, α 6= 1,

|u|
(
1 + i 2

π sgn (u) log |u|
)
, α = 1.

Also Λ is a finite measure on Borel subsets of Sd = {ttt ∈ Rd : |ttt| = 1}, δδδ ∈ Rd is a shift vector, α ∈ (0, 2] is the tail
index and sgnu is the sign function. Multivariate stable distributions, in the general case, are not computational
by available computers. Fortunately, several special cases are computationally available, elliptical, isotropic and
independent components.

Elliptical random vectors is a well known parametric sub-class with the following characteristic function

exp
(

(ttt′Rttt)
α
2 + i 〈ttt, δδδ〉

)
,
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where R is a positive definite matrix. R = γ2I is known as isotropic stable.
In univariate case (d = 1), characteristic function of the stable random variable ε, reduced as follows

ϕε (t) =

{
exp

{
−γα |t|α

[
1− iβ

(
tan πα

2

)
(sgn t)

]
+ iδt

}
α 6= 1,

exp
{
−γ |t|

[
1 + iβ 2

π (sgn t) log (γ |t|)
]

+ iδt
}

α = 1,

where −1 ≤ β ≤ 1 is the skewness parameter, γ > 0 and δ ∈ R are the scale and location parameters, respectively,
Nolan (2019). If components are independent with univariate stable, called independent components.

Ordinary Least Squares (OLS) is the most popular method for performing regression when error terms have
normally been distributed. If errors of regression have a heavy-tailed distribution, especially non-Gaussian stable
distribution, α ∈ (0, 2), the OLS method is very poor. We focus on the cases that the mean or variance of errors’
distribution does not exist.

The OLS is a method for estimating a mean of a variable conditional on the levels or values of independent
variables. However, we don’t always have to estimate the conditional mean. That’s where quantile regression comes
in. The algorithm for constructing median regression was proposed by [3].

[4] and [7] did some valuable research about quantile regression and expressed some advantages of this regression
versus OLS. Several recent studies have investigated quantile regressions; for example, a quantile regression memoir
is provided by [12] and [13]. Also, [8] have a long history on quantile regression in their book. Furthermore, [17]
discussed the best linear unbiased estimator. Unfortunately, this paper is not available, and we are unable to
comment on this paper. [2] assumed errors with symmetric distribution, and they minimized the sum of absolute
errors. [14] used the maximum likelihood approach to estimate the linear regression coefficients when the errors
follow from a symmetric stable distribution. Furthermore, in recent years, [1] studied autoregressive time series
models for α-stable models. Improving the method of [2] by an estimator, based on the ranked set sampling, is
studied in [9]. [10] applied the ranked methods to fit a linear model in the case of infinite variance.

[16] introduced a method for regression with stable errors. Nolan’s method used a trimmed regression for
estimating the initial values of regression parameters. Two quantiles are used to select a trimmed data set. The
suggestions are 0.1 and 0.9. By the residuals, the maximum likelihood estimator (MLE) of parameters of the stable
distribution that is considered as an error term is computed. The initial estimate for all parameters is used as the
starting value for a numerical optimization to find the maximum of the likelihood function. In other words, Nolan’s
method evaluates parameters of linear regression by maximum likelihood when the errors have a stable distribution.
As we know, non-Gaussian stable distributions do not have a variance (and in some cases, mean). Therefore, we
decided to compare this algorithm with quantile regression.

The plan of this paper is as follows. In section 2, we generalized Nolan’s method (GNOR) to the multivariate
regression. In section 3, linear regression is studied and simulation results are presented. In section 4, we investigate
linear regression with no stable heavy-tailed errors. In section 5, nonlinear regression with stable error is discussed.
The last sections are a brief discussion on the likelihood ratio test and the confidence intervals of the regression
parameters.

2. Generalized Nolan’s Method to Multivariate Regression

Now we want to develop this method for multivariate regression. The multivariate linear regression model has the
form

YYY = XBXBXB + EEE,

where YYY = (YYY 1, . . . ,YYY m)n×m is the response matrix and YYY k = (Y1k, . . . , Ynk)T is k-th response vector, BBB =

(bbb1, . . . , bbbm) is the matrix of regression coefficients, i.e, bbbk = (b0k, b1k, . . . , bpk)T is the k-th coefficient vector, and
EEE = (εεε1, . . . , εεεm) is the residuals matrix with normal distributed, i.e. EEE has N (000nm,ΣΣΣ⊗ IIIn) where ⊗ denotes the
Kronecker product. Now, we assume that the EEE has a multivariate stable distribution.

The algorithm that introduced by [16] for ordinary regression can be generalized in the multivariate regression
by a few changes. We propose the following algorithm.

Algorithm 2.1.

1. Perform an initial multivariate OLS and compute the residuals.

2. Omit the residuals that are large and small. For example, if we have bivariate regression, sort the residuals of
each variable, then the lowest and highest 5% are trimmed away.

3. Remove the data corresponding to the omitted residuals.

4. Perform a multivariate OLS by the new data set.

5. Use the estimation of step 4 as the initial values and optimize the multivariate distribution parameters that it
considered for the residuals.
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For the simulation, we consider two responses and four explanatory variables. The error terms are independent
multivariate stable distribution with different values of parameters α and β; we have the following regression model:

(YYY 1, YYY 2) = (XXX1, XXX2)

(
b11 b12

b21 b22

)
+ EEE.

For simulation we consider the following values b11 = 10, b12 = 7, b21 = 0.5 and b22 = 4. XXX1 and XXX2 are two vectors
of size 50 such that XXX1 and XXX2 are uniformly distributed in (0, 100) and (100, 300), respectively. As mentioned EEE is
a bivariate stable distribution with independent components. A multivariate stable distribution with dimension d
and independent components requires an index of stability, α ∈ (0, 2], and vectors β, γ and δ of length d. Simulation
results are reported in Tables 1 and 2 . From reported values in Table 1 and Figures 1 and 2, it is clear that the
proposed algorithm for multivariate regression is very efficient and has little MAD. We recall that Mean Absolute
Deviations (MAD) of estimators are computed as follows for 1000 iterations:

θ̂ =
1

1000

1000∑
i=1

θ̂i,

and

MAD
(
θ̂
)

=
1

1000

1000∑
i=1

∣∣∣θ̂i − θ∣∣∣,
where θ̂i is an estimation of the regression coefficients in the i-th iteration.

Table 1: MAD and estimation (EST) of the regression parameters with independent bivariate stable error in 1000
iterations and sample size n = 30.

GNOR OLS

α β b1 b2 b3 b4 b1 b2 b3 b4

0.7 (0, 0) MAD 0.0072 0.0984 0.0020 0.0325 4.3351 0.5898 3.2572 1.6018

EST 10.0011 0.4997 7.0758 3.9736 13.4867 0.8770 5.8755 4.8587

0.7 (0.5, 0.5) MAD 0.0067 0.0961 0.0019 0.0216 563.4902 115.4902 2.7753 1.1907

EST 10.0005 0.50002 6.9354 4.0125 573.3112 -114.9013 9.2304 3.0898

0.7 (-0.5, -0.5) MAD 0.0063 0.0146 0.0017 0.0040 1.1132 0.2475 2.2593 0.6130

EST 10.0002 0.4996 6.9962 4.0013 9.5989 0.3939 5.4619 4.3275

0.7 (0.9, -0.9) MAD 0.0046 0.0680 .0016 0.0310 0.6651 0.1525 5.4006 0.5758

EST 9.9996 0.5011 7.0347 3.9824 10.3714 0.5409 2.4264 4.0384

0.7 (-0.9, -0.9) MAD 0.0054 0.0224 0.0016 0.0085 7.1286 1.3446 4.2353 1.1099

EST 9.9994 0.4989 7.0107 3.9946 4.0235 1.2441 6.4865 3.5814
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Figure 1: Box plot of MAD (up) and the estimation of each regression coefficient when residuals are simulated from
multivariate stable with parameters α = 1 and β = (0, 0), for two different methods.

Figure 2: Box plot of MAD (top) and the estimation of each regression coefficient when residuals are simulated
from multivariate stable with parameters α = 1.5 and β = (0.9, 0), for two different methods.

3. Linear Regression

The linear regression model can be written as
YYY = XθXθXθ + εεε,

where XXXn×(k+1) is the design matrix, θθθ = (θ0, θ1, . . . , θk)T are the regression coefficients, and εεε = (ε1, . . . , εn)T are
i.i.d. random variables. In OLS, εi must be normally distributed, but this paper assumes εi has a non-Gaussian
stable distribution.

In this section, we consider two classes of stable distributions for error terms of regression: class I when α ≥ 1,
{1, 1.5} and class II when α < 1, i.e., 0.7. In each class, β is chosen in such a way as to have symmetric and
asymmetric stable distributions, β = 0,−0.5, 0.5.

To perform quantile regression three quantiles are considered, q = 0.2, 0.5 and 0.8. It can be noted that q = 0.5
is the median.
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Table 2: MAD and estimation (EST) of the regression parameters with isotropic bivariate stable error in 1000
iterations and sample size n = 100.

GNOR OLS

α b1 b2 b3 b4 b1 b2 b3 b4

1.5 MAD 0.0022 0.0021 0.0007 0.0007 0.0089 0.0022 0.008 0.0023

EST 10.0001 0.5001 6.9997 4.00003 10.0005 0.4996 7.0023 3.9992

1 MAD 0.0028 0.0026 0.0007 0.0007 0.0834 0.0229 0.0635 0.0173

EST 10.0004 0.4999 6.9993 4.0001 10.0212 0.4930 7.0224 3.9924

0.7 MAD 0.0031 0.0031 0.0013 0.0012 8.5564 1.3438 16.8908 9.2170

EST 10.0004 0.5010 7.0011 4.0010 13.0278 1.1671 22.6068 -4.6629

3.1. Simple Linear Regression

For simulation, we consider the following regression model

YYY = 0.7XXX + εεε, (1)

where XXX is the vector of 50 numbers uniformly distributed in (0,100) as an explanatory variable and εεε is the vector
of errors from a stable distribution.

Table 3, Figures 3 and 4 show the simulation results. Furthermore, we have got the error terms of regression
and have drawn the figure of residuals in some cases (see Figures 5-7). Furthermore, by the residuals of regression,
we obtained the maximum likelihood estimators of stable distribution parameters. The results are summarized
in Table 4, which include OLS, quantile regression with quantiles 0.2, 0.5 and 0.8, (Q(0.2), Q(0.5), Q(0.8)) and
Nolan’s method (NOR).

It is observed that from Tables 3 and 4, and Figures 3-7, for the mentioned model the quantile regression for
both of classes is the best. However, we should clarify which quantile of quantile regressions gives the best result. In
other words, we introduce a few rules for selecting a quantile regression based on the tail and skewness parameters
of error terms in the following.

Quantile selection.
In quantile regression, the best quantile selection is an important problem. In other words, using an appropriate
quantile enables us to build a better model and prediction and so, we have less error in prediction. If we select
an inappropriate quantile, the estimation of regression coefficients may have greater error, so the length of the
confidence interval increases for the slope parameter. We demonstrate this fact through a simulation study and
then propose a few advices in practical problems.
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Table 3: MAD and estimation (EST) of the regression coefficients in two classes in 1000 iterations. The best values
are bolded.

NOR Q(0.2) Q(0.5) Q(0.8) OLS

S(1.5, 0) EST 0.6935 0.6747 0.6937 0.7129 0.6990

MAD 0.0111 0.0205 0.0035 0.0197 0.0147

S(1.5, 0.5) EST 0.6964 0.6713 0.6923 0.7193 0.6913

MAD 0.0165 0.0242 0.0058 0.0166 0.0113

S(1.5,−0.5) EST 0.6957 0.6842 0.7052 0.7250 0.6928

MAD 0.0102 0.0166 0.0059 0.0243 0.0081

S(1, 0) EST 0.6937 0.6791 0.6951 0.7354 0.7361

MAD 0.1050 0.0244 0.0032 0.0246 0.1484

S(1, 0.5) EST 0.7191 0.6845 0.6997 0.7277 0.7637

MAD 0.0191 0.0138 0.0047 0.0409 0.0927

S(1,−0.5) EST 0.7026 0.6600 0.6978 0.7162 0.6151

MAD 0.0131 0.0422 0.0050 0.0141 0.1171

S(0.7, 0) EST 0.6926 0.6699 0.6972 0.7382 -

MAD 0.0082 0.0353 0.0026 0.0348 -

S(0.7, 0.5) EST 0.7118 0.7033 0.7196 0.8371 -

MAD 0.0118 0.0059 0.0212 0.0948 -

S(0.7,−0.5) EST 0.6924 0.6415 0.6760 0.6917 -

MAD 0.0150 0.0966 0.0215 0.0059 -

Table 4: Maximum likelihood estimator of tail index (α) and skewness (β) with their’s MAD in 1000 iterations.
The best values are bolded.

NOR Q(0.2) Q(0.5) Q(0.8) OLS

α β α β α β α β α β

S(1.5, 0) EST 1.4712 -0.0016 1.5822 0.0903 1.5413 0.0317 1.5851 0.0726 1.5384 0.0569

MAD 0.1733 0.1883 0.2104 0.4848 0.1996 0.4674 0.2098 0.4919 0.2028 0.4676

S(1.5, 0.5) EST 1.6637 0.2486 1.5862 0.5484 1.5279 0.5202 1.5663 0.4941 1.5313 0.5059

MAD 0.2363 0.3467 0.1977 0.4019 0.1909 0.3834 0.1980 0.4068 0.1740 0.3865

S(1.5,−0.5) EST 1.5122 -0.2215 1.5788 -0.3891 1.5380 -0.4295 1.5903 -0.3943 1.5466 -0.4349

MAD 0.3210 0.2784 0.2015 0.4704 0.1984 0.4165 0.2037 0.4791 0.1849 0.4218

S(0.7, 0) EST 0.8511 0.0515 0.8376 0.0236 0.7128 0.0025 0.8604 -0.0091 1.8196 0.0366

MAD 0.2527 0.0735 0.1619 0.2512 0.0955 0.1667 0.1798 0.2490 0.3877 0.4113

S(0.7, 0.5) EST 0.7969 0.3844 0.7274 0.5200 0.7928 0.4796 1.0624 0.4570 1.1821 0.5583

MAD 0.0969 0.1915 0.0948 0.1556 0.1260 0.1826 0.3641 0.3176 0.4846 0.3619

S(0.7,−0.5) EST 0.9904 -0.4883 1.0674 -0.4451 0.7939 -0.4700 0.7146 -0.5039 1.1684 -0.5178

MAD 0.2904 0.2227 0.3687 0.3193 0.1288 0.1851 0.0909 0.1571 0.4716 0.3727
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Figure 3: Box plot of MAD (top) and Estimate (bottom) of the regression coefficients in 1000 iterations when errors
are simulated from S(1.5, 0) and sample size n = 200 for different methods.

Figure 4: Box plot of MAD (top) and Estimate (bottom) of the regression coefficients in 1000 iterations when errors
are simulated from S(1, 0) and sample size n = 300 for different methods.

83



R. Alizadeh Noughabi., AUT J. Math. Comput., 3(1) (2022) 77-91, DOI:10.22060/AJMC.2021.20246.1062

Figure 5: Data scatter plot and residual plot when residuals are simulated from S(1.5, 0) with sample size n = 100
for different methods.

Figure 6: Data scatter plot and residual plot when errors are simulated from S(1.5, 0.5) and sample size n = 100
for different methods.

Figure 7: Data scatter plot and residual plot when errors are simulated from S(0.7, 0) and sample size n = 100 for
different methods.
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To show the role of the tail index and skewness parameter of error terms in a quantile regression, we reconsider
the mentioned regression model in equation (1). The OLS estimation of slope in the linear regression is computed.
Furthermore, for different quantiles, the regression coefficient using quantile regression is estimated. The confidence
intervals are computed and compared, see Figure 8. Recall that confidence intervals have fixed lengths in an OLS
regression. One can observe that, for α ≥ 1, median is better than the other quantiles. However, for α < 1, depends
on β ≈ 0, β > 0, or β < 0; median, quantiles less than 0.5, or graters than 0.5 are better, respectively.

In Figure 9, estimation of regression coefficients for different quantiles and some values of skewness and tail
index are plotted. Graphs in Figure 9 confirm the previous results. In general, if most residuals are negative, we
prefer the quantiles that greater than 0.5. If most of the residuals are positive, then the quantiles less than 0.5 are
preferred. If the number of positive residuals and negative residuals are almost equal, then the quantiles near 0.5
are more efficient.
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Figure 9: The estimated slop parameter using quantile regression for q = 0.1− 0.9(0.1). Each plot correspond to a
tail index α = 0.7, 1, 1.5 and each graph correspond to an skewness β = −0.8,−0.5, 0, 0.5, 0.8.

3.2. Multiple Linear Regression

In multiple linear regression, we have one response variable and several explanatory variables. Same as simple linear
regression, we consider two classes of stable distributions as error terms. For the simulation study, we consider the
following multiple regression model

YYY = 0.5XXX1 + 2XXX2 + εεε, (2)

whereXXX1 andXXX2 are two random vectors of size 50, from uniform distributions in (0,100) and (200,300), respectively.
Furthermore, εεε is a vector of error terms. Simulation results are reported in Table 5. We can estimate the parameters
of stable distribution that are considered as an error term because it is similar to Table 4, we remove this table. In
Tables 5 and 6, b1 and b2 are estimations of regression coefficients. We observe that, for estimation of coefficients,
in multiple regression, we prefer quantile regression. See Tables 3 and 4.

4. Linear Regression with Non-Stable Heavy-Tailed Errors

We know that OLS is not very sensitive about tails that are heavier than a normal distribution. In Table 7,
some simulation studies presented for YYY = 0.5XXX + εεε, like previous section XXX is a vector of size 50, that uniformly
distributed in (0, 100). Also, εεε is a vector of heavy-tailed distribution; here we have taken the Pareto distribution.
Let us recall that the Pareto distribution with shape a and scale s parameters has a density

f(x) = asa
/

(x+ s)
(a+1)

,

for x > 0, a > 0 and s > 0.
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Table 5: MAD and estimation (EST) of the regression coefficients in class I in 1000 iterations. The best values are
bolded.

S(1.5, 0) S(1.5, 0.5) S(1.5,−.5) S(1, 0) S(1, 0.5) S(1,−0.5)

MAD EST MAD EST MAD EST MAD EST MAD EST MAD EST

NOR b1 0.0049 0.4978 0.0029 0.5029 0.0042 0.4986 0.0062 0.4942 0.0053 0.5020 0.0074 0.5014

b2 0.0012 2.0008 0.0011 1.9995 0.0020 1.9996 0.0029 2.0002 0.0065 2.0051 0.0096 2.0002

Q(0.2) b1 0.0065 0.4991 0.0055 0.4989 0.0077 0.4992 0.0102 0.4987 0.0052 0.4993 0.0158 0.4984

b2 0.0047 1.9952 0.0057 1.9942 0.0040 1.9960 0.0055 1.9944 0.0032 1.9968 0.0092 1.9907

Q(0.5) b1 0.0048 0.4998 0.0049 0.4997 0.0048 0.5002 0.0043 0.4998 0.0052 0.5002 0.0051 0.4997

b2 0.0011 1.9999 0.0016 1.9986 0.0016 2.0013 0.0010 2.0001 0.0014 2.0009 0.0013 1.9990

Q(0.8) b1 0.0066 0.5009 0.0080 0.5006 0.0054 0.5010 0.0102 0.5010 0.0161 0.5020 0.0050 0.5006

b2 0.0047 2.0047 0.0041 2.0040 0.0057 2.0057 0.0056 2.0056 0.0091 2.0092 0.0032 2.0032

OLS b1 0.0117 0.05012 0.0110 0.4999 0.0112 0.4973 0.2851 0.6465 0.1605 0.5079 0.1655 0.4700

b2 0.0027 1.9996 0.0028 1.9995 0.0026 2.002 0.0731 1.9551 0.0382 2.0148 0.0382 1.9886

Table 6: MAD and estimation (EST) of the regression coefficients in class II in 1000 iterations. The best values
are bolded.

S(0.7, 0) S(0.7, 0.5) S(0.7,−0.5)

MAD EST MAD EST MAD EST

NOR b1 0.0132 0.5108 0.0216 0.5173 0.0062 0.4942

b2 0.0050 1.9966 0.0068 2.0068 0.0029 2.0002

Q(0.2) b1 0.0182 0.4978 0.0054 0.5001 0.0102 0.4987

b2 0.0073 1.9926 0.0016 2.0009 0.0055 1.9944

Q(0.5) b1 0.0038 0.50002 0.0060 0.5008 0.0043 0.4998

b2 0.0009 1.9999 0.0049 2.0049 0.0010 2.0001

Q(0.8) b1 0.0185 0.5021 0.0357 0.5043 0.0102 0.5010

b2 0.0073 2.0073 0.0196 2.0196 0.0056 2.0056

OLS b1 - - - - 0.2851 0.6465

b2 - - - - 0.0731 1.9551

Table 7: MAD and estimation (EST) of the regression coefficients with heavy-tailed errors in 1000 iterations. The
best values are bolded.

Pa(1.5, 3) Pa(3, 3) Pa(1.5, 1)

EST MAD EST MAD EST MAD

NOR 0.5200 0.2041 0.5118 0.0121 0.5093 0.0094

Q(0.2) 0.5077 0.0078 0.5036 0.0036 0.5025 0.0026

Q(0.5) 0.5289 0.0289 0.5126 0.0126 0.5099 0.0095

Q(0.8) 0.6053 0.1054 0.5376 0.0376 0.5343 0.0343

OLS 0.5862 0.8599 0.5228 0.2301 0.5309 0.0297
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5. Nonlinear Regression

The methods in the previous sections can be used for nonlinear regression. In this section, we compare Nolan’s
method and quantile regression for nonlinear regression. The formula that is considered as follows

Yi = b1e
(b2Xi)(1 + εi), (3)

where Xi’s are from the interval (0,20) with grids 0.025, similar to [16]. For simulation b1 = 30 and b2 = 0.1 are
considered. Results are represented in Table 8.

Table 8: MAD and estimate (EST) of the regression parameters for yi = b1e
(b2xi)(1 + εi) in 1000 iterations. The

best values are bolded.

S(1.5, 0) S(1.5, 0.5) S(1.5,−0.5)

EST MAD EST MAD EST MAD

NOR b1 28.0635 6.3175 29.5640 2.7623 28.8393 7.2099

b2 0.1045 0.0117 0.1055 0.0235 0.1106 0.0203

Q(0.5) b1 30.7315 3.4977 19.2269 10.8852 40.8788 10.9897

b2 0.0992 0.0063 0.1006 0.0088 0.1003 0.0041

Q(0.8) b1 64.2929 34.3500 56.6853 27.2557 36.4383 12.3948

b2 0.1009 0.0051 01036 0.0076 0.1325 0.0480

OLS b1 27.7318 7.8714 25.6657 11.5985 36.4383 12.3948

b2 0.1051 0.1405 0.1188 0.0276 0.1325 -0.0480

6. Compare Confidence Intervals

In this section, we intend to compare the confidence intervals of regression coefficients for quantile regression and
Nolan’s method. For this mean, consider the vector ψψψ = (α, β, γ, θ1, . . . , θk) and φφφ = (α, β, γ), where J is the
information matrix of ψψψ. The components of ψψψ is

Jij = E

[
∂

∂ψi
log f (ε|φφφ)

∂

∂ψj
log f (ε|φφφ)

]
.

so, we can write Fisher information matrix is as follows

J =

(
nI1:3,1:3 I4,1:3x.1I4,1:3x.2 · · · I4,1:3x.k

(I4,1:3x.1I4,1:3x.2 · · · I4,1:3x.k)
T

I4,4X
TX

)
,

where

I1:3,1:3 =

 I1,1 I1,2 I1,3
I2,1 I2,2 I2,3
I3,1 I3,2 I3,3

 , I4,1:3 =

 I4,1
I4,2
I4,3

 , x.l =
n∑
j=1

xjl.

Using Fisher information matrix, we can construct confidence intervals for the parameters.
For example, assume that xxx be the vector of size 500 numbers from the interval (0, 100), that uniformly distributed,
and yyy is

yyy = 10 + 0.1xxx+ εεε,

where εεε is simulated from S (1.5, 0.5).

Table 9: Estimation of the regression coefficients and their confidence interval length (CIL) for yyy = 10 + 0.1xxx+ εεε.
The best values are bolded.

Intercept CIL Slop CIL

OLS 10.4838 0.9469 0.0996 0.1261

Q(0.5) 10.1697 0.3774 0.10024 0.0068

NOR 9.9826 0.4293 0.10057 0.0073

Table 9 confirms the previous results and states that the confidence interval length is typically shorter in the two
cases of Nolan and quantile regression.
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7. Likelihood Ratio Test for Significant Regression

One way to form a test statistic is to compare the value of the likelihood functions for two hypotheses H0 ∈ Ω0

versus HA ∈ Ω1. Let Λ(.) be the likelihood ratio statistic:

Λ (y) =

sup
θ∈Ω0

[fθ (y)]

sup
θ∈Ω

[fθ (y)]
,

where Ω = Ω0 ∪ Ω1 and we will reject H0 if Λ (x) ≤ c for some critical value c.
Now we want to perform a significant test for regression coefficients, in other words it is desired to test the following
hypotheses:

H0 : θ = 0 versus HA : θ 6= 0,

where θ is the regression coefficient in simple linear regression.

Table 10: Percentage that H0 is rejected with LRT in 1000 iterations and significant level 0.1.

θ = 0.1 θ = 0.001

NOR OLS NOR OLS

S(1.5, 0) 100 99.2 0.3 10.4

S(1.5, 0.5) 100 99.1 0.4 47.8

S(0.7, 0) 100 22.7 0.8 7.3

S(0.7, 0.5) 100 49.2 3.6 26.1

Furthermore, we can build a confidence interval based on LRT. This means determining whether the test statistic
based on the data falls in the critical region for various null hypothesis values for θ. Those values of H0 = 0 that
reject H0 should not be in the confidence interval. Table 10 implies that Nolan’s method is better than OLS in
terms of LRT.

8. Conclusion

From the simulation results for linear regression, we prefer to use the quantile regression or Nolan’s method and
there is not a significant difference between them. For convenience, as respects existing in most statistical software,
we offer quantile regression. Furthermore, in quantile regression, we are open to select a quantile according to
the data that give a better answer. In the nonlinear case, usually, Nolan’s method is better than the other. In
multivariate regression, generalized Nolan’s method is better than the multivariate OLS and it is very efficient.
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