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ABSTRACT: Optimization of pavement maintenance and rehabilitation (M&R) is one of the most 
substantial parts of the pavement management system (PMS). Highway agencies should plan M&R 
treatments efficiently. An accurate pavement performance model is required to predict pavements’ future 
conditions. Thus, an accurate international roughness index (IRI) model was developed to predict IRI. 
Moreover, M&R was scheduled deterministically in many past studies, but this issue does not match 
the uncertain essence of deterioration and future M&R expenditures. Hence, the uncertainty associated 
with pavement deterioration and budget calculation should be considered in scheduling M&R activities. 
This study scheduled M&R activities deterministically and probabilistically to compare the solutions 
obtained from both approaches. The uncertainty of several features in the IRI model and budget 
calculation was not considered in the deterministic approach. Furthermore, in the probabilistic approach, 
historical data were employed to fit the distribution function for uncertain features in the model. Then, 
Monte Carlo simulation and optimizer were run to generate probability distributions for sections’ IRI 
and required budget and optimize M&R scheduling. The IRI model was developed using 288 data. The 
testing data R-square of the model was 0.917. As a case study, the research results were applied to a 
network, including five sections during a 5-year-planning. Additionally, the costs of M&R scheduling 
in the deterministic and probabilistic approaches were $52,149 and $40,195. Hence, the cost of the 
deterministic approach was 29.7% higher than the probabilistic approach. Besides, the probabilistic 
method applied more preventive maintenance, desirable for users, than the deterministic one. 
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1- Introduction
Infrastructures are vital in every country due to using 
valuable resources, including time, budget, and labor 
forces. Transportation infrastructures, as the main part of 
infrastructures, have a significant impact on transporting 
people and goods [1]. If transportation infrastructures are 
managed correctly to maintain their high quality of service, 
they will be one of the most significant factors for economic 
growth [2, 3]. Pavements are the most visible component 
of transportation infrastructure that highway agencies 
spend many resources to preserve pavements from failure. 
For instance, the United States spends more than $100 
billion annually to maintain road networks at the desired 
condition [4, 5]. Nevertheless, 20% of highway pavements 
in the United States are in poor condition [5]. The highway 
agency and user costs will increase due to the deterioration 
of road conditions remarkably. If pavement maintenance and 
rehabilitation (M&R) treatments are performed on time, over 
half of the repair costs can be avoided [6]. Hence, highway 
agencies should optimize M&R scheduling. To this end, 
highway agencies should evaluate the pavement conditions 
to schedule M&R activities optimally.

Pavement condition analysis is essential for achieving 
optimum M&R actions. The pavement condition can be as-
sessed by observing the type, severity, and density of present 
distresses, while the future condition of the pavement is es-
sential for M&R scheduling. Therefore, pavement deteriora-
tion models are used to predict the future condition of the 
pavement. If the performance model predicts the future con-
dition of pavement accurately, highway agencies can assign 
the required budget to M&R activities correctly. Performance 
models represent the condition of the pavement using either 
single or combined indexes. The indexes are selected based 
on data availability and the highway agencies’ need.

Road roughness is one of the most important indicators 
in determining the pavements’ performance [7]. Road rough-
ness can be represented by the International Roughness Index 
(IRI) [6, 8]. The IRI, as one of the most common condition 
indexes, can present the ride quality and the comfort of users. 
Moreover, Odoki and Kerali (2000) indicated that IRI growth 
causes an increase in vehicle operating costs and the num-
ber of accidents [9]. Besides, it was indicated that there is a 
strong relationship between IRI and pavement distresses [8]. 
The pavements’ IRI increases over time, leading to pavement 
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deterioration [10]. Hence, IRI prediction models represent the 
IRI increment rate due to the passage of time. Furthermore, 
IRI is an appropriate index for M&R scheduling optimization 
[11]. An accurate IRI deterioration model is required to plan 
M&R treatments optimally.

The accuracy of the pavement performance model has 
a significant effect on scheduling M&R correctly. If trust-
worthy data and important parameters are used in a model 
generation, the desired accuracy can be fulfilled [12]. Some 
researchers have generated IRI performance models based on 
the Long-Term Pavement Performance (LTPP) database due 
to its reliability, accuracy, variety, and versatility [10, 13-17].

Two approaches can be employed to plan M&R treat-
ments, including deterministic and probabilistic. The un-
certainty associated with the pavement deterioration model 
and budget calculation is not considered in the deterministic 
method. The deterministic strategy is not appropriate for 
scheduling M&R treatments since the pavement deteriora-
tion and budget calculation are uncertain. Several variables 
are commonly employed in IRI performance models, such as 
climatic and traffic loading features, which are uncertain, and 
specific values cannot be assigned for them. Hence, it is not 
appropriate to use the deterministic approach to plan M&R 
treatments. On the other hand, using the deterministic meth-
od is simpler than the probabilistic one. Therefore, highway 
agencies commonly apply deterministic methods to optimize 
M&R scheduling. Nonetheless, ignoring the uncertainty as-
sociated with the mentioned variables leads to sub-optimal 
solutions [18, 19]. The probabilistic strategy calculates pos-
sible solutions by representing the probability distributions, 
while the deterministic strategy represents only one value 
[20]. Moreover, highway agencies and decision-makers can 
make decisions more efficiently in the probabilistic strategy. 
Nevertheless, the probabilistic approach considers the ran-
domness of the uncertain variables resulting in representing 
probability distributions for pavement performance. Conse-
quently, the probabilistic approach should be used to schedule 
M&R activities [21].

2- Background
Previous studies generated IRI prediction models using 

the data from the LTPP database, local agencies database, and 
direct measurements [13]. The data of initial IRI, climatic 
features, traffic characteristics, and/or structural parameters 
were employed to develop IRI performance models. Further-
more, some studies used pavement distresses data to generate 
the IRI model [13, 16, 22]. The data collection of pavement 
distresses is time-consuming and labor-intensive [23]. Hence, 
it is more appropriate to utilize initial IRI, climatic features, 
traffic characteristics, and/or structural parameters rather than 
pavement distresses to develop the IRI deterioration model. 
To this end, several researchers used these features to gener-
ate IRI performance models.

George (2000) developed two IRI performance models 
based on the Mississippi Department of Transportation Da-
tabase [24]. The author employed equivalent single axle load 
(ESAL), structural number (SN), and pavement age to de-

velop the first model. Besides, in addition to the parameters 
used in the first model development, the pavement’s thick-
ness was used to generate the second model. The coefficient 
of determination (R2) of the first model was 0.35. Moreover, 
the second model could predict IRI with an R2 of 0.48. Choi 
et al. (2004) developed an IRI model [14]. They applied cu-
mulative ESAL, SN, and the thickness of the top layer to de-
velop the model. The model achieved an R2 of 0.71 based on 
117 observations from LTPP. Albuquerque and Núñez (2011) 
established two IRI performance models for low-volume 
roads using the regression analysis technique [25]. They 
employed precipitation, ESAL, and SN to form IRI models 
with coefficients of determination of 0.94 and 0.87 based on 
18 and 27 observations, respectively. Mazari and Rodriguez 
(2016) used 98 observations from the LTPP to develop an 
IRI prediction model [10]. The IRI performance model was 
generated as a function of initial IRI, ESAL, and pavement 
age. Jaafar and Fahmi (2016) utilized 34 observations from 
the LTPP database to develop two IRI prediction models [26]. 
The researchers used initial IRI, ESAL, SN, pavement age, 
and construction number to establish the models. Dallarosa et 
al. (2017) proposed two IRI performance functions for low-
volume and medium-volume roads [27]. The data of the texas 
department of transportation was employed to generate the 
models using initial IRI and pavement age. The root-mean-
square error (RMSE) of the developed models was presented, 
which was equal to 0.21 for both models. Besides, Pérez-
Acebo et al. (2020) generated an IRI performance model for 
flexible pavements whose coefficient of determination was 
equal to 0.44 [28].

Many studies developed IRI performance models utiliz-
ing the Markov chain process to consider the uncertainty [29, 
30]. For instance, Alimoradi et al. (2020) used the Markov 
chain to predict pavement roughness considering its initial 
value. This method applies the probability of transferring 
from a current state of pavement to another state (or staying 
in the same state) in a one-time interval, which is called stage, 
to predict the future condition of the pavement. Markovian 
models change the format of the M&R scheduling problem 
from integer programming to linear one. Additionally, Mar-
kovian models have two major deficiencies. Markovian mod-
els categorize pavements’ IRI into various levels. Several 
pavement performance indicators are continuous, such as the 
IRI, but the Markov chain process makes pavement condi-
tion indicators discrete, reducing IRI prediction accuracy. Be-
sides, these models classify pavement sections into identical 
categories based on their features and schedule M&R activi-
ties for groups of segments [4]. Hence, Markovian models are 
not able to plan M&R treatments for each section separately. 
Therefore, Markovian models are not qualified enough to 
schedule M&R treatments probabilistically.

One appropriate method to take into account the uncer-
tainty is to use Monte Carlo simulation (MCS), which has 
received inadequate attention in the field of M&R scheduling. 
MCS is a type of simulation that computes the results based 
on iterative random sampling and statistical assessment. This 
simulation is a useful probabilistic tool for evaluating and 
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modeling real-world problems to consider uncertainty and 
analyze risks quantitatively. For instance, Rose et al. (2018) 
employed the MCS to transform deterministic models into 
probabilistic ones [20]. The authors at first selected reliable 
deterministic prediction models for pothole progression, 
edge failure, and raveling progression. Then, appropriate 
Probability Distribution Functions (PDFs) and Probability 
Mass Functions (PMFs) were fitted to the data collected for 
independent variables. Afterward, the probabilistic prediction 
models were developed using MCS.

Typically, there are two main strategies to form an M&R 
scheduling optimization model. In the first strategy, the high-
way agencies minimize the required budget, which is subject 
to acceptable pavement performance. In the second strategy, 
the pavement performance is maximized considering the 
available budget. Time in optimization models can be con-
sidered as a discrete or continuous variable. Discrete-time 
intervals have been preferred by highway agencies since they 
practically perform M&R actions annually. After the deter-
mination of the highway agency’s desired strategy, the M&R 
optimization problem can be modeled.

The Integer Programming (IP) or Mixed-Integer Pro-
gramming (MIP) models have been utilized for M&R sched-
uling in some studies. Wang et al. (2003) represented a multi-
objective MIP model for scheduling M&R activities [31]. 
Available annual budget and minimum acceptable condition 
of pavements were considered as constraints. The results 
were applied to a pavement network consisting of ten sec-
tions. A binary linear IP was proposed to determine optimal 
M&R treatments by Chakroborty et al. (2012) [32]. Fani et 
al. (2020) proposed a multistage stochastic MIP model to 
identify an optimal possible plan from all possible scenarios 
under uncertainty [18]. The minimization of deviations of 
each section’s IRI from desired highway agency’s IRI in the 
last year of the analysis period was the objective function of 
their model constrained to the available budget. The authors 
investigated two pavement networks as case studies, which 
included 4 and 21 sections.

While the mentioned studies used exact algorithms to 
find optimum solutions for M&R scheduling, some stud-
ies employed evolutionary and metaheuristic algorithms to 
solve the problem [4, 7, 33-37]. For instance, Naseri et al. 
(2021) employed five metaheuristic algorithms to solve the 
M&R scheduling problem [37]. Nevertheless, the evolution-
ary and metaheuristic algorithms may not find the global op-
timum solution. Due to the mentioned problem, the results 
of M&R treatments of different metaheuristic algorithms of 
Naseri et al. (2021) differed significantly since these algo-
rithms reached various results and could not reach global so-
lutions[37]. In other words, using these algorithms may result 
in sub-optimal solutions [4]. Therefore, it is more appropriate 
to employ exact algorithms to solve the M&R scheduling op-
timization problem, which leads to optimum solutions.

To sum up, although several IRI prediction models were 
developed, these models have not achieved a high quality of 
fit, which significantly affects the efficiency of M&R sched-
uling optimization. On the other hand, several IRI prediction 

models employed pavement distress, whose data collection is 
time-consuming and labor-intensive, to generate the model. 
Besides, pavement deterioration and budget calculation are 
uncertain, which have not received enough attention in previ-
ous studies. This study aimed to fill such gaps.

3- Objectives and Scope
The objective of this study was to provide an optimum 

M&R plan through the application of the developed IRI pre-
diction model. The IRI performance model was generated by 
using regression analysis based on the LTPP database. The 
aim of this study was to consider the pavement deterioration 
and budget calculation uncertainties by employing histori-
cal data and MCS. The best cost and improvement models 
were applied based on the related literature to the best of the 
authors’ knowledge. The results obtained from deterministic 
and probabilistic approaches were compared to determine the 
optimal solution. The applied data corresponded to flexible 
asphalt pavement under urban and rural areas with various 
climate and traffic conditions.

4- Methodology
As previously mentioned, IRI is a representative perfor-

mance indicator, which was selected in this study. Afterward, 
the required data for IRI performance model generation was 
collected from the LTPP database. After the IRI prediction 
model was developed, types of M&R activities, their IRI 
drop, and their unit cost were gathered from the literature. 
Then, M&R treatments were optimally planned by using two 
approaches, including deterministic and probabilistic. Final-
ly, the solutions obtained from both approaches were com-
pared. The flowchart of the methodology is indicated in Fig. 
1. In the following sections, a comprehensive explanation of 
the steps adopted in this research is presented.

4- 1- IRI prediction model development
As mentioned, IRI, as one of the most common and widely-

used pavement condition indexes, was selected in this study. 
Since the developed IRI prediction models were neither ac-
curate nor considered enough relevant variables, a prediction 
model was developed to predict the IRI annually. According 
to previous studies, initial IRI, climatic, traffic, and structural 
parameters can be used to develop the IRI prediction model 
[13]. To this end, from all four mentioned categories, appro-
priate features were chosen to generate the IRI performance 
function. Five variables were selected, including initial IRI, 
the number of annual freeze-thaw cycles, annual precipita-
tion, ESAL, its growth rate, and SN. In addition, several stud-
ies represented that employing only one climatic parameter 
was not adequate, and other features should have been used to 
increase the precision of their IRI prediction models [16, 38]. 
On the other hand, Gong et al. [16] represented that there was 
an insignificant relationship between IRI and freeze index. 
Thus, the authors decided to consider the number of annual 
freeze-thaw cycles as a novelty to increase the accuracy of 
the IRI model. In this regard, by employing this feature, the 
precision of the IRI model was raised noticeably. The number 
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of annual freeze-thaw cycles applied herein has not received 
close attention in the IRI prediction model developed in pre-
vious studies.

The dataset used in this study consists of 288 pavement 
sections taken from the LTPP database covering different 
climatic areas and various traffic conditions. No M&R treat-
ments have been performed on the sections used to develop 
the model. Hence, the segments’ IRI has not been reduced, 
and annual IRI increment can be calculated by the features 
employed to generate the model. Moreover, 70% of the data 
was used to train the model, and 30% was utilized to test the 
developed model [39]. Besides, the linear regression tech-
nique was employed to generate the model. Although sev-
eral researchers used various machine learning methods such 
as artificial neural networks to develop the IRI performance 
functions [13], these algorithms are categorized as black-box 
tools [40]. Hence, these algorithms cannot present practical 
prediction models. In other words, the mentioned algorithms 
can only be employed to predict the pavement’s future con-
dition, and these methods cannot be used to schedule M&R 
activities. The IRI performance model generated in this study 
can predict the next year’s IRI, which is required for schedul-

ing M&R activities. Since the IRI model predicts IRI annu-
ally to plan M&R treatments yearly, the developed model can 
achieve higher accuracy compared to previous studies.

4- 2- Optimization model formulation
There are two main approaches to schedule M&R activi-

ties, including deterministic and probabilistic. Both of these 
approaches were investigated in this research to address 
which one is more appropriate to be used by highway agen-
cies for M&R scheduling. The main difference between these 
two approaches is to consider the variables uncertain or con-
stant which is explained in the following. The optimization 
model was developed based on a single objective function of 
minimizing the discounted M&R treatment costs subject to 
maintaining pavements’ IRI at a minimum acceptable level 
in the planning horizon. The optimization model’s objective 
function is presented as follows:
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where I , J , and T  signify the number of pavement 
sections in the investigated network, the number of M&R 
treatments, and the number of years the pavement network 
is analyzed, respectively. iA  and ijtc imply the area of sec-
tion i  and the cost of treatment j  applied to a section i  at 
the time of t . disi  is the annual discount rate employed to 
make the M&R scheduling costs discounted. ijtx  is a binary 
decision variable of the model which represents whether the 
activity j  is performed on the section i  at the time of t .

Eq. (1) minimizes the discounted cost of M&R treatments 
in the planning horizon. Hence, highway agencies can be in-
formed of the minimum required budget to preserve sections 
at an acceptable level.

As mentioned previously, the model maintains pavement 
sections at allowable limits in the analyzing period. To this 
end, Eq. (2) states that the sections’ IRI in the planning period 
must be lower than the maximum allowable IRI, which is de-
termined by the highway agency. The network’s IRI at each 
period has to be lower than highway agencies’ determined 
value. Hence, Eq. (3) ensures that the networks’ IRI is lower 
than a predetermined level. On the other hand, the value of 
sections’ IRI has to be rational. Hence, by using Eq. (4), the 
sections’ IRI must be more than minimum logical IRI.
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where 
,i tIRI  is the IRI of section i  at the time of t . 

Besides, maxIRI  and minIRI  signify the maximum allowable 
IRI and minimum value of IRI. The maximum acceptable IRI 
is specified by the highway agency. U denotes the maximum 
acceptable value of IRI for a pavement network. In addition, 
the minimum value of IRI must be more than 0.

Due to the practical limitations, highway agencies prefer 
to perform the uttermost M&R treatment on each pavement 
section at each time point. To this intent, Eq. (5) states that 
uttermost one M&R activity can be scheduled for each seg-
ment at each time point. Hence, by employing this constraint, 
the applicability of the proposed model increases notably. As 
mentioned, the decision variable of the model is binary. As 
indicated in Eq. (6), the decision variable can be equal to 1 
or 0.
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4- 3- Deterministic and probabilistic approaches
The mentioned optimization model was used in both de-

terministic and probabilistic approaches. The differences be-
tween the two approaches in M&R scheduling were in the 
uncertain features employed in the objective function and 
the IRI prediction model. In the deterministic approach, the 
discount rate was considered constant and equal to its initial 
value, but in the other approach, a probability function was 
fitted to the discount rate. In reality, the discount rate is not 
constant, therefore, the deterministic approach cannot solve 
the problem accurately. Furthermore, Wu et al. (2017) com-
pared constant and probabilistic discount rates and concluded 
that using probabilistic discount rates results in more precise 
solutions [41].

In the deterministic approach, the independent variables 
utilized in the IRI prediction model were assumed to be con-
stant while the essence of some parameters, such as climatic 
features, is uncertain. The values of variables employed in 
the IRI performance function and objective function were 
presumed equal to the first year of the analysis. The optimi-
zation problem type is MIP, and General Algebraic Model-
ing System (GAMS) can solve the deterministic optimization 
problem [42]. This software solves such a problem using the 
branch-and-bound algorithm, and the outcomes are treatment 
schedules on the sample network. Therefore, this software 
was used to solve the problem deterministically.

 In the probabilistic approach, historical data of uncertain 
features of the developed model and the objective function 
were collected. Afterward, @riskTM software was used to fit 
appropriate PMFs and PDFs to the collected data [43]. Then, 
MCS as an appropriate risk analysis tool was employed to 
generate probability distributions of each section’s annual IRI 
and total required budget in the analysis period. As the num-
ber of MCS iterations increases, the accuracy of the results 
increases. Moreover, by using @riskTM software, optimiza-
tion and simulation were carried out simultaneously to obtain 
the best solutions. The outcomes of the probabilistic approach 
were histograms whose maximum, mean, and the minimum 
was presented.

5- Results and Discussion
A pavement network containing five flexible pavement 

sections was evaluated. As mentioned, the model aimed to 
minimize the M&R scheduling required budget in the analy-
sis period. Furthermore, the case study was evaluated for five 
years. The data of pavement sections were extracted from the 
LTPP database. The length and width of each section were 
152.4 m and 11 m roughly. Therefore, the area of pavement 
sections was the same, and their area was equal to 1673 m2. 
The required data for each section were gathered, including 
initial IRI, the number of annual freeze-thaw cycles, ESAL, 
annual precipitation, and SN. The required data for the last 
year of each section is presented in Table 1. As mentioned 
previously, the M&R treatments were planned over five years.
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The minimum value of the IRI is equal to 0. Besides, ac-
cording to the results obtained from Hu et al.’s (2017) re-
search, if each section’s IRI is less than 3.9 m/km, the pave-
ment network will be at the safe level [44]. Therefore, the 
maximum acceptable IRI was presumed equal to 3.9 m/km. 
Moreover, since the areas of the investigated sections are 
equal, there is no need to employ Eq. (3). Five M&R treat-
ments were taken into consideration to improve the sections’ 
IRI. The treatments and their IRI drop were extracted from 
literature [4, 7, 18]. Additionally, the average unit costs of 
the indicated treatments were calculated based on the costs 
derived from the study of Kiihnl and Braham (2019) [45]. 
Applying each treatment leads to the IRI drop and is associ-
ated with a specific cost, which is indicated in Table 2. As can 
be perceived from Table 2, do nothing, preventive mainte-
nance, light rehabilitation, medium rehabilitation, and heavy 
rehabilitation were considered as M&R treatments. The “do 
nothing” strategy signifies that no M&R treatment is sched-
uled to be performed on the pavement section. As the cost 
of treatments increases, the IRI drop increases too. If heavy 
reconstruction is selected by the model, the entire pavement’s 
structure replaces with new pavement, and its IRI is equal to 
1.5 m/km [18, 33]. Each treatment should improve the IRI of 
each section not to exceed the maximum acceptable IRI range 
defined by the highway agencies.

5- 1- IRI prediction model
One of the objectives of this study was to develop an ac-

curate IRI performance model. As mentioned previously, the 
model was developed using the LTPP data of 288 pavement 
sections. Besides, 75% of the data (training set) was utilized to 
develop an IRI prediction model, and the rest (testing set) was 
applied for model validation [39]. The multiple linear regres-
sion techniques were employed to develop the model. Initial 
IRI, the number of annual freeze-thaw cycles, annual precipi-
tation, ESAL, and SN were employed as features to form the 
IRI model. The most correlated independent variables with 
IRI were initial IRI, the number of annual freeze-thaw cycles, 
ESAL, annual precipitation, and SN, respectively. All vari-
ables have positive signs except the SN, which makes logical 
sense. Moreover, the SN coefficient was much less than the 
other, which has been proven in previous research [46]ote>. 
On the other hand, by increasing the annual precipitation, the 
IRI of the pavement section must be increased. To this intent, 
the power of the annual precipitation feature was increased to 
make the model logical. The formulation of the generated IRI 
model is presented in Eq. (7). 
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Table 2. The IRI drop and the unit cost of each M&R activity.
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M&R activity type IRI drop (m/km) Cost ($/m2) 

Do nothing 0 0 
Preventive maintenance 0.3 2.0 

Light rehabilitation 1.2 5.8 
Medium Rehabilitation 2 11.9 

Heavy rehabilitation 
(reconstruction) 

Change IRI of the pavement to a 
newly constructed pavement 

section, ( 1.5newIRI = ) 
28.5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The pavement sections’ data of the initial year of analysis used in the deterministic approach.
 

Table 1. The pavement sections’ data of the initial year of analysis used in the deterministic approach. 
 

Parameter 
Section 

Initial IRI 
(m/km) The number of freeze-thaw cycles ESAL Precipitation 

(mm) SN 

1 3.226 111 691000 718.4 4.4 
2 3.739 111 868204 718.4 4 
3 3.669 111 691000 718.4 4.6 
4 3.253 111 691000 718.4 4.6 
5 3.489 111 691000 718.4 6.8 
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where IRI  and 0IRI  signify the predicted IRI and the 
initial IRI of a pavement section. FTCs and ESAL  are the 
number of annual freeze-thaw cycles and equivalent single 
axle load. To consider the annual ESAL growth rate β  was 
employed in the model, which denotes the annual ESAL 
growth rate. Precip and SN signify the annual precipitation 
and the structural number of the pavement section, respec-
tively.

Four machine learning performance indicators, includ-
ing correlation coefficient (R), coefficient of determination 
(R2), mean absolute error (MAE), and root mean square error 
(RMSE), was employed to measure the accuracy of the devel-
oped model. The formulation of the mentioned performance 
indicators is presented in Eqs. (8) to (11). The value of the 
mentioned indicators is represented in Table 3. As can be per-
ceived from Table 3, the model achieved high quality of fit. 
Testing data R of the model was equal to 0.955. Furthermore, 
the R2 of the testing set of the developed model was 0.902. 
Besides, the developed model can predict the IRI of unseen 
data with an MAE of 0.119 m/km. Hence, because of the low 
value of MAE, the IRI model can predict the pavements’ fu-
ture IRI accurately. Moreover, the testing set RMSE of the 
model was equal to 0.198 m/km. According to the mentioned 
machine learning performance indicators, the developed IRI 
model can predict the IRI of unseen pavements’ data accu-
rately. Therefore, the generated IRI performance model can 
be used to plan M&R treatments precisely.
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where ix  and iy  signify the measured IRI, predicted 
IRI, respectively. Moreover, n  is the number of data. Be-
sides, ix  and iy  denote the average of measured IRI and 
average of predicted IRI, in the order mentioned.

Fig. 2 indicates the predicted IRI values versus the mea-
sured IRI for the training and testing data. As Fig. 2 presents, 
the data points are almost on the line of equality, which proves 
that the predicted and measured IRI are approximately in the 
line of equality. Moreover, it can be perceived from Fig. 2 
that the model can predict the IRI of unseen data perfectly.

5- 2- Results of deterministic M&R scheduling
As mentioned previously, the historical data was not con-

sidered in the deterministic approach. Hence, the last year’s 
value of each parameter, which exists in the IRI model and 
objective function were taken into consideration in this ap-
proach. On the other hand, in the probabilistic approach, his-
torical data for uncertain parameters were extracted to make 
the model probabilistic. The amount of the discount rate, 
which was wielded in the objective function of the determin-
istic model in early 2021, was 0.25% in the United States. As 
mentioned, annual ESAL was multiplied by its annual growth 
rate. According to the extracted data, the initial year ESAL 
growth rate was equal to 6%. Hence, the ESAL annual growth 
rate was assumed to be equal to 6% in the planning horizon. 
The optimization problem type is MIP, and General Algebraic 
Modeling System (GAMS) is able to solve this type of opti-
mization problem [42]. This software solves such a problem 

Table 3. Machine learning performance indicators used to measure the accuracy of the IRI model.Table 3. Machine learning performance indicators used to measure the accuracy of the IRI model. 
 

Performance indicators Training data Testing data 

R 0.957 0.955 
R2 0.917 0.902 

MAE (m/km) 0.079 0.119 
RMSE (m/km) 0.121 0.198 
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using the branch-and-bound algorithm, and the outcomes are 
M&R treatment scheduled on the sample network. The IRI 
of each section after applying treatments in each year is rep-
resented in Table 4. To this end, the optimization model as-
signed various M&R treatments to the pavement sections to 
reduce the IRI value. As can be seen, each section’s IRI was 
lower than the acceptable IRI, which was equal to 3.9 m/km. 
The minimum required budget for M&R scheduling for five 
years in the deterministic approach was $52,149.

5- 3- Results of probabilistic M&R scheduling
In the probabilistic approach, the probabilistic IRI predic-

tion model was used. In the probabilistic IRI performance 
model, appropriate PDFs and PMFs were fitted to uncertain 
features of the model, including the number of annual freeze-
thaw cycles, annual precipitation, and ESAL growth rate. On 
the other hand, the discount rate employed in the objective 
function was an uncertain parameter. Hence, an appropriate 
PDF was fitted to the mentioned parameter. Therefore, the 
historical data employed from the LTPP database to fit PDFs 
and PMFs on them. The most appropriate PDFs and PMFs 

were fitted to the uncertain IRI prediction model parameters 
and the discount rate. Negative binomial, normal, Laplace, 
and triangle distributions were recognized as the best fit to the 
number of annual freeze-thaw cycles, annual precipitation, 
annual ESAL growth rate, and discount rate, respectively, by 
@riskTM [43]. The fitted PDFs were consistent with the results 
of previous studies [41, 47].

The above-mentioned PDFs and PMFs were applied in 
the objective function and the IRI performance model, which 
are indicated in Eqs. (1) and (7), respectively. Then, the IRI 
prediction model was utilized to predict the future pavement 
IRI probabilistically. To this intent, the MCS was employed 
to simulate the IRI prediction model and objective function. 
The number of MCS iterations plays a significant role in the 
accuracy of the results. The minimum required number of it-
erations of MCS was obtained by using Eq. (12).

22( )
z s

n
E

 
=  (12) 

 

 (12)

  
Fig. 2. Performance of the IRI model for both training and testing data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

0 1 2 3 4

Pr
ed

ic
te

d 
IR

I (
m

/k
m

)

Measured IRI (m/km)

Training set

0

1

2

3

4

0 1 2 3 4

Pr
ed

ic
te

d 
IR

I (
m

/k
m

)

Measured IRI (m/km)

Testing set

Fig. 2. Performance of the IRI model for both training and testing data.

Table 4. The IRI of each section for five years planning in the deterministic method.Table 4. The IRI of each section for five years planning in the deterministic method. 
 

 The value of IRI of each section in each year, m/km 
Year 

Section 1 2 3 4 5 

1 3.477 3.742 2.822 3.065 3.322 
2 2.825 3.075 3.341 3.621 3.618 
3 2.935 3.177 3.432 3.702 3.686 
4 3.505 3.771 2.852 3.097 3.355 
5 3.751 2.827 3.067 3.321 3.588 
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Where n  signifies the least number of iterations needed. 
In addition, S  and E  denote the estimated standard devia-
tion of the output and the desired margin of error, respective-
ly. Besides, 

2

Z α  is the critical value of the normal distribution 
for 

2
α . The number of MCS iterations was calculated using 

Eq. 
(12). The minimum number of iterations required for the 

IRI prediction model and the M&R planning costs are pre-
sented in Table 5. For the sake of reducing the biased error, 
the iteration numbers were rounded up to 100,000. A large 
number of MCS iterations were considered to increase the 
accuracy of the solutions obtained from the probabilistic ap-
proach.

The model assigned optimal M&R treatments to each 
pavement section in each year to minimize M&R costs in the 
planning period considering the IRI probability distributions. 
Each section’s mean IRI in each year after applying M&R 
treatments is represented in Table 6. As can be seen in Table 
6, each section’s mean IRI value is lower than the allowable 
limitations of the highway agency. Moreover, the probability 
distribution of the total M&R scheduling cost during the 
analysis period is indicated in Fig. 3. The mean required 
budget of M&R scheduling for five years in the probabilistic 
approach was $40,195, while the maximum and minimum of 
the M&R costs were $42,255 and $36,485, respectively.

5- 4- Comparison of the solutions obtained from two 
approaches

As mentioned, using only one value (i.e., the determinis-
tic approach) for the random features led to unreliable M&R 
scheduling, which was not consistent with the uncertain es-
sence of pavement deterioration and budget calculation. On 
the other hand, the outcomes of the probabilistic approach 
were PDFs that express various types of information, such 
as the maximum, minimum, mean, spread, and shape. The 
comparison between the calculated costs of M&R schedul-
ing in the deterministic and probabilistic approaches in each 
year is represented in Table 7. The required budget of M&R 
scheduling in the deterministic approach was higher than the 
probabilistic one in the planning period. As can be perceived 
from Table 7, the mean costs of M&R scheduling in the de-
terministic approach were 29.7% higher than the probabilistic 
one. Hence, it is more cost-effective for highway agencies to 
plan M&R treatments probabilistically. Therefore, highway 
agencies will be able to maintain pavement sections t accept-
able levels by spending less financial resources if they em-
ploy the probabilistic approach instead of the deterministic 
one. In both methods, sections 2 and 3 had a higher cost due 
to their poor initial IRI. Furthermore, the cost of M&R sched-
uling on both sections 2 and 3 in the deterministic strategy 
was 32% lower than the probabilistic strategy. On the other 
hand, sections 1 and 4 cost less than the other sections in both 

Table 5. Calculating the least number of iterations needed for the IRI prediction and the M&R planning costs.Table 5. Calculating the least number of iterations needed for the IRI prediction and the M&R planning costs. 
 

Parameters 
2

Z  E  S  The least number of iterations 
needed 

The selected number of 
iterations 

The IRI prediction 1.96 0.01 0.0001 38416 100000 
The M&R planning 

costs 1.96 150 1 86436 100000 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. The mean IRI of each section for five years planning in the probabilistic method.Table 6. The mean IRI of each section for five years planning in the probabilistic method. 
 

 The value of IRI of each section in each year, m/km 
Year 

Section 1 2 3 4 5 

1 3.467 3.719 3.668 3.616 3.874 
2 2.764 2.999 3.243 3.496 3.764 
3 2.678 2.897 3.124 3.361 3.608 
4 3.496 3.437 3.688 3.638 3.897 
5 3.742 3.640 3.899 3.858 3.814 
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Fig. 3. Probability distribution of the total cost of M&R scheduling during the analysis period in the probabilistic 
approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Probability distribution of the total cost of M&R scheduling during the analysis period in the probabi-
listic approach.

Table 7. The comparison between the costs of the M&R planning in two approaches, $.Table 6. The mean IRI of each section for five years planning in the probabilistic method. 
 

 The value of IRI of each section in each year, m/km 
Year 

Section 1 2 3 4 5 

1 3.467 3.719 3.668 3.616 3.874 
2 2.764 2.999 3.243 3.496 3.764 
3 2.678 2.897 3.124 3.361 3.608 
4 3.496 3.437 3.688 3.638 3.897 
5 3.742 3.640 3.899 3.858 3.814 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approaches. Moreover, by applying a probabilistic strategy 
instead of a deterministic one in scheduling M&R treatments 
on sections 1 and 4, the M&R mean costs of the mentioned 
sections decreased by 48% and 46%, respectively. Hence, 
the deterministic approach not only costs more but also pro-
vides limited insight for decision-makers and policy-makers. 
Therefore, it is suggested that highway agencies manage 
pavement networks employing probabilistic methods, which 
makes more practical and engineering sense.

The different types of planned M&R treatments in both 
deterministic and probabilistic approaches are presented in 
Table 8. To this end, different treatment IDs were assigned to 
various M&R activities. In this regard, treatment ID 1 signi-
fies a do-nothing strategy. Moreover, treatment ID 2 denotes 
preventive maintenance. Besides, treatment IDs 3, 4, and 5 
are light rehabilitation, medium rehabilitation, and heavy re-

habilitation, respectively. As can be perceived from Table 8, 
the deterministic approach tended to employ more rehabilita-
tion treatments than the probabilistic one.

The M&R treatments selected in the deterministic and 
probabilistic approaches are indicated in Table 9. As can be 
seen in Table 9, both methods selected the “do nothing” strat-
egy more than the other activities. Moreover, the determin-
istic method allocated the “do nothing” strategy more than 
the probabilistic method. Besides, the deterministic approach 
selected rehabilitation treatment more than preventive main-
tenance. Hence, due to excessive selection of the “do noth-
ing” strategy in the deterministic approach, the pavement IRI 
increased, and this approach chose rehabilitation treatment 
more than preventive maintenance to maintain the pavement 
IRI within the highway agency’s allowable limits. Since pre-
ventive maintenance prevents the pavement from being de-
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Table 8. The optimum M&R activities for each section in both deterministic and probabilistic approaches in each year.Table 8. The optimum M&R activities for each section in both deterministic and probabilistic approaches in each 
year. 

 

Section Approach 
Year 

1 2 3 4 5 

Treatment ID 

1 
Deterministic 1 1 3 1 1 
Probabilistic 1 1 2 2 1 

2 
Deterministic 3 1 1 1 2 
Probabilistic 3 1 1 1 1 

3 
Deterministic 3 1 1 1 2 

Probabilistic 3 1 1 1 1 

4 
Deterministic 1 1 3 1 1 
Probabilistic 1 2 1 2 1 

5 
Deterministic 1 3 1 1 1 
Probabilistic 1 2 1 2 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. The comparison of the percentage of M&R treatments applied in the deterministic and probabilistic ap-
proaches.

 

Table 9. The comparison of the percentage of M&R treatments applied in the deterministic and probabilistic 
approaches. 

 
Treatment 

Approach 
Do 

nothing 
Preventive 

maintenance 
Light 

rehabilitation 
Medium 

rehabilitation 
Heavy 

rehabilitation 
Deterministic 72 8 20 0 0 
Probabilistic 64 28 8 0 0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

teriorated until it needs rehabilitation, road users prefer this 
treatment to be implemented. Hence, it is more desirable to 
apply more preventive maintenance on the pavement sec-
tions. Besides, preventive maintenance costs are lower than 
the other activities. Therefore, the deterministic approach not 
only incurred more costs on highway agencies to implement 
heavier treatments but also increased the road user costs since 
it selected less preventive maintenance, which is desirable for 
users.

6- Conclusion
In modern PMS, generating an efficient M&R approach 

is critical. The pavement scheduling problem can be solved 
using a variety of mathematical models. Most of the M&R 
scheduling models plan treatments deterministically. None-
theless, the model contains several uncertain features that 
have a significant effect on the optimum solution. This study 
presented a MIP pavement M&R planning model to find opti-
mal solutions. To this intent, two approaches were employed 
to solve the problem, including deterministic and probabilis-
tic. The objective function of the optimization model in both 
approaches aimed to minimize M&R costs in the planning 
horizon constrained to acceptable pavement conditions. One 

of the main requirements for M&R scheduling problem mod-
eling is the pavement performance function. Hence, an ac-
curate IRI performance model was developed to predict the 
future pavement’s IRI. Some features employed in the IRI 
performance model and objective function were uncertain. 
Nevertheless, the uncertain variables were considered equal 
to their value of the initial year of analysis for the planning 
period in the deterministic approach. On the other hand, in the 
probabilistic strategy, appropriate PDFs and PMFs were fitted 
to the uncertain features. Then, MCS with a large number 
of iterations and optimizer was run to obtain the probability 
distributions for each section’s IRI and the minimum required 
budget to maintain pavement sections at allowable limits. Ul-
timately, the solutions obtained from the deterministic and 
probabilistic strategies were compared. The following results 
could be drawn from this study:

•	 The initial IRI, the number of annual freeze-thaw 
cycles, annual precipitation, ESAL, and ESAL growth rate, 
and SN were employed to develop the IRI prediction model 
with a high model fitness. Moreover, 288 data were used to 
generate the model. Since the model is an annual IRI pre-
diction model and significant features were employed in the 
model development, it reached a high accuracy with a testing 
R2 of 0.958.
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•	 Both probabilistic and deterministic maintenance 
scheduling optimization approaches were investigated on a 
pavement network as a case study. The results indicated that 
the cost of M&R scheduling treatments in the deterministic 
strategy is 29.7% higher than the probabilistic one in this 
study. Therefore, the probabilistic method is cost-effective 
based on the results of this article.

•	 It is more appropriate for users that highway agen-
cies use preventive maintenance instead of rehabilitation. 
According to the results of the case study, 28% of the treat-
ments selected by the probabilistic model were preventive 
maintenance, while only 8% of the activities selected by the 
deterministic model were preventive. On the other hand, the 
deterministic strategy employed rehabilitation treatments 
more than preventive maintenance in this study, which is not 
desirable for users.

•	 The deterministic approach provides limited insight 
for decision-makers and highway agencies since this method 
presents one value as a result. On the other hand, the probabi-
listic approach presents probabilistic distributions for IRI and 
the minimum required budget. Moreover, decision-makers 
can be informed about the minimum, mean, and maximum of 
IRI using the probabilistic method. Therefore, it is suggested 
that highway agencies manage pavement networks using the 
probabilistic method, which makes more practical and engi-
neering sense.

7. Limitations and recommendations for future studies
The limitations and recommendations of the current study 

for consideration in future research are indicated in the fol-
lowing section:

•	 Utilizing only IRI as the pavement performance in-
dicator is one of the limitations of this study. In this regard, 
it is suggested that various pavement performance indicators 
should be considered simultaneously in future research.

•	 Analyzing a pavement network consisting of 5 sec-
tions is one of the limitations of this study. It is recommended 
that larger pavement networks should be utilized in future 
studies.
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