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1. Introduction

The usual first-order logic is not a suitable framework for mathematical structures such as Banach spaces, Banach
lattices, C∗-algebras, Hilbert spaces, and etc. Logic for metric structures was first studied in the 1960s; then
discontinued [4]. After that, some efforts in recent years were carried out and the following approaches appeared:

1. The logic of the positive bounded formulas with an approximate semantics [8] and [9], then

2. Compact abstract theories (CAT) [1].

These attempts culminated in a new continuous version of first-order logic which is equivalent to both of the past
approaches [2]. In section 2.1, this logic is briefly introduced. In this new framework, for a metric structureM and
A ⊆M , a definable predicate inM over A is one which is approximated by a sequence of formulas in the language.
Likewise, a closed set D ⊆ Mn is definable in M over A, if the distance predicate d(x,D) is definable in M over
A. Note that in first-order logic, a set is definable if it is the set of all the elements defined by a first-order formula.

In section 2.2, one of the approaches of computable analysis, TTE, is explained. TTE is introduced to study the
effectiveness of definability in metric structures in this paper. Computable analysis is a branch of computability
theory studying the functions defined on real numbers. Type-two theory of effectivity, TTE, is based on the defini-
tions of computable real numbers and functions by A. Turing [15], A. Grzegorczyk [7], and D.Lacombe [11]. In this
framework first, computability on finite and infinite sequences of symbols of an alphabet are defined. Then, the
computability on these sequences can be transferred to other sets by using them as names [16]. This approach may
be used to study computable versions of problems and theorems in analysis in a mathematical style. Also, since
metric model theory is the logic of metric structures, and the relations and functions in this logic are uniformly
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continuous, TTE is a suitable approach to study effective versions of problems in metric model theory.

In section 2.3, an implementation of TTE to study the effectiveness of metric model theory is expressed. These
definitions first appeared in [13]. Also, similar approach can be found in [12].

In section 3, first, a computably definable predicate is defined. Then, an effective version of a basic theorem
in definability in metric structures is presented. This theorem says that a predicate P is computably definable iff
there are a (δ, ρ)-computable function u : [0, 1]N → [0, 1] and computable L-formulas (ψl(x) | l ∈ N) such that for all
a ∈Mk, P (a) = u(ψMl (a) | l ∈ N). So, with the mathematical approach, situations in which there is an algorithm
to estimate a definable predicate are characterized.

In section 4, an example is studied. Issac Goldbring [5] proved that a definable operator in a Hilbert space is of
the form λI +K, where K is a compact operator, I is the identity operator, and λ ∈ R. In this example, first, it is
proved that a separable infinite-dimensional Hilbert structure in an effectively presented language is computable.
Then, every definable operator in this structure is shown to be computable.

2. Preliminaries

2.1. Metric model theory (Continuous logic)

In the following, a logic which is suitable to study metric structures is explained, [2]. Note that continuous logic
is an extension of first-order logic with a discrete metric.

Assume (M,d) is a complete metric space. A metric structure M based on (M,d) denoted by

M = (M,PMi , fMj , cMk | i ∈ I, j ∈ J, k ∈ K)

is defined as follows: PM, fM and cM are the interpretations of the predicate symbol P , the function symbol f
and the constant symbol c, respectively. PM : Mn → I and fM : Mn → M are uniformly continuous, for some
arity n and a bounded interval I in R. Moreover, PM and fM are uniformly continuous with modulus ∆P and
∆f , respectively. Also, L consists of a real number DL which is the diameter of (M,d). Note that the metric d can
be assumed as a binary predicate symbol and interpreted as the metric of M .

Terms are defined as in first-order logic. An atomic formula is of the form P (t1, . . . , tn), for terms ti and a predi-
cate symbol P . Also, d(t1, t2) is an atomic formula for every two terms t1 and t2. Every atomic formula is a formula.
Moreover, for formulas ϕ1, . . . , ϕn and every continuous function u : [0, 1]n → [0, 1], u(ϕ1, . . . , ϕn) is a formula.
And, for every formula ϕ and every variable x, supx ϕ and infx ϕ are formulas. Note that continuous functions u
are connectives and sup and inf are quantifiers ∀ and ∃, respecrively. The interpretation of each formula without
free variables, a sentence, is as usual and defined by induction. A structureM is a model of a sentence ϕ if ϕM = 0.

The key concept studied in this paper is definability, which is defined as follows.

Definition 2.1. Assume M is a metric structure and A ⊆M .

1. A predicate P : Mn → [0, 1] is definable in M over A, if there is a sequence (ϕk(x) | k ≥ 1) of L(A)-formulas
such that

∀ε > 0 ∃N ∀k ≥ N ∀x ∈Mn (| ϕMk (x)− P (x) |≤ ε).

2. A function f : Mn →M is definable inM over A if and only if the function d(f(x̄), y) on Mn+1 is a definable
predicate in M over A.

3. A set D ⊆Mn is definable in M over A if the distance predicate d(x̄, D) is definable in M over A.

The following lemmas are Theorems 2.13 and 2.15 of [10]. The Lemmes will be used in the proof of Lemma 3.6.

Lemma 2.2. Let (ank )k,n∈N be a double sequence and limk,n→∞ ank = a. Then the iterated limits

lim
k→∞

( lim
n→∞

ank ) , lim
n→∞

( lim
k→∞

ank )

exist and both are equal to a if and only if

• limn→∞ ank exist for each k ∈ N, and

• limk→∞ ank exist for each n ∈ N.
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Lemma 2.3. If (ank )k,n∈N is a double sequence such that

• the iterared limit limk→∞(limn→∞ ank ) = a, and

• limn→∞ ank exists uniformly in k ∈ N,

then the double limit limk,n→∞ ank exists and is equal to a.

2.2. Type-two theory of the effectivity (TTE)

In this section, the approach used to study effectivity is introduced briefly, [16]. The computability notions on
natural numbers, N = {0, 1, 2, . . . } are as usual. For a fixed finite set of alphabet Σ including 0, 1, assume Σ∗ is the
set of words (finite sequences on Σ) and Σω is the set of strings (infinite sequences on Σ). It is emphasized that
this is a mathematical approach to study the computability of problems in the mathematical analysis.

Definition 2.4. A naming system on a set M is a surjective function ν :⊆ X → M where X ∈ {Σ∗,Σω}. If
X = Σ∗, ν is called a notation and if X = Σω, ν is called a representation.

The following presents some examples of naming systems.

Example 2.1. 1. The binary notation νN :⊆ Σ∗ → N of natural numbers is defined by νN(ak . . . a0) = Σki=0ai.2
i

where a0, . . . , ak ∈ {0, 1}.
2. A notation of integers, νZ :⊆ Σ∗ → Z is νZ(1w) := νN(w) and νZ(0w) := −νN(w) for w ∈ dom(νN)\{0}.
3. A notation of rational numbers, νQ :⊆ Σ∗ → Q is νQ(ι(u)0ι(v)) := νZ(u)

νN(v)
where u ∈ dom(νZ), v ∈ dom(νN) and

νN(v) 6= 0.

4. The Cauchy representation ρC :⊆ Σω → R is defined as follows: ρC(p) = x if and only if there are words
w0, w1, · · · ∈ dom(νQ) such that p = ι(w0)ι(w1) . . . , | νQ(wi)−νQ(wk) |≤ 2−i for i < k and x = limi→∞ νQ(wi),
which is called rapidly converges.

By the wrapping function ι and the pairing function < ., . >, a new name can be obtained by the former ones, see
Definition 2.1.7 in [16].

If there exists a naming system for a set M , a new one can be obtained for Mω and Mk, for every k ≥ 1.

Definition 2.5. Let δ :⊆ X → M be a naming system for a set M where X ∈ {Σ∗,Σω}. Then, so are [δ]ω and
[δ]k of Mω and Mk, respectively, which are defined by

[δ]ω(< p1, p2, · · · >) := (δ(p1), δ(p2), . . . ),

and
[δ]ω(< p1, p2, . . . , pk >) := (δ(p1), δ(p2), . . . , δ(pk)).

A prefix of p ∈ Σω is a finite word w ∈ Σ∗ such that there is a q ∈ Σω with p = wq. Then, it is denoted by
w v p. To define a continuous and then a computable function, a topology should be set on Σω which is the Cantor
topology. Open sets in this topology are wΣω = {p ∈ Σω | w v p}. So, the function f :⊆ Σω → Σω is continuous
if it is continuous with respect to this topology. Also, f :⊆ Σ∗ → Σ∗ is continuous with respect to the discrete
topology. Note that a computable function is continuous.

In the following, a computable function on Σ∗ and Σω is defined, ([14], Definition 5.1 and Lemma 5.2).

Definition 2.6. 1. A function f :⊆ (Σ∗)k → Σ∗ is computable if νN ◦ f ◦ (νkN)−1 is a computable function from
Nk into N in the sense of classical computability theory.

2. A function h :⊆ (Σ∗)k → Σ∗ is monotone-constant iff

h(y) ↓ and y v y′ ⇒ h(y′) ↓ and h(y) = h(y′).

For monotone-constant function h, define T∗(h) :⊆ (Σω)k → Σ∗ by

T∗(h)(x) = w :⇐⇒ (∃y ∈ (Σ∗)k)(y v x ∧ h(y) = w).

A function f :⊆ (Σω)k → Σ∗ is Turing computable iff f = T∗(h) for some Turing computable monotone-
constant function h :⊆ (Σ∗)k → Σ∗.
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3. A function h :⊆ (Σ∗)k → Σ∗ is monotone iff

h(y) ↓ and y v y′ ⇒ h(y′) ↓ and h(y) v h(y′).

For a monotone function h define Tω(h) :⊆ (Σω)k → Σω by

Tω(h)(x) = q :⇐⇒ q = sup
v
{h(y) | y v x and h(y) ↓}.

A function f :⊆ (Σω)k → Σω is Turing computable iff f = Tω(h) for some Turing computable monotone
function h :⊆ (Σ∗)k → Σ∗.

When the notion of a computable function on Σω and Σ∗ is established, a general computable function can be
defined. This definition can be naturally extended for the functions on M1 ×M2 · · · ×Mk.

Definition 2.7. 1. Let γ :⊆ X → M and δ :⊆ Y → N be two naming systems where X,Y ∈ {Σ∗,Σω}. A
function g :⊆ X → Y is a (γ, δ)-realization of the function f if f ◦ γ(x) = δ ◦ g(x), for all x ∈ dom(f ◦ γ).

2. The function f :⊆M → N is (γ, δ)-computable if it has a computable (γ, δ)-realization. (Figure 1)

X Y

M N-

-

? ?

g

f

γ δ

Figure 1: g is a (γ, δ)-realization of f whenever f ◦ γ(x) = δ ◦ g(x), for all x ∈ X such that f ◦ γ(x) exists.

2.3. Effective metric model theory

In the following, the concepts of computable and decidable metric structures are explained. This approach to
study the effectiveness of the metric structures was first introduced in [13].

Definition 2.8. [16]

1. An effective metric space is a tuple M = (M,d,A, α) such that
(a) (M,d) is a separable complete metric space.
(b) α :⊆ Σ∗ → A is a notation of a dense and countable subset A ⊆M .

2. A computable metric space is an effective metric space such that
(a) dom(α) is c.e.
(b) d |A×A is an (α, α, ρC)-computable function.

Similar to Example 2.1.3, a generalization of Cauchy representation can be defined for an effective metric space.
This representation is defined to study the computability of functions and predicates in a metric structure.

Definition 2.9. [16] For an effective metric space M = (M,d,A, α), the Cauchy representation δM :⊆ Σω → M
is defined by δM (p) = x, where p = ι(w0)ι(w1) . . . , for w0, w1, · · · ∈ dom(α), d(α(wi), α(wk)) ≤ 2−i for i < k, and
x = limi→∞ α(wi), rapidly converges.

For instance, if we let e to be Euclidean metric over R, (R, e,Q, νQ) is a computable metric space. In this case,
δR is exactly the Cauchy representation ρC in the Example 2.1.

There exists a representation η for Fωω, the set of all partial continuous functions f :⊆ Σω → Σω with Gδ-
domain. It means p ∈ Σω is a name for a continuous function ηp :⊆ Σω → Σω with a Gδ-domain which on input q
returns the value ηp(q). For more details of this representation, see [6] and [13].

By the above representation, a continuous function f ∈ Fωω is computable if there is a computable p ∈ Σω such
that f = ηp.

Below, by the representation η, a new one for the set of continuous total functions f : M1 →M2 can be obtained,
for every two sets M1 and M2.

Definition 2.10. [6] Let γ1 :⊆ Σω → M1 and γ2 :⊆ Σω → M2 be two representations. For the set C(M1,M2) of
continuous total functions f : M1 →M2, define a representation [γ1 → γ2] :⊆ Σω → C(M1,M2) as follows:

[γ1 → γ2](p) = f :⇐⇒ (f ◦ γ1)(q) = (γ2 ◦ ηp)(q),

for every q ∈ Σω such that (f ◦ γ1)(q) exists.
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Next, the notion of an effectively presented language L and then a computable and a decidable L-structure will be
established [13].

Definition 2.11. A countable signature L is effectively presented if

1. The sets of variable, predicate, function and constant symbols are computable. It means if cV :⊆ Σ∗ → V ar,
cP :⊆ Σ∗ → P, cF :⊆ Σ∗ → F and cC :⊆ Σ∗ → C are the naming systems for the sets of variables, predicate,
function and constant symbols, respectively, then dom(cV ), dom(cP ), dom(cF ) and dom(cC) are c.e subsets of
Σ∗.

2. Moduli of uniform continuity of predicate and function symbols are (ρC , ρC)-computable functions.

Similar to computability theory, a notation c for Form, the set of L-formulas exists such that dom(c) is a c.e.
set. So, let {ϕn | n ∈ N} be an effective list of the set of all L-formulas.

Now, let (M,d,A, α) be an effective metric space. Put the Cauchy representations δM on M and ρC on [0, 1].
Let M be a metric L-structure based on (M,d,A, α). Assume

Form(M, L) = {ϕM : Mnϕ → [0, 1] | ϕ is an L-formula with nϕ free variables}.

To define a representation on Form(M, L), take the representation βn = [[δM ]n → ρC ] :⊆ Σω → Form(M, L)n,
where

Form(M, L)n = {ϕM : Mnϕ → [0, 1] | ϕ is an L-formula with n free variables},

for any n ∈ N. Since Form(M, L) =
⋃
n∈N Form(M, L)n it follows that the function β :⊆ Σω → Form(M, L)

defined by β(0n1p) = βn(p) for each p ∈ dom(β), is a representation for Form(M, L). A similar representation
βat can be defined for the set of all interpretations of atomic L-formulas in M, Format(M, L), instead of the set
Form(M, L).

Therefore, a computable and a decidable metric structure can be defined.

Definition 2.12. 1. With the preceding assumption, a metric structure M is computable iff the sequence

(ϕMn : Mnϕ → [0, 1] | ϕ is an atomic L-formula with nϕ free variables)n∈N

has a computable [βat]
ω-name.

2. Respectively, a metric structure M is decidable iff the sequence

(ϕMn : Mnϕ → [0, 1] | ϕ is an L-formula with nϕ free variables)n∈N

has a computable [β]ω-name.

Actually, [β]ω is a naming system for Form(M, L)ω which is the set of all sequences on Form(M, L). Hence,
for a decidable metric structure M, there is an algorithm such that for a given L-formula ϕ(x1, . . . , xn) and
a1, . . . , an ∈M , it returns a good approximation of ϕM(a1, . . . , an) in rational numbers. This means that, for each
ε > 0, r, s ∈ Q is computably found such that r < ϕM(a1, . . . , an) < s and s− r < ε.

3. Computably definable predicates

In this section, a computably definable predicate is defined and characterized. Let M be a metric structure
based on an effective metric space M = (M,d,A, α) and assume ρC = ρ.

Definition 3.1. (Modulus of convergence) A function e : N→ N is called a modulus of convergence of a sequence
(xi)∈N if for i, k ≥ e(n)

| xi − xk |≤ 2−n.

The following proposition is Theorem 4.2.3 of [16]. It provides a sufficient condition for the limit of a sequence
to be computable.

Proposition 3.2. Let (xi)i∈N be a (νN, ρ)-computable sequence of real numbers with computable modulus of con-
vergence e : N→ N. Then, its limit x = limi→∞ xi is computable.

In the following, a computable formula is defined.
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Definition 3.3. An L-formula ϕ with n free variables is computable in M when ϕM : Mn → [0, 1] is a (δM , ρ)-
computable function.

Now, the concept of a computably definable predicate can be introduced.

Definition 3.4. A predicate P : Mn → [0, 1] (with n-arity) is computably definable in M (over ∅) iff there is a
sequence (ϕk(x) | k ≥ 1) of computable L-formulas such that the sequence of predicates (ϕMk (x) : Mn → [0, 1] |
k ≥ 1) is a (νN, ρ)-computable sequence with a computable modulus of convergence and P (a) = limk→∞ ϕMk (a),
for every a ∈Mn.

Obviously, if an n-arity predicate P is computably definable inM then by Proposition 3.2, P (a) is computable
for every a ∈Mn.

Below, Corollary 20 of [17] is presented which is a computable version of Tietze Extension Theorem. It will be
used in the proof of Theorem 3.7 to characterize a computably definable predicate.

Proposition 3.5. Every (δ, ρ)-computable function f :⊆ M → R with co-r.e domain has a (δ, ρ)-computable total
extension f : M → R with the same sup and inf.

Assume
C = {(ak)k∈N ∈ [0, 1]N | ∀N ∈ N ∀i, j > N | ai − aj |≤ 2−N}.

Also, let ([0, 1]N, d) be a metric space such that the metric d is defined by

d((ak), (bk)) = Σ∞k=02−k | ak − bk |,

for every (ak), (bk) ∈ [0, 1]N. Since ([0, 1]N, d) is compact, it is separable. Therefore, let A be a countable and dense
subset of [0, 1]N and α be a notation for A. So, N = ([0, 1]N, d, A, α) is an effective metric space.

Thus, the Cauchy representation δ can be defined for [0, 1]N as follows

δ(p) = (ak)k∈N :←→ ∃p0, p1, · · · ∈ dom(α),

p := ι(p0)ι(p1) . . . ,

d(α(pi), α(pj)) ≤ 2−j(i < j),

(ak)k∈N = lim
n→∞

α(pn).

(1)

Every sequence in C is Cauchy and so its limit exists in [0, 1]. We can define a function f : [0, 1]N → [0, 1] by
f((ak)k∈N) = limk→∞ ak and dom(f) = C.

Lemma 3.6. The above function has a closed and co-c.e domain and is (δ, ρ)-computable.

Proof. It is obvious that C is a closed and co-c.e subset of [0, 1]N. Now, let p be a δ-name of (ak)k∈N. So, p is of
the form ι(p0)ι(p1) . . . such that pn ∈ dom(α), n ∈ N and for i > j,

d(α(pi), α(pj)) ≤ 2−j

and
(ak)k∈N = lim

n→∞
α(pn).

So, if α(pn) = (qnk )k∈N then for every k ∈ N,
ak = lim

n→∞
qnk .

Thus,

a = lim
k→∞

ak = lim
k→∞

lim
n→∞

qnk

= lim
n→∞

lim
k→∞

qnk .
(2)

The last equality is proved by Lemmas 2.2 and 2.3. Since

1. limk→∞ limn→∞ qnk = a, and
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2. limn→∞ qnk = ak is uniformly in k ∈ N.

by lemma 2.3, limk,n→∞ qnk = a. And, since

1. limk,n→∞ qnk = a,

2. limn→∞ qnk = ak, and

3. limk→∞ qnk exists,

by lemma 2.2, limn→∞ limk→∞ qnk = limk→∞ limn→∞ qnk = a.

The proof of the third item is as follows:
Since ak = limn→∞ qnk , there exists N1 ∈ N such that for every n,m ≥ N1,

| qnk − ak |≤ 2−k−2.

Also, a = limk→∞ ak, for every k < l implies that

| ak − al |≤ 2−k−2.

And, since al = limn→∞ qnl , there exists N2 such that for every n ≥ N2

| al − qnl |≤ 2−l−2.

Let k < l and n ≥ max{N1, N2}. Then,

| qnk − qnl | ≤| qnk − ak | + | ak − al | + | al − qnl |
≤ 2−k−2 × 2 + 2−l−2 ≤ 3× 2−k−2 ≤ 2−k.

(3)

The result is that limk→∞ qnk is exists and for k ≤ l, | qnk − qnl |≤ 2−k, for every n ∈ N except finitely many
numbers.
For every n ∈ N, define

tn =

{
qnn qnn ∈ Q
sn qnn /∈ Q, | sn − qnn |≤ 2−n, sn ∈ Q

So, a = limn→∞ qnn = limn→∞ tn. If wn is a νQ-name of tn, for every n ∈ N, then ι(w1)ι(w2)... is a computable
ρ-name for a.

�

The next theorem provides necessary and sufficient conditions for a predicate is computably definable in metric
structures.

Theorem 3.7. Let M be an effective metric space. Assume P : Mk → [0, 1] is a predicate. Then, P is computably
definable iff there are a (δ, ρ)-computable function u : [0, 1]N → [0, 1] and computable L-formulas (ψl(x) | l ∈ N)
such that for all a ∈Mk, P (a) = u(ψMl (a) | l ∈ N).

Proof. Let P have the specified form. Then, by Prop 9.3 of [2], P is definable. Then, for every n ∈ N, there
is an mn > n in N such that

| u((ak)k∈N)− u((bk)k∈N) |≤ 2−n(∗)

whenever ak = bk for k = 0, . . . ,mn. For the simplicity, let m = mn. Since u is (δ, ρ)-computable, the function
um : [0, 1]m+1 → [0, 1] defined by

um(a0, . . . , am) := u(a0, . . . , am, 0, . . . , 0, . . . )

is also (δ, ρ)-computable. Since um just accepts finite sequences, it implies um is ([ρ]m, ρ)-computable. So, ϕn(x) :=
um(ψ0(x), . . . , ψm(x)) is a ([δM ]k, ρ)-computable, for some k ∈ N. Notice that an algorithm is presented to construct
this sequence. If we define e(n) = n for every n ∈ N, then for i, j ≥ e(n),

| ϕMi (a)− ϕMj (a) |= | u(ψM0 (a), . . . , ψMmi
(a), 0, . . . , 0, . . . )

− u(ψM0 (a), . . . , ψMmj
(a), 0, . . . , 0, . . . ) |

≤ 2−e(n) = 2−n,

(4)
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according to (*). So, the modulus of uniform convergence of the sequence is computable. By proof of Prop 9.3
of [2],

| P (a)− ϕMn (a) |≤ 2−n.

Therefore, P (a) = limn→∞ ϕMn (a), for every a ∈ Mk. by Proposition 3.2, P (a) is computable and P is a com-
putably definable predicate.

Now, let P be computably definable. Consider the set

C = {(ak)k∈N ∈ [0, 1]N | ∀N ∈ N ∀i, j > N | ai − aj |≤ 2−N}.

Each sequence (ak)k∈N in C is a Cauchy sequence in [0, 1]N. So, it converges to a limit that is denoted by lim(ak).
Moreover, C is a closed and co-c.e subset of [0, 1]N and the sequence of computable formulas, (ϕMl (x) | l ∈ N)
converges to P (x) is in C for every x ∈ Mn. According to Lemma 3.6, the function lim : C → [0, 1] is (δ, ρ)-
computable. By Proposition 3.5, there is a (δ, ρ)-computable function u : [0, 1]N → [0, 1] that agrees with lim on C.
Therefore, for every a ∈Mk,

P (a) = u(ϕMl (a) | l ∈ N) = lim
l→∞

ϕMl (a).

If a is [δM ]k-computable then P (a) is ρ-computable.

�

Corollary 3.8. An operator T : M → M on an effective metric space M is computably definable if and only if
there are a (δ, ρ)-computable function u : [0, 1]N → [0, 1] and computable L-formulas (ψk(x, y) | k ∈ N) such that for
all a, b ∈M , d(T (a), b) = u(ψMk (a, b) | k ∈ N).

Corollary 3.9. Let M be a first-order structure and D ⊆Mn is a definable set. So, there is a first-order formula
ϕ such that D = {a ∈ Mn | M |= ϕ(a)}. The structure M can be assumed to be a metric structure with discrete
metric d. So, D is definable in the metric structure M if there is a sequence of formula (ϕk(x) | k ∈ N) such that
for all a ∈Mn

| ϕMk (a)− d(a,D) |< ε.

Since d is a discrete metric, it means that there is just one formula ϕ(x) which is equivalent to d(x,D). Moreover,
according to Theorem 3.7, d(x,D) is computably definable iff there are a sequence of computable formula {ψk(x) |
k ∈ N} and a (δ, ρ)-computable function u : Mn → M such that d(x,D) = u(ψk | k ∈ N). Thus, d(x,D) is
computably definable in M if and only if whenever one gives a computable δM -name of ”a” then a ρ-name of
d(a,D) can be computed. Thus, one can computably decide whether a ∈ D holds. So, D is a computable set in the
sense of classical computability theory.

4. An example

In the following example, assume that the language is effectively presented.

A separable infinite-dimensional Hilbert space H over R is a many-sorted structure

H = ((Bn(H))n≥1, {Imn}m<n, {λr}r∈R,+,−, <>, 0, {cn}n∈N)

where

• Bn(H) = {x ∈ H :|| x ||≤ n}, for n ≥ 1 where || x ||= √< x, x >. These sets are called domains,

• 0 is the zero vector in B1(H),

• Imn : Bm(H)→ Bn(H) is the inclusion map for m < n,

• λr : Bn(H) → Bnk(H) is scalar multiplication by r, for r ∈ R and n ≥ 1 such that there is a unique integer
k ≥ 1 with k − 1 ≤| r |< k,

• +,− : Bn(H)×Bn(H)→ B2n(H) are vector addition and subtraction,

• <>: Bn(H)×Bn(H)→ [−n2, n2] is inner product for every n ≥ 1.
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• {cn}n≥1 is the set of constant symbols added to the structure to show the separability.

This structure is a metric structure by the metric d(x, y) =|| x− y ||.

The class of separable infinite-dimensional Hilbert structure is axiomatizable by the following axioms:

1. The axioms for Hilbert space,
2. The axiom for infinite dimensionality; for every n ≥ 1,

max
1≤i,j≤n

|< ci, cj > −δij |= 0

where δij = 1 if i = j and δij = 0 otherwise.
3. The axiom for basis;

sup
x
| x− Σn≥1 < x, cn > cn |= 0

The last two axioms show that the structure has an orthonormal basis and so separable. Note that in the last
axiom, since just finitely many coefficients are non-zero, this axiom is actually a valid sentence. The above set of
axioms is denoted by SIHS. An L-structure M is a model of SIHS if and only if it is isomorphic to a separable
infinite-dimensional Hilbert structure.

Now let H be a model of SIHS. It is obvious that the set A of finite combinations of orthonormal basis with
rational coefficients are a countable dense subset of H, the universe of H. Let {en : n ≥ 1} be an orthonormal basis
of H. So, A can be shown by

A = {Σmn=0qinein : in ≥ 1, qin ∈ Q,m ≥ 1}.
Since the language for this structure is effectively presented, there is a computable notation for {cn : n ≥ 1}. Thus,
by the interpretation cMn = en, for every n ≥ 1, the set {en : n ≥ 1} is a computable set. Moreover, the notation
c : Σ∗ → A is computable which is defined by c(p) = Σmn=0qinein if and only if p = ι(ri0) . . . ι(rin)010ι(pi0) . . . ι(pin)
such that νQ(rij ) = qij and cC(pij ) = cij with cMij = eij , for 1 ≤ j ≤ m.

Therefore, the Hilbert space H can be equipped with the Cauchy representation δH .

Now, it is proved that (Bn(H), d |Bn(H),A∩Bn(H), c) is a computable metric space, for each n ≥ 1. Note that
the range of c should be limited to Bn(H).

By the definition, dom(c) is c.e. Therefore, it should be shown that d |A×A is (c, c, ρC)-computable. It is enough
to find a computable realization f :⊆ Σ∗ × Σ∗ → Σω such that

ρC(f(p, q)) = dA×A(c(p), c(q)) =|| Σmp

m=0qimeim − Σ
mq

n=0qinein ||

is computable.
First, it is proved that the inner product is a computable function. The interpretation of the inner product is
the function < ., . >: H2 → R. This function is (δ2H , ρC)-computable iff there exists a computable function
f :⊆ Σω × Σω → Σω such that ρC(f(p, q)) =< δH(p), δH(q) >, for every p, q ∈ dom(< δH , δH >). Let δH(p) =
limk→∞ c(pk) = limk→∞Σ

mpk
n=0qinein and δH(q) = limk→∞ c(qk) = limk→∞ Σ

mqk
m=0q

′
im
eim . Then

< δH(p), δH(q) >=< lim
k→∞

Σ
mpk
n=0qinein , lim

k→∞
Σ
mqk
m=0q

′
imeim >= lim

k→∞
Σ
mtk
n=0qinq

′
in ,

by orthonormality of the basis. So, the inner product is a computable function, since the coefficients are the rational
numbers.

Therefore, the norm || . || is computable by the definition and computability of
√
.,− and < ., . >. Also, since

each en is the interpretation of cn and the set of constant symbols are computable, by presenting the language effec-
tively, the metric on A∩Bn(H) is computable. Note that the coefficients are rational numbers and so computable.
Therefore, (Bn(H), d |Bn(H),A ∩Bn(H), c) is a computable metric space, for each n ≥ 1.

By choosing δn to be the Cauchy representation for Bn(H), for every n ∈ N, the interpretations of +,− and
Imn are ([δn]2, δn)-, ([δn]2, δn)- and (δm, δn)-computable, respectively.

Now, it is proved that λr is (δn, δnk)-computable such that k − 1 ≤ r < k. Let p be a computable δn-name for
x ∈ Bn(H) and q be a computable ρC-name for r. Then, ι < q(0), p(0) > ι < q(1), p(1) > . . . is a computable
δnk-name for rx ∈ Bnk.
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Corollary 4.1. In an effectively presented language, every separable infinite-dimensional Hilbert structure is com-
putable.

In the rest of this example, the effectiveness of definable operators which is found in [5] is studied. Let H |= SIHS
with universe H and T : H → H be a linear operator.

Proposition 4.2. 1. If T is a finite-rank operator then it is computably definable.

2. If T is a compact operator then it is computably definable.

Proof.

1. Assume {e1, e2, . . . , en} is an orthonormal basis for T (H). By computable version of the theorem of Fréchet-
Riesz (Theorem 4.3 [3]), there exist [δH , ρC ]-computable bounded linear functionals f1, . . . , fn : H → R such
that for all x ∈ H,

T (x) = f1(x)e1 + · · ·+ fn(x)en.

So, for every δH -computable x ∈ H and 1 ≤ i ≤ n, fi(x) is ρC-computable. For every 1 ≤ i ≤ n, by
Fréchet-Riesz representation theorem fi(x) =< x, zi >, for some zi ∈ H. So,

d(T (x), y) =
√

Σni=1(< x, zi >2)− 2Σni=1(< x, zi >< ei, y >)+ || y ||2

which is a formula. Since this structure is computable, the interpretation of this formula is ρC-computable for
every δH -computable x, y ∈ H. Therefore, the finite-rank operator T is computably definable.

2. Let T be a compact operator and (Tn)n∈N be a sequence of finite-rank operators such that || T − Tn ||→ 0.
By the first part, for every n ∈ N, Tn is computably definable and moreover, it is expressed by a computable
formula. For every N ∈ N, there is K ∈ N such that

|| T (x)− y || − || TK(x)− y ||≤|| T (x)− TK(x) ||≤|| T − TK ||≤ 2−N ,

for x, y of suitable domains. Since || TK(x) − y || is a computable formula, || T (x) − y || is a computably
definable predicate. Thus, the compact operator T is computably definable.

�

The following proposition is used in the proof of Theorem 4.4.

Proposition 4.3. If T1, T2 are computably definable then so are T1 + T2.

Proof. By Lemma 2.2 of [5], T1 + T2 is definable. Let (ϕ(x, y))n∈N be a computable sequence of formulas such
that ϕn(a, b)→|| T1(a)− b || rapidly converges, for a, b of suitable domains. By substituting b− T2(a) instead of b,
the result is obtained.

�

Therefore, it can be proved that every definable operator on a separable infinite-dimensional Hilbert structure
is computable.

Theorem 4.4. In every model of SIHS, every definable operator is computably definable.

Proof. By Theorem 4.1 of [5], every definable operator is of the form T = λI +K, for some compact operator
K. Since the structure is computable, the scalar multiplication is computable. So, the operator λI is computably
definable. Also, by Propositon 4.2.2, K is computably definable. Thus, by Proposition 4.3, T is a computably
definable operator.

�

5. Conclusion

In this paper, it is shown that TTE can be a powerful method to study the effectiveness of problems in
Mathematical Analysis. One can use this approach to study effectiveness in a mathematical style. So, since
metric model theory is the logic of studying metric structures as Hilbert spaces, TTE is a suitable way to obtain
the computable versions of problems in these spaces. Moreover, by TTE, an effective version of definability in
metric model theory is investigated. Also, it is proved that in an effectively presented language, every separable
infinite-dimensional Hilbert structure is computable. Consequently, every definable operator on such spaces is
computable.
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