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ABSTRACT: This paper considers robust control of uncertain linear neutral systems with multiple
state and state derivative delays. With equivalent descriptor representation, the stabilization problem
is extended to more general class of neutral-type uncertain linear systems with discrete and distributed
delays. The parametric uncertainties are time varying and unknown but norm bounded. Two delay-
dependent/independent approaches are proposed to design robust controllers for a class of uncertain
linear neutral systems with parametric uncertainty, discrete and distributed multiple delays. Using a
presented descriptor model and an appropriate Lyapunov functional, sufficient conditions for closed
loop stability are given in terms of linear matrix inequalities (LMIs). Solving the LMI problems, a robust
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memoryless state feedback is designed for all admissible uncertainties. The results depend on the size

and varying rate of the delays. Two examples are provided to show the effectiveness of the proposed

strategy.
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1- Introduction

Many engineering applications are involved with time—delay
systems such as networks, mechanical, energy, process
control, computer — based control systems and stochastic
systems [1-5]. Time-delay in dynamical systems is often a
source of instability and poor performance, which presents
in many applications such as stochastic perturbations [5],
Hoo control theory [6-7], optimal control of time — delay
systems [8], and output-feedback stabilization approaches
[9]. Recently, neutral systems with multiple delays in both
state and/or inputs and the derivatives of states have attracted
attention in practical applications such as distributed
networks, population ecology and control process [10-16].
Based on the size of a delay, stabilization problem can be
classified into two categories: delay-independent and delay-
dependent, with either single or multiple delays. Most of
the robust control results based on the Riccati or Lyapunov
approach are independent of size of the delay (the time delay
might be arbitrarily large), and they are thereby conservative.
In neutral systems, delay dependent methods are generally
less conservative, especially when the size of the delay is
small [7,10-12]. Based on the Lyapunov — Krasovskii stability
theory, using linear matrix inequality (LMI) techniques and
descriptor system representation, stability conditions are
proposed [10-18].

*Corresponding author’s email: boroumand@fasau.ac.ir

Descriptor systems present a general mathematical
framework for the modelling, simulation and control of the
complex dynamical systems. In this paper the descriptor
system representation transforms the original system
into a distributed system to reduce conservatism [19]. In
this direction, a part of the proposed strategies to reduce
conservatism either do not consider uncertainty [8-11,17-21]
or are not extendable to the class of neutral-type systems with
distributed or multiple delays [7,12,21-25]. To resolve these
shortcomings, [26] proposed strategies to robust stabilize
neutral systems with multiple distributed delays and non-
parametric uncertainties. On the other hand, [13-26] derived
stability conditions for neutral systems with multiple delays.
However, the stability conditions are not extended to systems
with distributed delays. In this paper the stabilization problem
is extended to more general class of neutral-type uncertain
linear systems with multiple delays. Two delay-dependent/
independent approaches are proposed to design robust
controllers for a class of uncertain linear neutral systems
with parametric uncertainty, discrete and distributed multiple
delays. The closed loop stability is guaranteed by solving a
set of appropriately derived LMIs.

The rest of this paper is organized as follows: In Section 2, a
new stability sufficient condition for uncertain neutral linear
systems with discrete multiple state delay is presented based
on the descriptor system representation. The robust stability
of the delay system and delay-dependent is formulated in
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appropriately defined LMIs. In Section 3, by introducing a
new Lyapunov functional, the stability condition is extended
to structured uncertain neutral systems with discrete and
distributed multiple delay. Based on the stability condition,
designing delay dependent/independent state feedback
control is formulated in terms of LMI. Several examples are
presented to show the effectiveness of the proposed solutions.
Finally, concluding results are given in section 4.

2- Problem Statement
Consider the uncertain time-delay systems described by the
following state equations:

(1)
DAx(t-h) x(t)=0(t)e[0 ]
i=0
Where :
D, =D, +AD, ,
A, =4, + M,
. 2)
A,=A,+AA4,,

(4=A+BK, Ad,=AA4+ABK)
and x (t)eR".hy=0,0<h, <h,i=1l..,m, A and D, are
constant nxn matrices, and ¢ is a continuously differentiable

initial function.
In this paper, the admissible uncertainties are described by:

A4, =D,F, (x,t)E,

A4, =DyF,(x,t)E,

[Ad AB]|=DF,(x.t)[E, E,]. (3)
E,=E,+EK

AD, =D,F, (x,t)E,

where D, E, E , D, E ., E, and E, are known constant real
matrices of appropriate dimensions, and F; (x.¢) and are
unknown real-value time varying matrices with Lebesgue
measurable elements satisfying the following bounds:

ET (x,t) .(x,t)SI

1

“4)
F (x,t)FO(x,t)Sl, Vit
Assumption Al:
;\5’ <1 (5)

Where is any matrix norm.

Under assumption Al, both stability conditions associated
with continuous and continuously differentiable initial
functions are equivalent [10]. The following lemmas are
essential in deriving stability conditions in the rest of the
paper.

Lemma I[28,29] : Forany z,y €R" and any positive definite
matrix X eR"™ 2"y <z"X 7'z +y" Xy

Lemma 2 [28,29]: Let A, D, E and F be real matrices of
appropriate dimensions with ||F| <7 . Then we have:

Forany £>0,DFE +E"F'D" <¢'DD" +¢E"E

For any matrix P> 0 and scalar

a >0 satisfying ¢ —EPET >0,

(A +DFE)P (4 +DFEY <APA” +APE" (eI ~EPE" ) EPA” +¢DD"

For any matrix P> 0 and scalar > 0 , satisfying P —¢DD” >0

(4 +DFE) P™(A+DFE)<A" (P~¢DD") A +¢'E"E

2- 1- Stability of Delay-dependent Uncertain Linear Systems
The system given in (1) can be represented in an equivalent
descriptor representation as follows:

X(t)=y(), »(t)=
iﬁzy (g )+ifiix (t =) (©6)

i=0

x )=y (),

m

0=y (1)+ 3D,y (1)

i=1 (7
7{;,{. jx (t)—; ~i Ii_hiy (S )ds

Consider the following Lyapunov—Krasovskii functional:
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Ve)=[x"() »" ()]

cep|* () LV 4V,
vt

)

®)

Where:
I O
E= ,

V=3 [0L, ¥ (), Q, >0,

B0 r
=lp plH=H >0
2 3

(10)

R y(s)dsd@ R, >0, (1)

V2= zi:,'[ﬁh” .[iw’yT

The first terms of equation (8), V, and V, are associated
with the descriptor system, delay independent stability with
respect to the discrete delays, and delay-dependent stability
with respect to the distributed delays.

In this Section, we present a sufficient condition for stability of
system (1) by a memoryless feedback based on the Lyapunov
functional method. The condition is in terms of solvability of
a linear matrix inequality as stated in the following theorem.

Theorem 1. The system given in (1) is stable for all under

. . X R
Al, if there ex1stX:[Xi Pt X, =XT>0X, X,

0 =0">0.R =R" >0,& >0,i =1,...,m such that:

- - _ 0 0 7
T T
7o 0 05 X o] X ecpu)
* 9_2 9_3 0 0 0
W=|* * 0, 9 0 0 <0 (12)
* ok 06 0 0
s s v —diag(@) 0
[« % % * —diag(h;R;) |
Where
T T
¢ 0 0| 10 (4Xx,) +(BY)
v +
AX +BY 0 0 0

0 0
EE
+Xx7 Z§ X

+ m
0 2>¢'D,D]
Z 0 0

0 0
+ -1
0 & DoD

no 072
h, L’]R, [0 47].

0 0
o Zh.»;DD’

[fil—{;i}ei[o E,.TJJ>O.

Therefore, the state-feedback gain is given by .
Proof: By presenting system (1) in the equivalent descriptor
form we have:

(13)

J‘t hl

Taking derivative of equation (8) with respect to t and
applying (13) we obtain:

—h )+(g/f,.j )-S,

i=0

S—
+
“'MS

v
=

=1

L3 ()Qu (1) =Dy (t=h)Qu (t—h,)
i=1 —
also
dV2 LU} ;
dezj_h,- (t)R,y (t)do,
i=l
20
_;j_hin (t +0)Rly (f +9)d9: ”
Zhin _Zj.iihiyr R ) (S)ds
i=1 P
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Therefore we will have:

20 OQ+hR ]y ()= (15)

—Zj.iihiyr (s )Riy (s )ds
~ 0 0 0
B2 AR TR |
_ |[0 fP Q. 0 0 0 |,
o o 0o - o & |
[ : : 0 . 0 J
[0 DIIP 0 0 0 —-Qn
+277, Zj‘iihiy ()Rly (s)ds
Where
c=[x"(t) ¥ () ¥ (t=h) ... ¥ (t=h,)]
{ O ]]
w=P"| & .
A -1
Z; (16)

7, = _2."27}”' |:x '

Using Lemmas 1 and 2:

(18)

X
~
1
=
_—=
N—— N
%I
\:
/-\
\—/
Y
<
—~
N—
Y

(IS)SI:XT (1) »" (t):'h,.PT X

[Lﬂ}el‘[o A7 ]{HR;‘[O E"][él {;)JR['[O E’T}][E}R’I[O A”j

XP|:);((§ﬂ+h [x" () »y"()]P"¢ {0 DOD }P[;((ttﬂ (19)

[;I—{;}R['[O Ef]j>o o >0,i=1,..,m.

Further, for ¥ we have:

0 I m
0 YAS
‘/7:PT 7 =P
Z(;Ai . P
0 0 0 I
m P T m
o S[Q+hR,] 4, -
i=1 i=0
[ 0 0
+ 0 ;Af P+ m (20)
1 0 ;[Qi+h1Rl]
0 LI
| 0 ;AAi

0 0 r
pr Lo oagl,
A, 0| |0 o0
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I AR A A
0

¢|l0 DilP - -Q 0o . o
p[o 9o s S
A, 0] |0 O [o DLIP 0 0 0 -Qn
0 0 0
[0 o7[F, 00 o (. "ol 7l - PT[Em”
P o b0 EI|E o + =€“[0 prp -Q, 0 . 0 I
0 _ 0 —Q2 0 :
T : : 0
[0 0 —Qm
P
{ } }{ }} | PT[AD] P [ADZ]
[0 ADI] 0
<GP’ 0 0T ,, «0 o 0
0 D0 0 D, | : ; :
. lo AD,Tn]P 0 0o o0
0 0|0 O 0
cfo[ } [ } [ ] P lag) Plan) - Pl
E, 0] [E, O _ |[o ADTIP 0 0 0
=0 0 0 0 0
o0 EETE, 0 ; : Lo
=P o ;[P + P : : : :
0 &' D,D, 0 0 [0 ADLIP 0 0 0 0
So
0 1 0 iA r 21 According to the (2-4) we have:
w<y=P'|& + 0 &P+
24 I - 0 pr[ 9 pr[ 0
] [ 5] = " [an, ]
0 0 0 0 [[0 ADTIP 0 0 j
m +PT m P+
0 > [Q+hR,] 0 Y&'D.D! [0 ADLIP 0 0
L i=1 i=1 0 0 0 0
: oo 01 . 2]
0 o [aD AD,
-zfz"E"TE" 0 +PT[O 0 }P{;’Ewo . =10 1o 0 o 0
- 0 &'DDE 0 0 A | R ;
0 0 S Dols 0 0 - U o o 0
0 0 01fP o 0
Consequently from (15-20), we will have: [0 ADT] o offo 1 0
" p [51 _p D [0 apZ] o .. oflo o .. 1
W _ |l DIP -0 0 Where
dt : 0 -Q, 00O ] [ 0 ”[0 0 [0]
: : 0 0 0 [aD; AD,, I|0 o (D
llo bzlp o 0 0 —Qm o0 0 0 “050 0
00 0 o o o o
The first part of (21) can be written as:
00 0 0770 0 0 0
00 0 .. 0”0 0 0 0]|
0 0 F, . 0“0 0 E 0}
00 0 . Fulo 0 o Em
m T T T T
SlT® YT OIP [A]R [0 41+ (22) Using Lemma 2 we have:
0 0
-1 o P sp] - Pz
07, 0] - x(t) AD, AD,,
laJ R0 BT (R H ) |5, 710 AT) ol + [0 ADI]P 0 -~ 0
" 0 0 1.[x® - : | :
I hilxT () yT(t)]PT&[O DiDiT]P[y(t) [0 ADT]P 0 o |
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[ 0 0
pPT o PO o]
| lo Q. &y
< = |
g 0 0 0 0|+
l 0 0 0 OJ
0 0 0 0
|[0 0o 0 . 0 ]|
0 0 &ETE; 0 :
0 w0
0 0 0 &,ENE,
So
(22) < (I +
([PT ° n’ P 0 0 ]]
17lo > &l |
i=1 T —
5“ 0 0 & ETE, 0 WZ -
\ 0 0 0 fmi;flimb
r+rxr’
Consequently, we will have:
prl O] pr)? pr|?
Y o] " b " b,
w 0o Dfp o 0 U
o [0 D;]p o 0, 0 fene+
: 0 0
[0 Dy]p 0 o 0 -0, (24)

“[o A‘_r]J{ﬂR;I[o E,’}[él—[;}eﬂ[o E‘T}]I

i

Thus, by Schur complement, 4 if the following LMI

holds: dt
_ 0 0
[w b 0 & [vec{l}] [vec{l}] l
x 0, vec{E] } 0 0 0
w=|* x —diag(&§*1) 0 0 0 <0,
* % * 0, 0 0
l* * * *  —diag(Qi") 0 J
*oox * * * ~diag(hi 'R ")
And
E1— 0 R0 E[][>0
i Ei i i *
Where:
0 ] m
0 Yu’
W=PT|:m ]+|: IZ(;[]P+
>4, -1
i=0 1l -1
70 0 m
ETE.
Plo sSempr [0 RRETE O (25)
| < i i 0 0
M T
PT 0 » 0 ; P+ g()EOEO O +
_0 680 DODO 0 O
_0 0 m 0
P ] P+>hpP" RO AT |P
0 Zh[éDiD[T +IZ=I:I |:Ai:| , [ ' ]
L i=l
0
6 =vec {PT { _ }},
Di
0 T
0, =—diag (Q;) ,0, =vec {hiPT Ll :|Rf1 I:O ET ]} ,
0, =—diag| h, | E1- 0 R'o EN|| i=1..m
4 i| Si Ei i i > g ey 100
By pre and post multiplying (25) by

A]:diag{I,diag(Q['),I,I,[,I}, we have the following

}P E} ((Z )) } inequality:

(26)

_ T -
ioeefrfplef o e Ll L]
* —diag(Q;") vec{EiT}T 0 0 0

W =|x * —diag(é7'1) 0 0 0 <0
* * * 6, 0 0
* * * * —diag(Qi_l) 0
| * * * * * —diag(hl-_lRi_l)_
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Additionally, pre multiplying  (26) by
A, =diag {X,I,[,I,I,I} and Ag , where X =p'. Taklng
Y =XK - 0=0" R =R, and applying the Schur
complement, we obtain inequality (12), and the proof is
complete.

Functional V in equation (8) is degenerated, and has a
negative derivative which results in asymptotic stability of
(1) for continuous and based on assumption A1, continuously
differentiable functions [27].

and post

3- Delay-dependent/delay-independent ~ Stability  for
Uncertain System with Discrete Distributed Delays

i=l i=0

+ZA10L . ds+iHix (t—gi),
i=0

Where:

h.g; 20, Ay,

@7

=A;0+Ad;,

Ad,,=D,F, (xat)Emago =A4,+A4,,

In this section we extend the previous results to uncertain
systems with discrete and distributed delays:

and D, and E,  are known constant real matrices of appropriate
dimensions.

3- 1- Delay-dependent Stability
To find delay dependent stability criteria, we used the
descriptor representation of the system as follows:

x(t) = y(©),
k ~ " ~
r0)= 35 (-)+{ i 1 ).
i=l i=0
—i/fi ) ~i0,[i X (s)ds (28)
i=0  i=0
k
+ZH,.x (t —gl.),
i=0

By defining the Lyapunov-Krasovskii functional candidate
as:

V(e)=[x" ()

+Vi+V,+V;+V,

el

Where: (29)

10 P 0 .
E= , P= , P,=P" >0.
00 P, P

And:

VFZI Oy (s),y" (s)ds, Q >0, 30)

i=l—g,

)R,y (s)dsd@ R, >0, (31)

LAY Rt

Vi=%5 L VYT ()ds, >0, (32
kot
— T AT .
Vs = ; '[t_gix (s)U;x" (s)ds, U; >0, (33)

Mmoot
vV, = Z j J xT()R;oxT (s)dsd8, (34)
. t+0

We obtain the following result:
Theorem 2. Under assumption A1, the given system in (27)
is stable for all g, >0,i =1,...,k if there Then,

. _[X1 O
exist X = [Xz X5

X, =X{ >0X;,X5,0Q;
andR; =R > 0,R;, =R, >0,

= Q7,0 =0 i=1,.k

j=1,..,mandé§; >0,i=1,..,m
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that satisfy the following LMI:

[y, 6, 0 6, 6; 6, XTvec{l} XTvec{hl} XTvec{l} XTvec{r;I}]
x 05 B 0 0 O 0 0 0 0
x % 6, 0 0 0 0 0 0 0
x % % BOg 0 0 0 0 0 0
W= * * * * 9_9 _O 0 0 0 0 <0,
* * * * *  0Oq9 0 0 0 0
* * * * * * 9_11 0 0 0
* * * * * * * 9_12 0 0
* * * * * * * * 9_13 0
G- [ 0 0, [0 (Ax)T+ (BY)T] N and i )
AX1 + BY 0 0 0 011 = —dlag(Ql),l:],,k 012 = —dlag(hlﬁl),l = 1, e, m
[ 0 I m 0,5 = —diag(U)), i=1,....k. 01, = —diag(t;R;y), i=1,...,m.
m X4+ xT 0 z A? + d
ZAi - = N 0 0
Li=1 r = (fil - [E] R;[0 Ef]) > 0,(&1 - [E ]Rio[o EL-TO]) > 0.
r 0 i 10
0 0
0 ZZ & 1DiDl-T + 0 &D,DY + the state-feedback gain is then given by K =XV where
i=1 (4,=A+BK).

Proof: Similar to the proof of previous theorem we will have:

m
m
X7 ZfiEiTEi Ol x Zh-[o]ﬁ-o AT ]
A [Tl Al I B i

0o DIIP —Q, .. O 0 . 0
0 01~ v, 3~T - 0 0 o
+ R0 AT dt [0 DIlP 0 . —Q 0 0
[0 2% hi&D LODT] 2= [ ] ol iol- !l[o Hll;]P o . 0 U, 0 0 J! (36)
: ; : 0 ~ 0
q — Yl/h. q — T [0 #HIIP 0 .. 0 0 .. -U
o - scl[S] @) 6= 3]0} k k
0s = —diag(Q,), 85 = —diag(U,), N
_5 ‘?(QL)_ 8 g( l) + Zﬁﬂli + Zﬁlﬁio )
O = vec{EiT}, 0, = —diag(fi_1 I),i =1,..,k
Iy S YT Ry () ds = T, [ 2T (S)Ripx(s) ds.

93—Uec{ [ ]R [0 ET]}T

0y = —diag (hi (fiI — [Ol] R;[0 ET]>> i=1,..,m

Where:
{=k"® y"@® y"(t-g1)

yit—g) x"(t—g1) .. x"(t—gul

_ 01- T 0
0, = vec {hi [A ]Rio[o EiTo]} , 010 = m
i0 P, =PT i, ZA‘ P+
2
. 015
—dzag <hl (fll - [EL‘()] RiO[O E%])) [ 1 Ui + 2 21 Ti Ry 0 ]
0 1 Qi +X hiR;
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I 0 Y g 0 ) Al
- . + i|lp+ =PTIN" ; + ‘1P
4 ZAi —1 £ ¥ EAL- ~1 =
= I - =0 -
) =0 (37) . m
[ i=1 Ui + X% T Ry 0 ] [ZU +Z R 0 |
) 1 Ti i
0 21 Qi + X1 iR, = l = ’ |
+| k m |
l 0 Z Qi +Z hiRiJ
t 0 i=1 i=1
M = _th—hi[xT(t) yT(®)]P" [Ai] y(s)ds, (38) 0 I -
m T
<y, =P" +1° ZAi P+ D
AL 1 i=0
i=0 I =1

flio = =2 ftt_hl.[xT(t) yT ()] PT [1‘30] x(s)ds. (39)

By using Lemma 1 we will have:

i=1 i=1
0 ymO&GETE, 0
T 0
Py D ofllDDT]“[‘ F
0
~ T T T
Mo < hi I:x (t) Yy (t )]P |: - } Consequently from (19, 40,41), for the time derivative of
70 V(x, 1), (36), will have:
~ X (t)
XRi_ol [0 AiToj|P 40 0 0 0 0
v (t) 0 O B Y B A R A
[o DfIP -@, O 0 0 0
for @< o o o o o e+
=% P o 0 —Q 0 0
+-[t—lzix (S)Riox (S)ds “ [0 HT]P 0 0 -U; O 0 (43)
: : : 0 0 0
0 HIlP © 0 0 0 0 Uy

Then by using Lemma 2 we will have:
PE© YO ([A |zt an+
40)<[x"(¢) »"(c)]nP"

[ A,.z]{;sze;a[o s S ) el )L
RSO EE Bl @ Ol ][]+
e H;g))};;mxr(sm,.ﬁx(s)ds CONES VNP0 yT(t)]hPT<[A‘ZO]R;&[o AT+
VE:/[EO}R[O )]0 [ | R0 &) (8 = [ | Ri1o E"T"])_l

wi 200 bn [eJmto a)e [0+

Further, using Lemma 1, 2, for 7, we have:

mLT© YOy o] Ph
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Further for the first part of eq.43 we will have:

0 0 0
v 5] - g Pl
[0 DT1IP  -Q, 0 0 0
: 0 - : :
[0 DIlP 0 0 —Q 0 0
[0 HTIP 0 0 0 -U, 0
: : : 0
Lo HIlP 0 0 0 0 0
- 0 0 0
O I A
[0 DIlIP  —-@Q;, © 0 0
a : 0 0 :
~ilo DIlpP 0 -0 0
[0 HTIP 0 0 0 —-U,
: : 0
[0 HIP 0 0 0
0 0
o Plup) - Plap] 0
[0 ADIlP 0 0 0 0
[0 ADIIP 0 0 0 0
0 0 0 0 0
0 o .. 0o o .
By using Lemma 2 we will have:
0 0
| U T| ¥
o P [ADl] P [ADR]
[0 ADT]P 0 0
[0 ADI]P 0 0
0 0 0
0 0 0
[0 0
Plo gmoeopr]P 00
0 26 E.ET 0
0 0 2§k‘ékE§
0 0 0 0
0 0 . 0

.
P[]
0
0 | (44
0
0
.
o
0 0
o o |t
0 0
0
;
0
0
0
0
ol
;
00 0
S
00 0
00 0
: 10
0 o
0 0l
0 0
: : =F’
0 0
0 0
0 0.
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Also, according to the results of eq. (21-24 and 43-44), for
(43) have:

r[0 [0 r[0 [0
[ OO % a4 W Pl B Y
o B'P  —Q; .. 0O 0 . 0
av : 0 . 0 P _
=SS0 DIP 0 . - 0~ 0 |(T+U5T+
[0 HTIP 0 0 -U; 0 0 ‘ (45)
; P o0
o uflp 0 .. 0 0 . U J

Y@ 5 O ([4]rito an+

=1
-[ji]Rgl[o Ef](éil—[gi]Ri‘l[o Ef]>_1[gi]R[1[0 AT
) K10 L

et (o[ )"

P L)

O[5 an,o] [y

Where:

C=[xT () v ) ¥ R e (n,)),

Thus by Schur complements, “ZTVS o if the following LMI
holds: !

(Y1 61 0 0 63 6,]
x 0 6, 0 0 0
| * 6, 0 0 0
W= * * *x B9 O 0 <0,
* * * * 011 0
| % % % * * 912
(46)
0 I moo
_ m 0 ZA.T
=pT + tlp+
Bl &
i=0 I -1 |
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[< S 1
IZ Ui + Z Tl' RiO 0 I
— —
|l L X m |_|_
l 0 ZQi +ZhiRiJ
i=1 i=1
0 0
pT S -1 T|P +
0 Zzgﬂ- DD
i=1
m
0 0 &ETE; 0
pT _ ]P+ Z R +
0 & 'DoD{ i=0
0 0
- 0
zhlPT [A.]Rgl[o ATlP +
L
i=1
0 0
pT S T|P+
0 ZZhifiDioDio
i=1

0 _
X1 hiPT [Aio] Rig'[0 AQ]P,
0 T
0, = vec {PT [5]} i=1,..,k.
L

T
6, = vec {PT [l—?]} i=1,.. k.
1

0y = —diag(Q;),010 = —diag(U;),

06 = vec{E[ }, 0, = —diag(& ' 1),i=1,..,k.

And:

0 T
05 = vec {hiPT [A] R0 ELT]} ,
L
_ 07._
0,, = —diag <hl- (&I - [Ei] R0 EiT])>,
0 T
0, = vec {hiPT [A ]Ri_ol[o EiTo]} ,
i0

012 = ~diag ([ ,0 | R&'lo 51)

Fori=1,.. m.

From the above LMI we have following inequality:

P, 6, 0 6, 63 6, vec} vec{hl} vec{l} vec{l}
* 0y 86 0 0 0 0 0 0 0
0 * 6, 0 0 0 0 0 0 0
x %+ % 6, 0 0 0 0 0 0
| * * 0 0 @ 0 0 0 0 0
W=\, 0 0 0 (1)1 01, 0 0 0 0 <0, (47)
*+ 0 0 0 0 0 014 0 0 0
* 0 0 0 0 0 0 015 0 0
*+ 0 0 0 0 0 0 0 016 0
* 0 0 0 0 0 0 0 0 017
Where
0 1 m
- m T
b=pP N, |0 AP
i i=0
i=0 I —I
0 0
r m
P - P
0o 2) gippl|F T
i=1
m
[0 0 ETE.
PT 0 _1D DT]P + flEL El 0 +
| fO o0~ i=0
0 0

m
0
z h;PT [A] R0 ATIP+
i=1 '
0

0
pT S TP+
0 ZzhifiDioDio
=1

A P AT
014 = —diag(Q; H),i=1,...k

b;5 = —diag(hR;1),i=1,...,m.
016 = —diag(U7h), i=1,...k.
6,7, = —diag(tr; 'Rig"), i=1,...,m.

By pre and post multiplying (47), by
A, =diag {X diag (0").1 diag@[").1.1,1.1,1,1} and Al

where X =P, alsodenote x k byYand 9 =o', R, =R;"
U, =U", R,, =R, »and applying the Schur formula, we will
obtain the inequality shown in (35).

This implies asymptotic stability of (27) for continuous
functions and under assumption Al, for continuously
differentiable functions [27].
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3- 2- Delay-independent Stability
Consider the system:

£ (0)-3B (1-g,)-

i=1

(4%)

Delay-independent stability conditions can be derived by
applying Lyapunov—Krasovskii functional of (28), where
V2 =V4 =0. Theorem 2 implies the following delay-independent
stability criterion:

Corollary. Under A1, (45) is stable for all

g, >0,i =1,...,k if there existX _[xo0 ,

XZ X}
X, =X!>0X,.,X,,0,=0] U, =U!,& >0,i =1,...,k that
satisfy the following LMI:

W, 6, 0 6, XTvec{I} XTvec{l}]
x 05 05 0 0 0
w=|* * 0 0 0 O <o
*  *  *x Qg 0 0
* * * * 9_11 0
| * * * * * 6_13
= _ 0 0], [0 (AX)T + (BY)T
Ipl_[AX1+BY o]+[0 0 +
0o I m
m 0 ZA-T
X+xT i+
4 I £
i=1 1 -1
0
m [0 0 N (49)
0 2) &of|*lo &'n0f
-

| i
m
T _ _
X7 |2 GETE 05, e[ 2] @)
i=0 D

0 0
_ 071,- - .
0, = vec {[H ] (Ui)},95 = —diag(Qy),

1

0g = —diag(U;), 0, = vec{EiT},
0, = —diag(§*1),i=1,...k. 6;; = —diag(Qy),
i=1,...k 8,3 = —diag(D)), i=1,... k.

4- Numerical Simulations

In the current section, to evaluate the efficacy of the proposed
method, a numerical example is brought as follows.
Example 1: Consider the following time-delay uncertain
system with state delay7] ]:

138

X(t)=Agx (t)+Ap (1 —h)+Dx (1 —h,)> A, =A + BK + A4,

With

{—0.9 0.2 } H {—1.1 —0.2} _ =02 o0
A= "B=| |24, = b=

0.1 -0.9 1 -0.1 -1.1 ! {0.2 70.1}
where unknown matricesa4,, A4,and AD, are satisfying
A4, <S,A4,<5,AD, <6 -

Using the stability condition proposed in theoreml, for
maximum uncertainty bound & =0.28, the maximum value
of h, to guarantee asymptotically stability is h _=2.1 with
controller gain g =[-0.8974 -1.1158]

Fig. 1 shows the uncertain system states convergence with
proposed control strategy.

In addition, Table I shows effect of the uncertainty bound
O on maximum admissible delay before losing closed loop
stability. this example again shows that the stability criterion
in this paper gives a much less conservative result than these
in [7].

Example 2: An uncertain system with a time-delay is
assumed as the following:

X(t)=(A4+Ad)x (t)+Apx (t—g(t))+Dx (t—g(r))+Bu(r)
g(t)zO.Z‘sin(t )‘

Where:

[-1.5 -0.1 1 -1 01 0 -1
A=| 0 -1.3 0.5 ’AI: 0 02 O >B=|15]
10 -l 0 -1 02 0.3
r 01 O 0

~[02 05 07 Apg
D= 0 04 0 Ad=10 0 01
1 0 06 2 001 001

The total simulation time was set to 40sec, and the sampling
time to 0.01sec. In our scenario, a delay is injected at time
12s with function g(¢) to all states. also disturbance signal
d(t)=0.8 is injected at time 20s for 2 sec. Applying theorem
1 to this system, and using LMI (12), we have the controller
gain K =[-0.5293 0.5615 0.1537].

Fig. 1 shows system states trajectory and the results obtained
by our proposed robust controller. Numerical results illustrate
that the presented controlling algorithm performs perfectly.
The obtained results in Fig 2 imply that the closed-loop
system is stable and could tolerate the time variant delay and
disturbance.

Example 3: Control of Mach Number in a Wind Tunnel

In steady-state operating, the dynamic response of the Mach
Number perturbations M to small perturbations in the guide
vane angle actuator d0a in a driving fan is described by the
following equations [30]:

é(w (t)+M (¢)=koo(t —=(1))
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r r r r r
0 2 4 6 8 10 12 14 16 18
time(sec)

'
-
9]

Fig. 1. states convergence for system with discrete delay

Table 1. The effect of the uncertainty bound é on maximum admissible delay before losing
closed loop stability

5 0.13 028 038 0.7 083 1.0
h,(max) 3.1 21 23 18 09 085

Ststem states trajectory

2 T T T T T
1 4
E 7\
oF —— _— §
_1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
. time(sec) .
Delay trajectory control signal
0.2 0.1
0.15 0
T o041 = 0.1
0.05 -0.2
0 -0.3
0 10 20 30 40 0 10 20 30 40
time(sec) time(sec)

Fig. 2. system states convergence under proposed robust controller, and delay strategy g(t).
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5é(r)+2gw50'(z)+ *0(t)= w50, (t)

where 06 is the guide vane angle, & ,k, &, @ are parameters
depending on the operating point which are presumed constant
when the perturbation M , 60, 56, are small and the delay
T (f ) represents the time of the transport between the fan and
the test section. The above equation in state space form yields
X (t)=Apx (t)+Ax (t—7(t))+Bu(t).

Where: 4, =4 +Ad, +BK

M -a 0 0 0 0 ka
x=| 60 [,4=[ 0 0 1 |'B=|0] 4,=[0
56 0 -0 2o & 0 0 0

The control u(t) represents 5¢,. Additionally for system

parameters and uncertainty, we assume:

l=1.964s k =-0117deg ™, =0.8and o =6rad /s

o

7(t)=sin(0.63¢)| Ady=D,F,(x,t)E, » Ad,=D/F,(x,t)E,>

Where:
7 -2 0 0 01 0
D,=|0 02 0| E,=E=/0 01 0'D;=[0 0 0 [
0 0 04 0 0 1 00 -02

The total simulation time was set to 10sec, and the sampling
time to 0.01sec. Figure 3 shows the uncertain system sates
under the designed controller converge to steady state.5-

5- Conclusion

This paper considers designing robust controllers for linear
retarded and neutral type uncertain systems with discrete
and distributed delays. Lyapunov—Krasovskii function and
equivalent descriptor form of the original system have been
introduced to guarantee closed loop stability.

The stabilization problem is extended to more general class
of neutral-type uncertain linear systems with multiple delays.
Two delay-dependent/independent approaches are proposed
to design robust controllers for a class of uncertain linear
neutral systems with parametric uncertainty, discrete and
distributed multiple delays. The sufficient conditions, Delay-
dependent/delay-independent are introduced in terms of
LMIs. Afterwards, the strategy is extended to consider Hoo
control of linear uncertain systems with delay. Numerical
examples show the effectiveness of theoretical results.

References

[1] Richard, Jean-Pierre. “Time-delay systems: an overview of some
recent advances and open problems.” automatica :(2003) 39.10
1694-1667.

[2] Onyeka, Adrian E., Yan Xing-Gang, Zehui Mao, Bin
Jiang, and Qingling Zhang. “Robust decentralised load
frequency control for interconnected time delay power
systems using sliding mode techniques” IET Control
Theory & Applications 14, no. 480-470 :(2019) 3.

140

[3] Zhang, Zhao, Huaguang Zhang, and Zhiliang Wang.
“Non-fragile robust control for networked control systems
with long time-varying delay, randomly occurring
nonlinearity, and randomly occurring controller gain
fluctuation” International Journal of Robust and
Nonlinear Control 26, no. 1 (2016): 125-142.

[4] Curtain, Ruth F, and Hans Zwart. An introduction to
infinite-dimensional linear systems theory. Vol. 2I.
Springer Science & Business Media, 2012.

[5]Li, Zhao-Yan, James Lam, and Yong Wang. “Stability
analysis of linear stochastic neutral-type time-delay
systems with two delays” Automatica 189-179 :(2018) 91.

[6] Chinnamuniyandi, Maharajan, Raja Ramachandran,
Jinde Cao, Grienggrai Rajchakit, and Xiaodi Li. “A new
global robust exponential stability criterion for Heo
control of uncertain stochastic neutral-type neural
networks with both timevarying delays” International
Journal of Control, Automation and Systems 16, no. 2
738-726 :(2018).

[7] Duan, Wenyong, Baozhu Du, Yan Li, Cuifeng Shen, Xuelai
Zhu, Xiaofan Li, and Jian Chen. “Improved sufficient
LMI conditions for the robust stability of time-delayed
neutral-type Lure systems”” International Journal of
Control, Automation and Systems 16, no. -2343 :(2018 5
2353..

[8] Lopez-Labra, Héctor-Aristeo, Omar-Jacobo Santos-
Sanchez, Liliam Rodriguez-Guerrero, Jesus-Patricio
Ordaz-Oliver, and Carlos Cuvas-Castillo. “Experimental
Results of Optimal and Robust Control for Uncertain
Linear Time-Delay Systems” Journal of Optimization
Theory and Applications 181, no. 1089-1076 :(2019) 3.

[9]Xu, Chuanchuan, Bin Zhou, and Guang-Ren Duan.
“Delayed output feedback of discrete-time time-delay
systems with applications to spacecraft rendezvous” IET
Control Theory & Applications 12, no. 836-828 :(2018) 6.

[10] Fridman,  Emilia.  “New  Lyapunov-Krasovskii
functionals for stability of linear retarded and neutral
type systems”” Systems & control letters -309 :(2001) 43.4
319.

[11] Lam, James, et al. “On global asymptotic stability for a
class of delayed neural networks.” International Journal
of Circuit Theory and Applications -1165 :(2012) 40.11
1174.

[12] Chen, Yonggang, Shumin Fei, and Yongmin Li. “Robust
stabilization for uncertain saturated time-delay systems:
a distributed-delay-dependent polytopic approach” IEEE
Transactions on automatic control -3455 :(2016) 62.7
3460.

[13] Lu, Renquan, Haiyi Wu, and Jianjun Bai. “New delay-
dependent robust stability criteria for uncertain neutral
systems with mixed delays” Journal of the Franklin
Institute 351, no. 1399-1386 :(2014) 3.

[14] Kharitonov, V. L. “Lyapunov functionals and Lyapunov
matrices for neutral type time delay systems: a single
delay case” International Journal of Control :(2005) 78.11
800-783.

[15] Sheikhlar, A., M. Zarghami, A. Fakharian, and M.
B. Menhaj. “Delay compensation on fuzzy trajectory
tracking control of omni-directional mobile robots” AUT



S. Baroumand and B. Labibi., AUT J. Elec. Eng., 53(2) (2021) 127-142, DOI: 10.22060/eej.2021.18918.5370

Journal of Electrical Engineering 45, no. 64-57 :(2015) 2.
[16] Ma, Yuechao, Pingjing Yang, and Qingling Zhang.
“Delay-dependent robust absolute stability of uncertain
Lurie singular systems with neutral type and time-varying

delays” International Journal of Machine Learning and
Cybernetics 2080-2071 :(2018) 9.12.

[17] Krstic, Miroslav. “Lyapunov stability of linear predictor
feedback for time-varying input delay” IEEE Transactions
on Automatic Control 559-554 :(2010) 55.2.

[18] Bekiaris-Liberis, Nikolaos. “Simultaneous compensation
of input and state delays for nonlinear systems.” Systems
& Control Letters 102-96 :(2014) 73.

[19] Shariati, Ala,and Mahdi Tavakoli. “A descriptor approach
to robust leader-following output consensus of uncertain
multi-agent systems with delay” IEEE Transactions on
Automatic Control 62, no. 5317-5310 :(2016) 10.

[20] Li, Xiaodi, and Shiji Song. “Stabilization of delay systems:
delay-dependent impulsive control” IEEE Transactions
on Automatic Control 411-406 :(2016) 62.1.

[21] Chen, Wu-Hua, Wei Xing Zheng, and Yanjun Shen.
“Delay-Dependent Stochastic Stability and $ H_ {\infty}
$-Control of Uncertain Neutral Stochastic Systems
With Time Delay” IEEE Transactions on Automatic
Control 1667-1660 :(2009) 54.7.

[22] Shi, Guiju, et al. “Robust H, guaranteed cost control
of uncertain non-linear neutral systems with mixed
delays” 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010). Vol.
7. 1EEE, 2010.

[23] Zou, Jiahua, Yu Xue, Yantao Wang, and Xian Zhang.
“Delay-dependent Heo guaranteed cost control for
uncertain neutral stochastic systems with unbounded
distributed delays” In Proceedings of the 33rd Chinese
Control Conference, pp. 4288-4293. IEEE, 2014.

[24] Ghadiri, Hamid, Mohammad Reza Jahed-Motlagh,
and Mojtaba Barkhordari Yazdi. “Robust output
observer-based guaranteed cost control of a class of
uncertain switched neutral systems with interval time-

varying mixed delays” International Journal of Control,
Automation and Systems 1179-1167 :(2014) 12.6.

[25] Wang, Ting, Tao Li, Guobao Zhang, and Shumin Fei.
“New Lyapunov-Krasovskii functional for mixed-
delay-dependent stability of uncertain linear neutral
systems.” Circuits, Systems, and Signal Processing 37, no.
1845-1825:(2018) 5.

[26] Kwon, O. M., Ju H. Park, and S. M. Lee. “An
improved delay-dependent criterion for asymptotic
stability of uncertain dynamic systems with time-
varying delays”” Journal of Optimization Theory and
Applications 353-343 :(2010) 145.2.

[27] Yue, D., & Won, S. “An improvement on delay and its
time-derivative dependent robust stability of time-delayed
linear systems with uncertainty”. IEEE Transactions on
Automatic Control. (2002), 47(2), 407-408.

[28] Boyd, Stephen, Laurent El Ghaoui, Eric Feron,
and Venkataramanan Balakrishnan. Linear —matrix
inequalities in system and control theory. Society for
industrial and applied mathematics, 1994.

[29] De Souza, Carlos E., and Xi Li. “Delay-dependent
robust Heo control of uncertain linear state-delayed
systems.” Automatica 35, no. 7 (1999): 1313-1321.

[30]El1 Fezazi, Nabil, El Houssaine Tissir, Fatima El
Haoussi, Teresa Alvarez, and Fernando Tadeo. “Control
based on saturated time-delay systems theory of mach
number in wind tunnels” Circuits, Systems, and Signal
Processing 37, no. 1522-1505 :(2018) 4.

[31] Safa, Alireza, Mahdi Baradarannia, Hamed Kharrati,
and Sohrab Khanmohammadi. “Fault Tolerant Control

for Attitude Regulation of a Spacecraft with Delayed
Feedback” AUT Journal of Electrical Engineering (2018).

HOW TO CITE THIS ARTICLE

142.
DOI: 10.22060/ee}.2021.18918.5370

S. Baroumand, B. Labibi. Delay-dependent Robust Control for Uncertain Linear
Systems with Distributed and Multiple Delays . AUT J. Elec. Eng., 53(2) (2021) 127-







	Blank Page - EN.pdf
	_GoBack




