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ABSTRACT: Experimental observations reveal that the classical continuum theory cannot accurately
describe the mechanical behavior of micro/nanoscale structures. In fact, the size-effect will arise when the
order of structure dimensions is the same as the material characteristic length. The current work presents
free vibration and stability of axially functionally graded (AFG) tapered micro-beams with random
properties. The size-dependent behavior of the micro-structure is modeled by the modified couple stress
theory. The mathematical formulations are developed based on the Euler-Bernoulli beam model and von
Karman geometric nonlinearity. The minimum total potential energy principle is employed to obtain
governing differential equations and the corresponding boundary conditions. The governing equations
are solved by the Galerkin method. Due to the complexity of the fabrication process of FGMs, their
mechanical and structural properties may vary from sample to sample significantly. Hence, achieving the
desired FGMs specification is almost impossible and they are not deterministic, inherently. To incorporate
uncertainties in the mathematical model of this study, a First-Order Second-Moment (FOSM) technique
is applied to estimate the reliability index of the micro-structure, stochastically. Finally, numerical
examples are presented for both deterministic and reliability analysis to show the effects of geometry,
length scale parameter, material distribution, and axial load on the natural frequency of vibration and the
reliability index of the AFG tapered micro-beam. It can be concluded that by increasing the coefficient of
variation (COV) of random variables, the reliability index will decrease. Indeed, by enhancing the length
scale parameter, a higher natural frequency of vibration is expected.
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1- Introduction

Recently, micro/nanoscale elements have been commonly
used in different high-tech instruments such as micro-
actuators [1], micro-sensors [2], atomic force microscopes
[3], and fuel cells [4]. Realizing the mechanical behavior of
these valuable devices is essential for precise analysis and
optimal design. Sometimes, elements in these instruments are
utilized in which their structural behavior is like a beam. For
this reason, scholars are interested to study the mechanical
characteristics of the micro/nanobeam structures.

Contrary to macro scales, experimental observations show
the mechanical (as well as physical and chemical) properties
of materials vary with the dimensions of the structure in
micro scales [5, 6]. Unfortunately, classical continuum
theory cannot model the size-dependent mechanical behavior
of micro/nanoscale structures, accurately. However, in
recent years, researchers developed non-classical continuum
theories such as Eringen’s nonlocal [7] and strain gradient
elasticity [8] to capture the size effect. In this respect, one of
the well-known higher-order continuum theories is the couple
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stress. First, it was proposed by the Cosserat brothers [9] and
modified many times by other scholars [10-12].

A new class of composites called functionally graded
materials (FGMs) has emerged, recently. Material properties
such as Young’s modulus, Poisson ratio, and density in
FGMs may vary continuously in a specific direction of a
continuum. It should be noted that the fabrication of FGMs
is a very intricate process. For this reason, achieving to
desired material distribution gradient is almost impossible.
FGM properties may differ from sample to sample [13].
Hence, its properties can be treated as random variables. In
other words, deviation relating to the manufacturing process
should be considered. Due to FGMs fabrication uncertainties,
stochastic modeling of these structures may lead to a more
safe and reliable design.

Several methods have been employed by researchers
for stochastic modeling of FGM structures [14-16]. Among
them, Monte Carlo Simulation (MCS) and First-Order
Second-Moment (FOSM) techniques are the most common
[17]. Tt should be mentioned that the MCS method is the most
accurate. The advantage is that the probability distributions
of random parameters can be easily found in stochastic
modeling of the structure. There is no difficulty in the
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modeling of correlations and related variables. On the other
side, MCS may be extremely time-consuming when a large
number of simulations is required. However, FOSM uses the
first-order derivative of a limit state function concerning the
random variables in Taylor series expansion, and the higher-
order terms are neglected. Indeed, the variations of random
parameters are considered to be small in comparison with
corresponding mean values. It should be noted that small
variability is needed in parameters. Moreover, the FOSM
cannot model probability distributions of uncertain variables.

Now, a brief literature review of related research will be
presented, here. Wang et al. [18] investigated a Timoshenko
micro-beam model using strain gradient theory. To capture
the size effect, the model includes three material length
scale parameters. Free vibration and static bending behavior
of a hinged-hinged micro-beam are solved. Applying the
consistent couple stress theory, Patel et al. [19] presented a
simplified moment-curvature-based method to analyze the
large displacement of the micro-beams. In terms of deformed
micro-beam slope, a non-linear differential equation was
obtained by using a moment-curvature relation. Numerical
results show the static bending of the model has a stiffer
behavior than the classical theory.

Arvin [20] investigated free vibration of rotating micro-
beams using the strain gradient theory for both Timoshenko
and Euler-Bernoulli beam models. The Differential transform
method is employed to solve governing differential equations
and associated boundary conditions. The results illustrated
the natural frequency of vibration is highly sensitive to
the rotation speed, length scale parameter, and slenderness
ratio. Talimian and Béda [21] studied the dynamic stability
analysis of the micro-beams by using the modified couple
stress theory. For a simply supported micro-beam with a
rectangular cross-section, the effect of geometry on dynamic
stability regions is discussed. The outcomes show the material
length scale and cross section’s height of the micro-beam are
effective variables in dynamic stability regions. In another
research, Shafiei and Kazemi [22] investigated the buckling
of FG micro/nanoporous beams. Using the Euler-Bernoulli
beam model, Eringen’s nonlocal, and modified couple
stress theories governing equations are obtained and solved
by the generalized differential quadrature (GDQ) method.
For clamped boundary conditions, numerical examples are
presented to illustrate the effects of different parameters on
the buckling response of the FG porous micro/nanobeams.
Moreover, Kamali and Shahabian [23] studied the surface
stress effects on buckling and post-buckling behavior of
porous nano-plates.

Using the nonlocal strain gradient theory and Euler-
Bernoulli beam model, Li et al. [24] performed buckling and
vibration analysis of AFG beams. The results showed the
AFG beam may exert a softening or hardening effect on the
buckling load. Moreover, the natural frequency of vibration
is related to size-dependent behavior. In another research,
Rezaiee-Pajand and Kamali [25] presented analytical
solutions for the post-buckling response of functionally
graded micro-beams considering thermal gradients. Including
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transverse shear deformations, Yang and He [26] studied the
buckling and free vibration behavior of AFG micro-beams
with the modified couple stress theory. The effects of shear
deformation, material gradient index and geometry are
depicted in numerical examples. In another work, Sinir et
al. [27] presented the non-linear vibration analysis of AFG
beams with a non-uniform cross-section considering mid-
plane stretching. Frequency-response curves are plotted to
depict an unstable zone. Based on the second strain gradient
(SSG) theory, a size-dependent formulation for static and
dynamic analysis of FG micro/nanobeams was developed
by Momeni and Asghari [28]. Numerical examples show a
significant difference between SSG theory and other theories
for static and free vibration behavior. In another research, Jia
et al. [29] studied thermal-mechanical-electrical buckling
of FG micro-beams using the Euler-Bernoulli beam model
and modified couple stress theory. Including thermal effect,
dynamic stability analysis of sandwich FG micro-beams
was performed by Al-shujairi and Mollamahmutoglu [30]
using nonlocal strain gradient theory. Instability regions are
depicted for different boundary conditions. Bhattacharya and
Das [31] presented the free vibration behavior of double-
tapered, bidirectional FG micro-beams rotating in a thermal
environment. Based on the modified couple stress theory,
Timoshenko beam model, and Hamilton principle governing
equations are obtained.

Unfortunately, unlike a large number of studies available
in the field of deterministic analysis, a limited number of
researches have addressed the issue of uncertainty in the
structural behavior of FGMs. For example, Shegokar and
Lal [32] presented the stochastic non-linear static behavior of
piezo-electric FG beams subjected to a temperature gradient.
A first-order perturbation technique (FOPT) is applied to
calculate the mean value and coefficient of variations (COV)
of transverse displacement. The effects of various parameters
with random material properties on the static response of
structure are discussed. Finally, the model is validated with the
Monte Carlo simulation (MCS) method. In another work, Xu
et al. [33] performed a stochastic dynamic analysis of FGM
beams. Random material properties are considered in the
model. Free vibration analysis of AFG beams with uncertain
material properties was studied by Zhou and Zhang [34]. To
model composite material random field, the Karhunen-Loeve
expansion is used. For stochastic free vibration analysis, a
generalized eigenvalue function is obtained. Then MCS
method is applied to compute the statistics of the uncertain
model. Indeed, a generalized polynomial chaos expansion
is proposed to reduce the computational effort of the MCS
method. Recently, Mohammadi et al. [35] presented the pull-
in instability of FGM micro-beams with stochastic material
properties. The second-order statistics of the pull-in voltage
are calculated by both the MCS method and FOPT. Based
on the authors’ best knowledge, most of the researchers
employed random analysis to investigate the mechanical
behavior of FGM structures only in macro-scales. The
novelty of this research is to study free vibration analysis and
estimate the reliability index of a tapered micro-beam made
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Fig. 1. Flowchart presentation of this work.

from a functionally graded material with random mechanical
properties.

Now, the layout of this study is presented. In section 2,
mathematical formulations are developed for the free vibration
and stability of a tapered AFG micro-beam. The governing
equations are obtained by the Hamilton principle and solved
using the Galerkin method. Including uncertainties in the
mathematical model, the FOSM technique is employed to
compute the reliability index of the microstructure. In section
3, some numerical examples are presented to investigate the
effects of different parameters on the natural frequency of
vibration and the reliability index of the tapered AFG micro-
beam. Finally, the main conclusions are presented in section
4. A general view of the paper is presented in the form of a
flowchart as illustrated in Fig. 1.

2- Formulation

Based on the modified couple stress theory, the strain
energy function for a linear elastic isotropic material can be
expressed as:

v :,[V (065 +my ;) )dv 1)

In which o, and m, are components of Cauchy stress
and couple stress tensors, respectively. Indeed, g and X

denote corresponding Green strain and curvature tensors,
respectively. They are given by:

o; =A&,,0, +2ue, (2a)

m, =20 uy, (2b)
1

& _E(Mi’j +“j,,~) (2¢)
1

Xy = 5(‘91',_/ +0,.) (2d)

Where A and p are Lame classical constants. Moreover,

0 is the length scale parameter that models the size-effect

behavior. It is a material intrinsic property determined from

experiments. u stands for displacement fieldand g - L1 W)
2

is the very small rotation vector.
The initial configuration of an AFG tapered micro-beam
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Fig. 2. Initial configuration of AFG tapered micro-beam.
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Fig. 3. Deformed shape of the AFG tapered micro-beam.

is shown in Fig. 2. It is subjected to a lateral distributed load
F(x,t) and a constant axial force N at its free end. The width
of the rectangular cross-section has a constant value of b, but
its thickness varies linearly from h, to h, in the entire length
of the AFG micro-beam. Mathematically, it can be described
as below:

hz _hl
L

h(x)=h,+( )x (3)

In which h, denotes the thickness at clamped support and
h, is thickness related to the free end. Indeed, L represents the
length of the AFG micro-beam.

Using power-law function model, material distribution
of FGMs in axial direction of a beam may be expressed as
following:

Alx)=A, +(A, —A, )(%)” (4)
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Here, A stands for any material property. Subscripts m
and c represent metal and ceramic, respectively. Moreover,
superscript n called power-law index specifies how materials
are distributed along the length of the beam. Here, Young’s
modulus E, shear modulus p, and density p obey from power
distribution rule as follows:

E()=E +(E, ~E ),

u@)=%+0%—%X%Y 5)

px)=p +(p, —p. )(%)"

After deformation (See Fig. 3), the components of the
displacement field for a beam can be expressed as:
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u, =u(x,t)+zy(x,t) _Ex )[8u(x 1)

u, =0 (6) an

u, =w(x,t) - W(X,l‘)Jrl(aW(xat))z]

ox’ 20 o
Where u represents the axial displacement of the neutral

axis of the beam, w is the transverse deflection, and w denotes On the other hand, components of a small rotation vector
the rotation angle of the beam cross-section. Given the Euler- are given by:
Bernoulli beam theory, it is assumed the cross-sections of
the beam are perpendicular to the center line and remain ow (x,t)
plane after deformation. Hence, the angle of rotation can be 91 =0 ‘92 == Py 93 =0 (12)

presented as below:

Therefore, one can calculate the only two non-zero

(x,t)~— ow (x,t) ; components of curvature tensor and corresponding couple
vix Ox ) stress tensor fields as below:

The only non-zero strain tensor component can be _ _ 1 0w (x,1)
expressed as: X =Xn = _E A 2 (13a)

Ou, Ou(x,t) Ow(x,t)

“:g: Oox o ox? ®

ow (x,t)

my, =m, =—px )Kz o 2 (13b)

Including the effect of large deflections, the axial strain
g,, can be modified by von Karmén nonlinear strain in the

The strain energy function of the AFG micro-beam due to
following form:

bending and mid-plane stretching is given by:

_%_Gu(x,t)_
T T If{(ﬂwuﬂ‘ 1

9
wxt) 10w (x.t) ®
SPE +5( Ox )
ow (x,t) 1 Gw(x 1),
—+=( )T+
ox 2
. 1 ow(x,t),, . .
The expression —(——=—) considers the mid-plane
2 Ox 2
stretching. Therefore, the axial component of the Cauchy (X )Ez[a (x t)] 1dAdx

stress tensor can be expressed as:

On the other side, the kinetic energy function of the

= (A0c) +2pu(x ))‘911 - structure can be expressed as below:
E(x)v(x) (10)
A+vio)I-2v(@)) o du(t) .
T= > IO _[ , {P(x)([T -
in which v represents Poisson’s ratio. The expression
vx) called Poisson’s effect and can be
A+v())1-2v(x)) | ﬁzw(x t) [8w(x, t)]z)} Jadx
neglected in beams. Hence, 6, can be rewritten as below: Oxot
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since L zdA =0, one can simplify Eqs. (14) and (15) as:

U= EA e LDy
<E(x)1(x)+y<x)A(x)ﬁ2)[az‘” O Dpyi

—2 I} oA )Ly (16b)
ow (x,t),, ow (x,t)
[P 4 e (o)L T

Here, I(x) denotes the second moment of inertia of cross-
3
section at distance x from fixed support, given by 1 (x) = %
The virtual work done by external loads can be expressed
as below:

M = Flx.ydwdr + N}, a7

where F(x,t) is the lateral distributed load per unit length
and N represents axial force at the ends of the AFG micro-
beam. To obtain governing differential equations, Hamilton’s
principle can be employed in the following form:

fz{éT—5U+5W}a’t:O (18)

Substituting Egs. (16a), (16b), and (17) into Eq. (18) lead
to the following differential equations and corresponding
boundary conditions:

Gu(x t) 1(8W(x,t)

S5 k=

(19a)

—{E( )A (x)[
qu(x t)

p(x)A(x)
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82 0
LE (oI (6) + ) A ()] W(" Twt),
ai{E(X)A(x)[aW(x’t)P'F
X 2 ox
[E (0 )A (x )Bu(x t)]éw(x t)} (19b)
ox
—{p(x)l( ) ;”(a"f)H
(1A (x) 2 ﬁx ) _F(x i)
Gu(x t) 1 ow(x,t)n, _
(E () (o) SN =0,
or  {u},_,, =
{au(x 1) }t =ty or {5u}t:t1,t2 =0 (199
{8W(gx 1) }t_tl H or {5W }t:tl,tz =0 (19)
oW (x,t) 3 8w(x 1) _
{ ot ]},thz =0 or {5( )}t =1, =0 (19f)
W)
{1 (1) s
(E()A(x )[a“(" 1) 4
1 aw(x,1)., 5*W(x,t) 3 (19¢)
@ity S e.d),
)+ A ) 162‘” Gy =0
or {ow }X:O,L_O
(G 0+ ulr)A )12 PO, -
(19h)
r{é(aw )y, =0




F. Kamali and F. Shahabian, AUT J. Civil Eng., 5(4) (2021) 543-556, DOI: 10.22060/ajce.2022.18056.5657

It is to be noted that axial acceleration & ”(x t) can be

or?
neglected. In other words, the right side of Eq. (19a) can be
set to zero. Hence, it can be concluded from Eq. (19a) that
the expression £ (x )4 (x )[au x,0) + l(aw x ’t))z] has a constant

value in the entire length of the AFG micro-beam. On the

other side, one can rearrange Eq. (19¢) as follows:

au(x t) 1
2

ow (x,t)
ox

E(x)A()[ 5 ( )’1=N

(20)

Substituting Eq. (20) into Eq. (19b) and performing some
manipulations results in:

0—{[E(x>1(x)+ﬂ(x>A<x)ﬂ ]

8

6w(x t)}

Ow (x,1)
ox?

P )A(x)

w(x t)

N > 1)
ox ot

o POO(x)

w(x t)

— 4+

=F(x,t)

Using Galerkin method, the solution of Eq. (21) can be
expressed as:

w(x,1)=@(x)q () (22)

in which @(x) represents the first mode shape of classic
beam and q(t) is function of time t.
Substituting Eq. (22) into Eq. (21) leads to the following:

[p(r)A (6 )l )~
——w@ﬂ<ﬂﬂ“ﬂ

[i%wwﬂuw

d’ qo(x)}

d q(t)

(23)

M)A (x)0)

dq(®)
di

y o),

e =F(x,t

)

Integrating Eq. (23) with respect to x fromx =0tox =L
results in below expression:
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d’q(t)  ,, dq(t) _ (-

=+, = = [, Flendr (24)
where

H, = [ [p()A () ) - (50

d
L pr ) 2
H,= I L[d—z{(E(X)I (x)+ (25b)
0 " d?

d’p(x)
de

ﬂ(x)A(xw)ddig")}_N Jdx

Expressions H and H, represent the equivalent mass and
stiffness of the AFG micro-beam, respectively. It should be
noted that ¢(x) (the first mode shape) for a cantilevered beam
is given by Rao [36]:

o(x) = sin(l.88%) - sinh(l.88%) +

¥ X (26)
1.36cosh(1 .882) —1.36c0s(1.88 z)

For free vibration analysis, the right side of Eq. (24) must
be set to zero. The natural frequency of vibration for the AFG
tapered micro-beam can be obtained as:

. =

n

@27

-2
1

Given Eq. (25b), it is obvious that by increasing the axial
force N, the stiffness of the system will reduce. Therefore,
a critical value of N indicating instability condition of the
structure can be obtained by setting H, to zero as follows:

LRLCIIEPN

_15[572«E(x)z(xw(xm(x)m e

[

(28)

IL[d ¢(x)
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Table 1. Mechanical properties of the AFG micro-beam.

Modulus of elasticity (E)

Material density (p)

Poisson ratio (v)

Metal Ceramic
100 GPa 220 GPa
7850 kg/m* 6100 kg/m?
0.3 0.3

For stochastic analysis, consider a limit state function
defined as g = R-Q in which R and Q represent load-carrying
capacity (resistance) and load effect (demand), respectively.
As a measure of structural safety, when g > 0, the resistance
is greater than demand and the structure will remain safe and
vice versa. The reliability index can be calculated as [14]:

_ FR_FQ

JSi+s? (29)

Using Taylor series expansion, a linearized approximation
for a non-linear limit state function of random variables g can
be presented as below:

X X X )R g (X[, X5,00X ) )+ (30)

n

Z(Xi _xl‘*)a_g
= oX

evaluated —at (xl*,x; ..... x; )

It should be noted that (x,", x,"... x 7) is the point at which
the expansion is performed. One choice for this point can
be selected as the corresponding expected values of random
variables. Therefore, the Eq. (30) becomes:

g(X],XZ,...,Xn) zg(FXI,FXZ,...,FXM)+ (31)

N 6g
E X. -T
,':1( l X[)aX.

U levaluated —at —expected —values

Based on the definition of the reliability index introduced
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by Hasofer and Lind (1974), it is the inverse of the coefficient
of variation of the limit state function g [17]. According to
the first-order second-moment method, the relation for
computing the reliability index can be expressed as below:

gy Tyl

D (@Sy)
i=1

i (32)

in which /3 is the reliability index. Moreover, I", and
S, stand for expected value and standard deviation of

random variables, respectively. Furthermore, ¢, = 2

flat—x; =T,

is the partial derivative of limit state function concerning
each random variable evaluated at expected values. It is
called first-order due to employing first-order terms in Taylor
series expansion and the second moment due to using means
and variances, only. It should be noted that the probability of

failure can be computed as P, = ®(- §), where @ is the value
of the cumulative distribution function (CDF) of a random
variable with a standard normal probability distribution.

As discussed before, a linear approximation for the
natural frequency of vibration @, obtained from Eq. (27)
can be written as:

0
a)n(X)=a),,(FX)+(X—FX)—;;(" (33)
X=Iy

in which X can stand for any random variable.

3- Numerical Examples

In this section, some numerical examples are presented
to illustrate the free vibration response and stability of a
tapered AFG micro-beam subjected to a constant axial load.
The mechanical properties of the microstructure are listed in
Table 1. First, the deterministic analysis of free vibration and
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Fig. 4. The natural frequency of vibration of the AFG micro-beam versus axial load with
L=100pm, b=10pm, h1=2h2=10pm, and n=2.
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Fig. 5. The natural frequency of vibration of the AFG micro-beam versus axial load with L=100pm, b=10pm,
h1=2h2=10pm, and {=2pm.

stability is studied. Then, the reliability index of the micro-
structure is investigated considering uncertainty in material
properties.

3- 1- Deterministic analysis

For the case L = 100um, b = 10pum, h, = 2h, = 10um,
and n = 2 variation of the natural frequency of vibration via
the axial load is plotted in Fig. 4 for different values of the
length scale parameter. The vertical axis is normalized with
the linear classic natural frequency of vibration @ =1.03x10’
rad/sec, which is computed by vanishing the length scale
parameter and the axial load from Eq. (27). The horizontal axis
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is normalized with the classic critical axial load N =135786
uN calculated by setting the length scale parameter to zero
in Eq. (28). It can be observed that by increasing axial load,
the natural frequency of vibration reduces until it reaches
zero. Moreover, size-dependent behavior has a significant
influence on the free vibration response of the AFG tapered
micro-beam. The more value of the length scale parameter,
the more natural frequency of vibration.

Effect of the material property distribution is depicted in
Fig. 5 for the case L = 100um, b = 10um, h, = 2h, = 10um,
and ¢ = 2um. Variation of the normalized natural frequency
of vibration is plotted versus the normalized axial load for
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Fig. 6. The natural frequency of vibration of the AFG micro-beam versus thickness with L=300pm, b=10pm,
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Fig. 7. The dimensionless natural frequency of vibration of the simple prismatic micro beam without axial load.

different values of the power-law index. It can be seen that
the nonlinear distribution of material properties in the axial
direction reduces the natural frequency of vibration. The
variation of the power-law index in the nonlinear regime has
no considerable influence on the free vibration behavior of
the AFG micro-beam.

Finally, the effect of the non-uniform cross-section is
investigated. Variation of the normalized natural frequency of
vibration versus different geometries of the micro-structure is
plotted in Fig. 6. It should be noted that @, =4.15x 10°
rad/sec is computed for the case L = 300um, b = 10um, h =
3h, = 30um, n = 2, and N = 40000uN. As can be seen, when
thickness at the free end h, is constant, increasing thickness
at fixed support h, results in a higher natural frequency of
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vibration. On the other side, by enhancing the thickness at
the free end h, while the thickness at the fixed support is
constant, the natural frequency of vibration will reduce. It can
be concluded when the thickness at fixed support is bigger
than the thickness at the free end, more stability is expected.

3- 2- On verification of the results

In this section, for a simpler case, the results are
numerically validated with known data in the literature [37].
For this purpose, it is assumed that the prismatic micro-beam
is made from only one constituent material without axial
load at its free end. The variation of the natural frequency of
vibration versus the length scale parameter is illustrated in
Fig. 7. Good accuracy is observed by comparing numerical
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Table 2. Probability of failure for different reliability indices.
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Fig. 8. Reliability index of the AFG micro-beam with L=100pm, b=10pm, h1=2h2=10pm, {(=2pm, and
N=152170pnN.

results between analytical solutions presented in this paper
with data reported in the literature [37]. It should be noted
that @), is obtained by omitting the size-dependent behavior
(€=0).

3- 3- Reliability analysis
Here, reliability analysis of the AFG tapered micro-
beam is considered. Failure can be defined as vanishing the
effective stiffness of the microstructure due to the influence
of the compressive axial force acting on the free end of the
microstructure. The reliability index can be computed from
the FOSM method as mentioned in Eq. (32). The Probability
of failure P, for some values of the reliability index p is
presented in Table 2. As mentioned before, there are some
uncertainties due to the fabrication process of FG micro-
beams.
At first, it is assumed that the material distribution

gradient is a random variable. The reliability index of the
micro-structure via different COVs (5, 10, 15, 20, 25, and
%30) and the expected value of the power-law index (1.5,
2, 2.5, and 3) are plotted in Fig. 7. It can be observed that by
enhancing the mean value of the power-law index of samples,
the reliability index of the AFG micro-beam increases. In
other words, the probability of failure will decrease. When
the expected value of the material index enhances from 1.5
to 3, the reliability index of the micro-structure becomes 4.4
times greater. On the other side, enhancing the COV of the
samples leads to increasing the probability of failure until it
approaches a constant value.

The variation of the reliability index versus different mean
values (1, 1.5, 2, and 2.5um) and COVs (5, 10, 15, 20, 25,
and %30) of the length scale parameter is shown in Fig. 8. It
can be seen that by enhancing the size-dependent effect, the
reliability of the micro-structure will increase. It is interesting
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Fig. 9. Reliability index of the AFG micro-beam with L=100pm, b=10pm, h1=2h2=10pm, n=2, and
N=139000puN.

to note that the reliability index [ of samples with T', =2.5
pm is about four times more than samples withI", =1um. On
the other hand, whatever samples have more deviations from
their mean values, more probability of failure is expected.

Finally, it is assumed that the axial load is not a
deterministic parameter. Variation of reliability index via
various COVs (5, 10, 15, 20, 25, and %30) and expected
value of the axial load (125x10% 130x10°% 135x10° and
140x10°uN) is plotted in Fig. 9. It is obvious that by reducing
the compressive axial force, the reliability of the AFG tapered
micro-beam increases. For example, if the mean value of the
compressive axial load reduces from 10x140° to 125x10°uN,
the reliability index becomes 2.5 times higher. Again, for all
samples with high COV, the probability of failure approaches
a constant value.

4- Conclusion

In this study, free vibration and stability of a cantilevered
axially functionally graded micro-beam with a non-uniform
cross-section and random material properties are investigated.
Numerical examples for both deterministic and reliability
analysis are presented to show the effects of different
parameters on the natural frequency of vibration and stability
of the microstructure. The following results can be obtained:

Due to the effect of nonlinear geometry, the natural
frequency of vibration is dependent on the axial force.
Enhancing the compressive axial force results in decreasing
the effective stiffness of the AFG tapered micro-beam. For
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a critical value of the axial load N_, the system becomes
unstable.

By enhancing the length scale parameter, a higher natural
frequency of vibration is expected. In other words, size-
dependent behavior enhances the effective stiffness of the
AFG tapered micro-beam.

In comparison with the non-linear distribution of material
properties (n > 1), a linear distribution (n = 1) leads to a
higher natural frequency of vibration. However, there is no
significant difference in the free vibration behavior of the
AFG micro-beam when the power-law index varies in the
non-linear regime.

The non-uniform cross-section has a remarkable influence
on the stability of the cantilevered AFG micro-beam. When
the thickness of the cross-section at the free end h, increases
and the thickness of the cross-section at the fixed support h,
decreases, the stability of the microstructure will reduce.

By increasing the coefficient of variation (COV) of
random variables, the reliability index will decrease. Indeed,
the probability of failure approaches a constant value.

For a constant coefficient of variation, more non-linear
material distribution and higher length scale parameters
increase the reliability of the AFG micro-beam.

Data Availability Statement: All data, models, and code
generated or used during the study appear in the submitted
article.
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Fig. 10. Reliability index of the AFG micro-beam with L=100pm, b=10pm, h1=2h2=10pm, {(=2pm, and n=2.
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