)

~AUT JOURNAL OF
CIVIL

ENVEINEERING AUT Journal of Civil Engineering

AUT J. Civil Eng., 5(4) (2021) 625-642
DOI: 10.22060/ajce.2022.19447.5732

Half-Plane Boundary Element Fundamental Solutions and Body Force

B. Ansari, A. R. Firoozfar*

Department of Civil Engineering, University of Zanjan, Zanjan, Iran.

ABSTRACT: Two-dimensional half-plane fundamental solutions have been developed by different
researchers in the fields of electronics, mechanics, and geotechnics. However, for geotechnical
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purposes, their solutions are not complete. This paper discusses those previous solutions and details
the mathematical procedures for obtaining a new and complete set of half-plane boundary element
fundamental solutions. Initially, static equilibrium equations were written using Papkovitch functions
and a proper Green’s function was presented for a two-dimensional half-plane space. Having applied

the second Green’s identity, the stress-free condition for the ground surface has been satisfied in the  Keywords:

displacement and traction fundamental solutions. These solutions can be applied in a meaningful way to y.1¢ plane

problems with semi-infinite workspaces like those much seen in geophysics, geotechnical, and mining .
. . . . . . . Fundamental solutions
engineering because they do not need to discretize the distal boundaries of the model. After extracting

half-plane fundamental solutions, the effects of the gravity force as body force and required functions Boundary element method
for a half-plane boundary element analysis were extracted. The effectiveness and accuracy of the new  Papkovitch functions
solutions have been evaluated by implementing them in a boundary element computer code and solving

several classic semi-infinite examples. Results showed that the new solutions are capable of accurately

and economically modeling semi-infinite problems.

1- Introduction

Because of their simplicity and accuracy, volumetric
numerical methods such as Finite Element (FE) and Finite
Difference (FD) methods are widely used for solving
engineering differential equations [1, 2]. In some cases,
however, conditions such as model geometry result in
difficulties when volumetric methods are used, for example,
in the modeling of infinite and semi-infinite domains.
These problems commonly occur in many geophysical and
geotechnical problems because the requirement to discretize
the whole body of the model cannot be done directly in
volumetric methods. The discretization of infinite and semi-
infinite spaces requires artificial boundaries to close the
model. What should be the distance between these artificial
boundaries from the center of the model, and how large should
the elements be, are two important questions for engineering
analysts, as these parameters are directly proportional to the
computational efforts and calculation time. To reduce the size
and the number of elements, meshless approaches such as
boundary integral methods have been introduced [3, 4]. In the
boundary element method (BEM), which is a practical form
of the boundary integral solution, discretization is only done
on the boundaries of the domain. Although the boundary

*Corresponding author’s email: firoozfar@znu.ac.ir

element technique requires fewer elements in comparison
with volumetric methods, for the problems related to a semi-
infinite space, it requires artificial boundaries to be again
defined.

Boundary element analyses are completely based on the
fundamental solutions which provide useful mathematical
kernels that can be derived by satisfying the physical and
boundary conditions of the problem [4, 5]. Based on those
fundamental solutions and geometrical properties, the
boundary element approach can be divided into Full-plane
and Half-plane methods [6]. The Full-plane boundary element
method is related to Kelvin’s Fundamental solutions. Brebbia
and Dominguez [4] described the mathematical processes
required for the extraction of full-plane fundamental
solutions in elasticity. Katsikadelis [5] also extracted the
fundamental solutions for potential as well as elasticity
problems. Brebbia and Aliabadi [7] introduced an adaptive
Finite-Boundary element method for analyzing complex
non-linear problems. Brebbia and Nardini [8] presented a
new procedure for eigenvalue and transient dynamic analyses
in solid mechanics with a boundary integral approach. More
recently these methods have been successfully applied for the
solution of geophysical and geotechnical problems by, Xiao
and Carter [9], Panji et al. [10], and Panji et al. [11]. Another
approach for solving half-space problems is the Half-plane
boundary element method in which fundamental solutions
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are calculated considering the ground surface’s stress-free
condition.

The first attempts to satisfy the stress-free condition
when extracting the solutions related to a semi-infinite elastic
domain were made by Boussinesq [12] who provided the
stress fundamental solutions when a point load is applied
perpendicularly on the ground surface. However, these
solutions cannot be used as the boundary element fundamental
solutions. Cerrutti [13] obtained the displacement solutions
when the point load is applied on the ground surface parallel
to the stress-free boundary. In Melan’s work [14] the stress
fundamental solutions have been obtained when the point
load is applied at an arbitrary coordinate inside a semi-infinite
domain. Telles and Brebbia [15] extended Melan’s work and
provided the complete fundamental solutions for a boundary
element analysis. However, in their traction solutions, the
stress-free condition has not been completely satisfied and
this causes some difficulties when modeling semi-infinite
problems (Appendix B). Ye and Sawada [16] evaluated the
Telles and Brebbia [15] solutions and concluded that the
accuracy of the solutions decreases with increasing depth.

Fundamental solutions related to a two-dimensional
semi-infinite orthotropic space were presented by Dumir and
Mehta [17]. The solutions, however, are not complete and
some variables have been omitted in their research so that the
results cannot be used for solving practical examples. Pan et.al
[18] provided a half-plane BEM formulation for anisotropic
problems. But, because of non-linear procedures and using
complex numbers, the implementation of these solutions for
static analysis is complicated. Pan and Chen [19] provided
displacement and traction solutions for static analysis of two-
dimensional full-plane and half-plane problems. Their half-
plane solutions are applicable when the point load is applied
on the stress-free boundary (ground surface).

One of the fields that the half-plane fundamental solutions
can be effectively used for reducing the calculation time are
the analysis of geotechnical problems containing cavities and
in-homogenous mediums. Dong and Lo [20] used the Telles
and Brebbia [15] approach for the analysis of elastic half-
plane domains containing Nano in-homogenous structures
and showed that the half-plane solutions provided by Telles
and Brebbia can be used efficiently when the problem occurs
very close to the ground surface. In the three-dimensional
case, Mindlin [21] provided a complete set of displacement
and traction half-plane fundamental solutions.

To increase the efficiency of calculation and decrease
computational time, especially for static analysis, accurate,
compact, and easy-to-use half-plane solutions are required.
In section 2 of this paper, the concept and importance of the
half-plane fundamental solutions are clarified. In sections 3
and 4 by using the Papkovitch [22] and Green’s functions
[23] and applying Green’s second identity [23], a new and
complete set of two-dimensional half-plane boundary element
fundamental solutions are obtained and the mathematical
procedures are presented. Finally in section 5, by solving
some classical examples, the efficiency of the new solutions
is evaluated.

626

2- Half-Plane Boundary Element Concept

Fig. 1 shows a semi-infinite domain including three types
of boundaries, I', , I', and I, representing stress-free, far-
field, and inner boundaries, respectively. For most modeling
purposes including geophysical and geotechnical problems,
the model space is distributed around the inner boundaries and
the analytical results are important only around these types
of boundaries. However, according to the full-plane analysis
[4, 5], obtaining the results around the inner boundaries
requires the inclusion of all other types of boundaries when
discretizing and solving the model equations.

For any n-dimensional elastic space bounded by a
boundary, I in equilibrium, displacements are related to
boundary tractions with the following boundary integral
equation [4, 5, and 23]:

c'u’ +.[
r=r,ur,ury
“pdl W
up

.[ =T, Ul UT;

In which, u " and p* are the full-plane displacement and
traction fundamental solutions, respectively [4] and 4 p are
the boundary displacements and tractions. ¢’ is a constant
related to the geometry and dimension of the problem and it is
equal to 1 for internal nodes. Also, ¢’ can be calculated using
a procedure called solid body movement when the point
belongs to the boundary [4, 5, 10, 11, and 15]. Considering
Fig. 1,ifu " and p " are the half-plane fundamental solutions
the boundary integral equation is modified as follows:

u"pdl @)

c'u’ +I p"ua’l“:jrzr3

r=T;

If the u" and ph are the half-plane boundary element
fundamental solutions; ph and p are both equal to zero
along the I'; and therefore, the stress-free boundary (I))
vanishes form the boundary integral equation. Since I'; can
be extended to infinity, the far-field boundaries (I',) are also
extended to infinity and the displacements and tractions along
them tend to zero:

lim| (p'u—-u"p)dl'=0 |,
r—o0 1“2 ( ) (3)
r : Distance

Therefore, by vanishing integrals along (I",) and (I",) it
is only required to discretize the inner boundaries (I'; ) when
modeling a semi-infinite space.
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Fig. 1. Three types of boundaries related to a half-plane boundary element analysis.

3- Extracting Half-Plane Fundamental Solution (uh ,ph )

For an isotropic elastic body in equilibrium the
displacement can be expressed by the following equation [4,
5] (bold letters are used for vectors and tensors):

;N2u+1“2 VVu+F =0 @)
— 2V

In which g and v are the shear modulus and Poisson’s
ratio, respectively, and F is the body force per unit volume.
In this equation V is the gradient vector and can be defined
as V=(0/0x,08/dy,8/8z,..).V and V? are the
n-dimensional gradient and Laplace operators, respectively.

Using Hooke’s laws the stresses can be calculated from
displacement as follows [4, 5]:

6 =AVul +u(V'u +u"V) )

Where A =2uv/1-2v is the Lame’s constant and I
is the unit matrix.

By using Eq. (4), it can be shown that the displacement
vector can be decomposed into a scalar field £ and a vector
field B as follows:

u=M(B)+N (B) (6)

In which M and N are two linear operators. Considering
two potential functions H and ¢, Helmholtz’s theorem [22]

can be used for decomposing the displacement vector:
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u=Vo+VxHand VH =0

()

Substituting into the equilibrium equation (Eq. (4)):

.(2(1-v)

uvV| —=Vep+VxH |+F =0

1-2v

Defining the Papkovitch
B=2(1-v)/1-2v)Vp+VxH :

IN°B =—F
Hence:

2(1-

2Y) g2 _yp
1-2v

vector

®)

function,

)

(10)

One special solution for the above differential equation
can be obtained as follows:

4(1-v)
—1—2V p=rB+p

(11)
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In which f is the Papkovitch scalar function with the
following relation:

WV B=r.F and r =xi+yj (12)

By substituting Eq. (11) into Eq. (7) with considering the
fact thatVxH =B - (2(1-v)/1-2v)Vp:

1

With M (s)=s-(1/4(1-v))V(rs)and N (s)==(1/4(1-v))V(s)

u=B- V(r.B+p) (13)

Considering a scalar potential function V' distributed in

an n-dimensional space €2 bounded by I" , the Green’s
second identity can be defined as follows [23]:
oG
KV :jV—dnj G V¥ dQ (14)
T an Q

in which G is the half-plane Green’s function, K shows
a constant related to the dimension of the problem and n
is the normal outward vector to the boundary. For a two-
dimensional space a half-plane Green’s function concerning
z =0 that satisfies the Laplace equation (VZG = 0) can be
defined as follows:

2

G =In\(x —a) +(z - B) -

. - (15)
Iny(x —a) +(z + B =Inr—Ins’

In which 7 is the distance of a source point (e, f3)
from a field point (x ,z) and 7’ stands for the image 7
concerning the boundary, z = 0.

Fundamental solutions Part 1: To obtain half-plane
fundamental solutions, at first we assumed that a concentrated
load is applied at a point (¢ =0, f =c) in the direction of
the z-axis. Therefore all components of load along both the
x-axis and the y-axis are equal to zero. Considering Eq. (5)
and applying B = B, =0 and F = F, =0, the tractions
on the stress-free boundary (z =0) can be expressed as
follows:

p 0B. B
- 21-1 L= 2P g onz =0
o= 2(1—1/){ (1=v) oz 622} ons (16)

628

H 9B _ OB |_ _
2(1—1/){(1 )% axaz}oonz_o (n

By integrating the latter equation with respect to x and
applying the Laplace operator, then using Green’s second
identity z # 0 , the following equations can be obtained:

v ([(1—2\/)32 —%D =

2
(1-2v)V’B, NP (18)
oz
(1=2v) . 10(F)
u om0z
K [(1—2v)BZ —%} =
oz
(19)

—lf{(l—zv)GFz +G M}dﬂ
U op

In the above equation, the boundary term of Green’s
second identity vanishes because of the stress-free condition
along, z =0. The first part of the integral when the point
load is of a form F, :]325(0,)5@’_@) can be obtained as
follows:

[ (1=2v)GP.5(a)5(B—c)d2 =
(1-2v)(Inr—Inr")P.

(20)

In which P is the constant magnitude of the point load
(Fig. 2)and O is the Dirac delta function. The second part of
the integral can be taken by parts as follows:

I 6(ﬁF)
op
—J‘Q%ﬂPé
oG

P, — =cP. i(lnr +Inr")
B8 o

a)s(f—c)dQ= (1)

In which again the boundary integral vanished because of
the half-plane Green’s function. Substituting Eqs. (20) and
(21) into the (19) for z #0:
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Fig. 2. Point load acted in the direction of the z-axis.

(1-2v)8, -%L -

oz

{(1—2v)(1nr—lnr')

z

774

+c ai(lnr +lnr’)

} (22)

Again considering Eq. (5) and following the same
procedures as discussed above for z # 0 one can obtain:

2(1-V)BZ-‘2ﬂ=
Z

2(1 Inr +Inr' 0 Inr—Inr’ 29
_#K[ (1=v)(nr-+1nr) e 2 r—nr)}

Egs. (10) and (11) present two linear differential equations
that can be solved analytically to obtain B_ f:

N 1

B =
uK

z

‘:lnr +(3-4v)Inr'—2c¢ ai(lnr')} (24)
z

z

'B,uK

[_4(1—v)(1—2v)flnr’dz + (25)

c (lnr +(3-4v)In r’)}

Now it is possible to use the result of Eq. (13) to obtain
displacement fundamental solutions when the load acts in the
direction of the z-axis as follows:

U21 =- (26)

: )[zAl(x,z)+A2(x,z):|

4(1-v

1
27 4(1-v)
[(3—41/)143 (x,z)-zd,(x,z)-4;(x,z )}

U

X
27

In which, Ai (x ,Z ) are the functions that are presented
in Appendix A.

Using displacement components U,, and U ,, and Eq.
(5), the components of the stress tensor can be obtained as
follows:

1
Oin X
2(1—1/) 28)
{i(l—Zv)A4 (x ,Z )—,u(zA6 (x ,Z )+A7 (x \Z ))}
_ _ M
O =05 = 2(1—1/) x )

{(1—2\/)141 (x,z )—ZA8 (x,z )—A9 (x,z )}
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1
Oy = 2(1—1/)

{(/1+2y)(1—2v)A4 (x ,Z )+,u(zA6(x ,Z )+A7 (x,z ))}

X
(30)

Finally, the tractions along the boundaries can be
calculated by multiplying the stress tensor into the unit
normal vector to the boundary.

Fundamental solutions part 2: In the second part
we considered a concentrated load acting at a point
(¢=0,8=c) in the direction of the x-axis (Fig. 3).
Using Eq. (5) and applying F, =F, =0 and B =0 the
following conditions can be obtained along, z =

_Hu
7 2(1—v)X
) ) 31
al(aBZ +an]_x ’B, Op Oons =0
2\ Ox oz 0zOx 0z Ox
M
(T

32
0B, B, OB G2

az%ﬂg——x =—5|=00nz =0
ox 0z oz° oz

Wherea, =2(1-2v), a,=4q,/2u anda, =(A+2u)a /2u-
These equations present two differential equations with three
unknown functions B _, B_, and . Considering Eq. (3),
B can be calculated as follows:

P
B, =——(Inr+Inr") (33)
UK
2
Since 9B, ., and 0B, |._, are both equal to zero along,
z T ozox

z =0; from the Eq. (31) one can obtain:

%BZ —g—fZOOnZ =0 (34)

Considering Eq. (32) onz =0, the following equation is
always valid:

0B, 0B,
a,—=—x =
Ox 0z
(a _1) an +2ch 82 (].nr') (35)
2 ox  uK Ozox
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Hence:

OB, 0O°p OB
- +(a, - 1)—+

4o @y
2P.c 0 (Inr')
UK Oz Ox

(36)
=0onz =0

Applying Green’s second identity on Egs. (35) and (36)
forz #0:

ﬂBZ —%=00nz #0 (37)
2 Oz
a,B . —%:

Oz

(38)
2P, [_%+(a2 —1)tan™ (Z +cﬂonz #0
UK | 7 X

These two equations present two linear differential
equations that can be solved to obtain unknowns B_ and
as follows:

2P cx [z +c
B, =—~|—-—+(a,—1)tan
F 7K [ 2 (a2 ) ( H (39)

X

alP

X

ﬂ=ﬂK

(40)
[—c tan”' (Z i j+(a2 ~1)[tan™ (Z i )dz }
X X

By using the result of Eq. (13), the displacement
fundamental solutions when the point load acts in the
direction of the x-axis can be calculated as follows:

(41)
[(3—4V)Bl(x,z )—(x —(;r)B2 (x,z )—ZB3(X,Z )—B4(x,z )]

1
4(1—v)X
[(3—41/)35 (x,z )—(x —a)Bé(x ,z)-zB, (x,z )—B8 (x.z )J

U,=
(42)
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Image Point fz

Ko R ]
N eplog) @ e
4 i (x,2) i
F,=P, 8 (t) & (B-c)

Fig. 3. Point load acted in the direction of the x-axis.

In which B, (x ,Z ) are the functions represented in
Appendix A.

Similar to the previous part (load along the z-axis), traction
fundamental solutions can be extracted from the stress tensor
components considering Eq. (5) as follows:

1
al((ﬂ,—FZy)B2 (x,z)+AB,(x,z )) (43)
_2,u((x —a)B,(x,z)+zB, (x,z)+B,(x,z ))

O =

Oy =0y :ﬁx
(1—2v)(B3(x,z)+Bé(x,z )) (44)

—(x —Ot)B12 (x ,Z )—ZB13 (x »Z )—B14 (x ,Z )

o1
Oy = x

4(1-v)
a, (/132 (x ,Z )+(/1+2u)B7 (x ,Z ))
+2,u((x —oz)B9 (x ,Z )+ZB]0 (x ,Z )4—B]1 (x ,Z ))

(45)

Calculation of K constant: As discussed previously,
K is a dimension-related constant. Weatherburn [23]
showed that in the case of three-dimensional space, K is
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equal to —47 . For a half-plane two-dimensional case, it is
possible to calculate K by applying Green’s second identity
and using half-plane Green’s function. Fig. 4 shows a semi-
infinite space subjected to concentrated load acted in a point
(a, ) surrounded by a circular boundary with a radius of €
. Applying Green’s second identity:

Ir (G 8_V_V a_dorl -

on . on 46)
v 9 ar, +[ GV de
I, an Q

On the boundary of the surrounding circle when & tends
to zero:

¢ ar -
o on (47)
lim(lng—lng’)XZﬂgxa—V =0
&0 an

And

' (48)
—lim(—l+ 81515 jx27rg =2V

Therefore, K is equal to 277 .
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i

Fig. 4. Point load surrounded by a circle.

4- Half-space Body Force

A body force is a force that acts throughout the volume
of the body. Gravity, electric force, and magnetic force can
be considered as the body forces when modeling static and
dynamic problems. For most mechanical and geotechnical
purposes the body force due to gravity is most important. In
general, the force of gravity is not a constant value and it can
vary as a function of space and time. However, for a small
area on the earth’s surface, the variation of the force is so
small that can be considered a constant value.

For a half-space problem considering gravity force in the
solution, needs to model far-field boundaries and discretize
the whole volume of the body which requires heavy
computational efforts and calculation time even for a constant
value of the body force. Body force can be considered in the
solution as the integral of the force per unit volume along the
whole volume of the body as follows:

B, = ujb, d (49)

In which b is the j th component of body force per unit
volume and u i is the half-plane displacement fundamental
solution extracted in the previous section. Considering a
constant force in each direction, the above domain integral
can be converted into the half-plane boundary integral as
follows:

[ujp,da=| p;¥, dr;-
' (50)
J.FB”;"”J' drs+c, ¥, (a, )
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Where p; , is the half-plane traction fundamental
solution extracted in the previous section, and ((l B ) is the
coordinate of the source point. ¢ j > are the geometry-related
constant that can be calculated using a method called solid
body movement [4]. 9, and ¢ ; are the known functions that
were extracted as follows:

¥, = b, x?
2uS
b, (1-2v)b, ,
, == Xz + z
(A+2u)uS ™ Au(l-v)
b i A
= (A+2p)-——— | ———
L uS (A+24) (A+24) Hh (ﬂx+2y)zn§1}
b, (1—21/)/12”1
2u(1-v)
b.A b, (1—2v)(/1+2u)zn2

T 2SN 2u(1-y)

In which b and b_ are the components of the constant
body force per unit volume in the direction of X and z axis,
respectively. n; is the j th component of the unit normal
vector to the boundary and S is constant that can be calculated
as follows:

2u

S (22

(52)
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u3
u2

u1

v

Fig. 5. Transferring the coordinate of the model space to the unit space.

5- Boundary Integral Equation and Discretization:
Fundamental solutions derived in section 3, provide a
second-order tensor with the following components [4, 5]:

u h — |:U11 U12 j| (53)
U21 U22

Similarly, traction fundamental solutions can be calculated
from stress tensors as follows [4, 5]:

h
Py =01 (54)

In which p; are the components of the traction
fundamental solutions tensor and © ki are the stress
components which were presented in the previous section.
n, is the k th component of the unit vector normal to the
boundary. The half-plane boundary integral equation by
applying the half-plane fundamental solutions and half-plane
body forces into the equilibrium equation can be expressed
as follows:

Ctj (“aﬂ)+jr3p5“j dT’, =
J.rf‘;pj dr’ +_|‘r3p;.‘1'j dr’y - (55)

jrzu;fnj dly+c, ¥, (a,/i’)

According to Fig. 1, Eq. (55) shows that the calculation of
the displacement field u ; only requires discretizing the inner
boundaries, I'; . The discretized form of the equation can be
presented as follows:

HU =GP +HY -Gnp (56)

In which H and G are the discretized form of the
fundamental solutions. By considering the NE number of
boundary elements the integrals can be expressed as follows:

NE
H=Y[ p}od,
n=l "

NE (57)
G=>[ uj pdr,
n=l "

According to Fig. 5, for a quadratic element the shape
function, ¢, can be extracted by using the properties of the
unit space as follows [4]:

7(§+1) 0
o= 2 (58)
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Fig. 6. Vertical displacement due to the vertical traction acted on the surface of a semi-infinite space.

Some expressions in the fundamental solutions contain
tan™ (a / b) function (see for example expression 4 5 (x , z)
in Appendix A). Most computer algorithms compute
tan” (a/b) as zero when the "a" value tends to zero.
However, for a boundary element analysis the sign of "b"
is important. For modifying tanfl(_) function following

algorithm is suggested:

tan1(9J=0 if b>0
b (59)

tanl[bgj=7z if b<0

The formulation and boundary element fundamental
solutions provided in this section, do not make any special
difficulties when applying to the boundary integral Eq.
(55) and all singularities are the same as traditional
boundary element methods [4, 5]. The main difference
between the presented half-plane method and traditional
BEM formulations is the discretization process. In half-
plane formulation, only the boundaries of the cavities and
topographic reliefs are discretized and it is not necessary to
define the far-field boundaries to close the model. Therefore,
the number of boundary elements required to calculate the
responses is significantly reduced resulting in much lesser
computational efforts to solve the model. The only limitation
of the new method is the uniqueness problem as described
by Telles and Brebbia [15]. This problem appears when
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the boundaries of the model are not closed-form the sides.
In this situation, the results of the solution are differential
deformations. When the deformation is initialized for only
one point of the domain is possible to convert all differential
deformations to real deformations in the model. Therefore the
uniqueness problem won’t make any special difficulties for
the BEM analysis and different methods have been developed
for solving the problem [15].

6- Numerical Examples

Half-plane under surface loading: In the first example
three kinds of linear distribution of traction over a finite part
of a semi-infinite plane were evaluated. The problem was
solved by only discretizing the loaded part of the surface
using quadratic boundary elements and the results for surface
displacement were computed using a Matlab code solution at
boundary nodes. The analytical solution for this example is
available in Poulos and Davis [25].

The first case is related to a strip vertical loading acting
in the direction of the z-axis (Fig. 6). As Poulos and Davis
[25] described, the vertical displacement of the ground
surface nodes can be calculated analytically by the following
equation:

2n(1-v?
w (e.0)-u (00)- 27
T

{(x =b)In[x =b|(x +b)In|x +b|+2b Inb|

(60)
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Fig. 7. Vertical displacement due to the vertical triangle traction acted on the surface of a semi-infinite space.

In which u, (x R 0) is the vertical displacement at
any point on the surface and u, (0, 0) is the vertical
displacement at the center of the loading. p is the magnitude
of loading, b is the half-length of the loading line and v and
E are the Poisson’s ratio and Elastic modulus of the domain,
respectively. Fig. 6 shows the comparison between analytical
and half-plane boundary element solutions. For clarifying
the robustness of the method, the deformation results are
plotted in the nodes under the loading area and also for the
surrounding points. According to Fig. 6, the loading width is
12m and the results are calculated for 24m. As can be seen
in the figure, there is a good agreement between the two sets
of solutions and it indicates that the displacement part of the
fundamental solutions works correctly in the case of surface
loading.

In the second test, a linear surface loading is considered.
According to Poulos and Davis [25], the vertical displacement
due to normal triangle traction acting on the surface can be
obtained as follows:

p(l—vz)
bE 1)
2 x? x? 2
2b ln2b—71nx+ 7—21) ln|2b—x|+bx

X

u, (x ,0) —u, (0,0) =

In which p is the maximum magnitude of the linear
loading. Fig. 7 shows the results of analytical and numerical

solutions. A proper agreement can be seen between the results.

Shallow Circular Cavity under Pressure: The second
verification example presents a circular cavity embedded
in a semi-infinite space (Fig. 8). A uniform pressure with a
magnitude of 100KPa is applied over the internal boundary
of the cavity. The ratio between cavity embedded depth and
radius is equal to d /7 =1.34 and the material properties of
the domain are the same as in previous examples. The stress
distribution in an element inside the domain of this problem
can be calculated using the computed displacements. To reach
this goal, there are several approaches proposed by Liu and
Jeffers [26,27] and Liu [28]. For example, Liu and Jeffers [26]
introduced a new method for discretizing the model domain
by rational triangular Bézier splines. By defining a nine-node
internal element and calculating the vertical and horizontal
displacements in the nodes, the displacement function can be
estimated by a Lagrange interpolation or spline functions [28,
29]. The function then can be differentiated concerning x
and z and finally the stress components can be calculated
using Eq. (5). In Fig. 9 the computed numerical results were
compared to an analytical solution obtained by Jeffry [30].
As can be seen, there is a good agreement between the two
solutions.

Ground surface vertical displacement and horizontal
stresses due to internal pressure of shallow cavities
embedded in different depths of the soil are provided in
Fig. 10. It can be seen that by increasing the depth of the
cavity, both horizontal stress and vertical displacement
decrease. The deformed shapes of the cavity are presented
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Fig. 9. Horizontal stress on the ground surface due to the presence of a circular cavity under pressure.
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Fig. 11. Deformed shape versus the main shape of a shallow circular cavity (The displacement of the de-
formed shapes was scaled up 10 times for better visualization).

in Fig. 11 with a scale factor equal to 10. When the cavity
is located at a shallower depth, the displacement in the
top parts of the cavity grows more compared to that of
the lower parts and by increasing the cavity depth the
displacement becomes more uniform because of uniform
confinement stresses. It is worth noting that for modeling
this example only 30 half-plane elements were used.
The same calculation can be done using ABAQUS finite
element software with more than 700 domain elements
[31] and with a full-plane boundary element code using
200 boundary elements [32].
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7- Conclusion

In this paper, a new set of half-plane boundary element
fundamental solutions for modeling semi-infinite geophysical
problems was presented. Inthisregard, Papkovitchand Green’s
functions for a half-plane two-dimensional elastostatic space
were introduced. Green’s second identity was used as a tool for
satisfying stress-free boundary conditions along the ground
surface. The fundamental solutions were then obtained in two
different types of loading. In the first case, displacement and
traction fundamental solutions were obtained when the point
load acts in the direction of the z-axis. In the second case,
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the solutions when the point load acts in the direction of the
x-axis were presented. These two sets of solutions provide
a complete set of fundamental solutions required for a half-
plane boundary element analysis.

The accuracy and efficiency of the half-plane solutions
were evaluated by solving four classic examples. As the first
set of examples, the ground surface vertical and horizontal
displacements were evaluated indicating that the displacement
set of half-plane fundamental solutions is correct and
accurate. In the second set of examples, for testing the traction
fundamental solutions, a shallow circular cavity under
pressure embedded in a semi-infinite space was considered
and the results for horizontal stresses on the ground surface
were compared to an available analytical solution. The results
again showed that the traction fundamental solutions work
well for a boundary element analysis. All of these examples
were solved only by a small number of boundary elements
showing the power of boundary element analysis for solving
half-plane problems.

The use of half-plane boundary element fundamental
solutions does not introduce any special difficulties. All
procedures including discretization, method of integration,
solution of singularities, and calculation are the same as
full-plane boundary element analysis. The discretization
is only done for the boundaries of the model inside the
loaded zone and also, the requirement to define artificial
boundaries completely vanishes. These features reduce the
computational time and calculation efforts which make the
half-plane boundary element analysis a reliable solution for
engineering problems.
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Required functions when point load (p, = 1) is acted in the direction of the z-axis:

A (x.2)= IulK {xr—za +(3_4Vr)£x —a)+4ﬂ(x —:a)(z +ﬂ)}
Az(xaz)Zﬂ_{_“(l—V)(l—zv)tanl(i t'zj+ﬂ[xr_2a+(3_4vr)£x _“)H
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B R (R ST
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Required functions when unit point load (p, = 1) is acted in the direction of the x-axis:

B, (X,Z)=—L[lnr+lnr']

LK
By(r.2 )= ﬂi {ﬂ((z +,b’)r’4_(x —a)z)_(ﬂ(l;zv) 1)7?}

1 |z-8 z+p
Beler)= uK[ R }
e e e
_2(1-2v)| B(x —a)+ A(l=2v) (24P
Bs(x Z)— 1K { e ( L 1]t (x —aj:l
Bg(x’z):_le {(Z _ﬁ)z;(x ~a) +(z +ﬂ)2r:1(x —a)z} Eq. (A.2)
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In all the above expressions, (a, ) is the coordinate of the source point, (x, y) is the coordinate of the field point,
¢ and v are the shear modulus, and Poisson's ratio, respectively, and 7 =./(x — )2+ (z— §)? and ' =
J(x — @)% + (z + B)? are the distance of the source point and its image from the field point, respectively.

Appendix B

Telles and Brebbia [15] presented a set of half-plane boundary element fundamental solutions. However, the
traction set of their solutions doesn’t completely support the stress-free condition of the ground surface.

The complementary part of the traction solutions have been presented as follows:

(35 +c)(1-2v)

> +
Oy = _ R Eq. (B.1)
122 =7 — 2 —2 q. (b.
4r(1-v) | 2| (2 +77 )R, 28R} (1-2v) | 160iR 7
R* - RS
Where all parameters are available in the Telles and Brebbia [15]. When the field point is located on the ground
surface, x = 0,¢c = ,R; = —f and r, = x — a ; therefore:
o’ :—L 1_2V_2(x—_a)2 Eq. (B.2)
® 4z(1-v)R? R’
The traction component on the surface can be obtained as follows:
2
, y/j 2(x —a)
=<1 -2v - Eq. (B.3
P2 = 4r(1-v)R? R’ & (B3

For the ground surface, the Kelvin part of the solutions which must be added to the complementary part is available
in Brebbia and Dominguez [4] as follows:

B 2(x ~a)
= -2v+—— Eq. (B.4
P2 =g (1=v)R? R’ & B
The sum of p;, and p,, is not equal to zero showing that the o7,, does not support the ground surface stress-free
condition properly.
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