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ABSTRACT: In space domes, geometrical changes are the main factors that determine the forces in 
the structural members. This paper has addressed the effects of the height-to-span ratio variations on 
the reliability of space domes. Applied loads, nodes coordinates, member’s cross-section, modulus of 
elasticity, and yield stress are the random variables, and FORM (first-order reliability method), SORM 
(second-order reliability method), MCS (Monte Carlo sampling) and IS (importance sampling) were 
the methods used to evaluate the reliability of such structures. Results showed that FORM yielded 
better solutions; reliability increased with an increase in the height-to-span ratio, and a change in the 
performance function changed the reliability index and sensitivity coefficient. Hence, for domes with 
height-to-span ratios less than 0.3, the displacement performance function is the effective function and 
for ratios greater than 0.3, the stress performance function should be considered as the critical function.
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1- Introduction
In space structures, since external loads, internal forces 

and displacements do not lie in one plane, all three dimensions 
affect the structure’s behavior [1]. In general, these structures 
are grouped as grids, drums, and domes [2], but the latter is 
more popular because, compared to other structural forms, 
they are beautiful, light, and economical, behave properly 
against applied loads, and are very popular, especially where 
mid pillars are not desirable [3]. Depending on their span 
length, space domes are either single- or double-layered (the 
latter are used in larger spans [4]), and since they often have 
higher degrees of uncertainty, they are expected to be highly 
safe against failure. However, recent evidence shows that, 
in different parts of the world, some of them have failed or 
fractured under snow/wind/earthquake loads, or because of 
traditional designs that neglect uncertainties in materials and 
applied loads [5]. As the behavior of a space structure, with 
hundreds or even thousands of members and nodes, depends 
on some uncertainties or random parameters, its reactions, 
too, have a random nature and it is necessary to consider 
the uncertainties of the system parameters in evaluating its 
actual behavior [6]. Among a limited number of research 
on the safety and reliability of space structures, most have 
addressed their optimization, buckling characteristics, 
failure mechanisms, and seismic behavior. Li Hui et al. [7] 

studied the reliability, sensitivity, and correlation among the 
random variables in tree structures (a special space structure). 
Kubicka et al. [8] studied flat space structures considering the 
effects of the temperature rise and the node-connection type 
on the reliability. Tahamouli et al. [9] studied space structures 
with different supports considering the effects of the defects 
of random members on the reliability. In recent years, some 
researchers have studied the reliability of large-span space 
structures (double-layered domes and grid drums) [10-11]. 
If the height-to-span ratio (an important design parameter) 
varies in a space dome, the loading and, hence, the forces 
will also change in the members, meaning that geometry 
and its changes are the main factors in determining the 
forces created in the members of the dome, i.e. the structure 
weight is directly related to the height-to-span ratio. Since 
these structures are designed and constructed on large scales, 
determining the most suitable height-to-span ratio to achieve 
the minimum weight is quite important. Yang et al. [12] 
optimized the height of a 120-member dome as a design 
variable, Salajegheh et al. [13] optimized the geometry 
(found minimum weight) of single-layered space domes with 
fixed spans and heights considering the meridian equation 
power and orbit radius as the design variables, Saka [14] 
used the GA to optimize a geodesic dome considering the 
crown height and member cross-section as random variables. 
Hasacebi et al. [15] proposed an algorithm to optimize the 
topology of geodesic domes. Shao Qi et al. [16] analyzed the 

*Corresponding author’s email: bahrpeyma@usb.ac.ir
                                  

   Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.



A. Bahrpeymah et al., AUT J. Civil Eng., 6(1) (2022) 3-14, DOI: 10.22060/ajce.2022.19547.5740

4

uncertainty and parametric sensitivity of lattice space domes 
under blast loading and showed that the structure response 
to blast parameters was very sensitive. Zhou et al. [17] 
evaluated the resistance against the progressive collapse of 
the Zhongchuan Airport Terminal Building in China, which 
is a large-span curved space structure, and showed that 
the structure had enough supporting load transfer path that 
could effectively prevent the progressive collapse after the 
initial failure. Jahangir et al. [18] used the multiple nonlinear 
regression approach to investigate the cyclic behavior of 
steel-bar hysteretic dampers. Farhangi et al. [19] used 
machine learning techniques to study the behavior of steel-
bar hysteretic dampers equipped with shape memory alloy. 
Pakseresht and Gholizadeh [20] addressed the size-topology 
optimization and reliability evaluation of three types of 
single-layered lattice space domes and showed, as their 
most important finding, that the reliability indices of most 
optimally designed domes were low; hence, they were not 
safe against total collapse. Tian et al. [21] studied the resistant 
performance against the collapse of long-span, single-
layered, lattice, space structures subjected to concentrated 
impact loads and showed that their dynamic performance was 
significantly affected by the duration of the applied impact 
load. Zhang et al. [22] presented a new method to estimate 
the dynamic failure of single-layer mesh domes’ underground 
acceleration according to the response spectrum of the China 
earthquake.                                                                                                                                         

 Since a literature review showed that past research 
neglected to study the space dome geometry effects on 
reliability, this paper evaluated the reliability of steel, single-
layered space domes under different height-to-span ratios to 
examine the sensitivity and correlation among their random 
variables under dead and snow loads using two performance 
functions: 1) maximum displacement in nodes and 2) 
maximum stress in members for reliability analyses and four 
methods (FORM, SORM, MCS, and IS) for reliability index 
evaluations considering the elasticity modulus, yield stress, 
applied loads, nodes coordinates and members cross sections 
as random variables.

2- Performance functions
Performance or limit state function shows the structural 

safety-failure boundary mathematically as follows:
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Where R and S are the load and strength random variables, 
respectively, and g divides the space into sR  and fR  (safe 
and failure regions); failure occurs when g (limit state 
function) < 0.
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Hence, from a structural point of view, when a structure 
response exceeds its corresponding strength, the system 
will fail [23]. This paper has considered two failure modes 
to define the performance function: when allowable limits 
(given in the Code) are violated by 1) a member maximum 
stress and 2) a node maximum displacement.

2- 1- Displacement performance function
Shown below, this function shows the deformation limits 

of the nodes of a dome structure:
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Where ( ) i Xδ  is the displacement of node i, n is the total 
number of nodes, aδ  is the allowable node displacement with 
a maximum value limited to / 300H Hδ =  in the horizontal 
direction and / 360V Dδ =  in the vertical direction, and D 
and H are the dome diameter and height, respectively [24].

2- 2- Stress performance function
When single-layered space domes are exposed to external 

loads, the internal forces created in their members are mainly 
axial tension and compression; in tension, the governing 
criterion is yielding and in compression, it is buckling. The 
limit state function is as follows:
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Where iσ  is the tension among the ith member and aσ  
is the maximum allowable stress found based on the AISC-
ASD Code [25]. Under tension, the member’s allowable 
tensile stress is as follows:
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And under compression, its allowable compressive stress 
is found as follows:

A) For inelastic buckling i cCλ < :
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B) For elastic buckling ( i cCλ ≥ ):

( , )g R S R S                                                                                                                            (1) 

 

 
0,
0,

s

f

X R
g X

X R
 

  
                                                                                                              (2) 

 

 
1 i

idispl
a

X
g




          1,2i n                                                                      (3) 

 

 
1 i

istress
a

X
g




         1, 2 ,i m                                                                            (4) 

 

 min ,a cr y                                                                                      (5) 

 

y yF                                                                                                            (6) 

 

2

21
2

i
cr y

c

F
C


 
   
 

                                                                                                                          (7) 

 

2

2cr
i

E


 
  
 

                                                                                                                        (8) 

 

0

( ) 0
( ( ) 0) ( )f Xg X

P P g X f x dx


                                                                                     (9) 

 

0

( ) 0
( )f Xg X

P f x dx


                                                                                             (10) 

 

1

1 ( ( ) 0) ( )
N

f i X i
i

P I g x f x
N 

                                                                              (11) 

 

 
 
   

f V
xP I V h V dx

f Vh VD V
  

  
 
  

                                                              (12) 

 (8)

where E is the elasticity modulus, yF  is the steel yield 
stress, i

i
i

KL
r

λ =  is the member slenderness coefficient, iL  
and ir  are respectively the length and radius of gyration of 
the ith member, FS is the factor of safety (= 1 in all above 
relations in the reliability analyses), cC  is the critical 
slenderness (showing if the member is slender, medium, or 
fat), and ik  is the ith member’s effective length coefficient (= 
1 in the present study). The AISC has limited the maximum 
slenderness coefficient to 300 for members under tension and 
200 for those under compression [25]. Considering the limit 
state function given in Eq. (2), fP  (failure probability) can 
be obtained as follows:
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Where ( )Xf x the random variables’ joint probability 
density is function and  fP is the volume under the surface 
of ( )Xf x  in the ( ) 0g X ≤  failure region [26]. Since 

( )Xf x  is complex, especially for variables with non-normal 
distributions, its analytical solution will not yield fP  and its 

time-consuming numerical solution is possible only for a 
few random variables. Therefore, in most cases, fP  is found 
by such approximate reliability index-based methods as the 
FORM and SORM or by such simulation-based methods as 
MCS and IS [27, 28, and 29]. Classification of the reliability 
evaluation methods is shown in Fig. 1.

3- Simulation methods
Simulation is an effective and accurate method used to 

assess the reliability of structures with complex limit state 
functions where other methods fail to estimate fP . In general, 

fP  is found based on the reliability analysis as follows: 
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where ( )xf x  is the variables’ joint probability density 
function, ( )g X  is the failure zone found by one or more 
limit state functions and X  is a random variable Eq. (11) that 
can be used to find fP  by the MCS method for each failure 
mode (N sample points based on  Xf ):
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Where N is the number of sample points and I  is the 
counter function ( ( )I 0 1 = for samples in the failure zone 
and ( )I 0 0=  in other zones). In this method, high precision 
requires many samples which are produced with high 
computational costs, especially when fP  is small or the 
structure is large-scale. These costs are reduced using pseudo 
MCS methods [31] such as the IS where a simulation variable 
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V  is selected with a new probability density function 
( )Vh V  (called “IS density function”) that generates the 

maximum samples in zones that highly affect the structural 
failure in space  X ; fP  is found as follows:
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Where ( )I V  is a marker function (= 1 for points in the 
failure zone and = 0, otherwise) [32].

4- Analytical reliability method
Calculating fP  requires multiple integrations of Eq. (9), 

which is a very difficult task; hence, common numerical 
estimation methods such as FORM and SORM are used to 
simplify the process. FORM, proposed in 1974 by Hasofer 
Lind [33]. Calculating the reliability is a very widely used 
method where the reliability index does not change for 
various forms of a specified limit state function under similar 
random variables’ mapping [34]. In this method, random 
variables are transferred from the design space to the normal 
standard space (Mean=0, Standard deviation=1) and provide 
a new reliability index as the minimum geometric distance 
between the origin and the transferred limit state function. 
Hasofer Lind [33] defined the design point as the point on the 
limit state function ( )g 0=  with the shortest distance from 
the origin in the normal standard space. This point is referred 
to as the maximum probability point (MPP) (Fig. 2) and its 

distance from the origin is the reliability index ( fP  is found 
from ( )f p φ β= − ). Hence, the design point can be found by 
the following optimization algorithm: 
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Where iU  is the i th random variable in the standard 
normal space and n  is the number of random variables. 
General optimization methods or point search algorithms 
with the highest fP  presented by Hasofer Lind -Rackwitz 
Fiessler (HLRF) and the gradient method (specific to FORM) 
can be used to solve Eq. (14). 

4- 1- Hasofer Lind - Rackwitz Fiessler (HLRF) method
The optimization model in Eq. (14) can be solved by 

the Hasofer Lind-Rackwitz Fiessler (HLRF) method [35] 
that uses an iterative search method as follows to find the 
minimum distance:
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Where m is the number of iterations, sm is the step length 
and dm is the search direction vector found from the following 
relation:
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Fig. 2. Transforming X-space to U-space [34]. 
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Where ( )mg U∇  is the vector of the limit state function 
derivative at point Um Substituting Eq. (16) in Eq. (15) to 
solve the optimization problem, the Hasofer Lind-based 
reliability equation will be as follows:
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In this method, a point in the possible region moves 
towards a point with the maximum MPP on the limit state 
function [34].

4- 2- Gradient method
To find the reliability index, the gradient method uses the 

iterative search method of Eq. (15) where the search direction 
vector (dm) is so determined at the desired surface (based on 
the objective function) that the problem may, in each iteration, 
lie in the allowable range; hence, it should satisfy the limit 
state function ( ) 0mg U =  and its gradient ( ) 0mg U∇ = . The 
new search direction vector is then expressed as follows:
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When the problem constraints are nonlinear, the new 
point obtained by Eq. (15) cannot satisfy the limit states as 
a constraint; therefore, the Newton iterative algorithm (Eq. 
(19)) is used to push the new point on the failure surface in 
the standard normal space. 
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The gradient method uses the information of the first 
derivative of the reliability function (Eq. (14)), and since it 
has an equality constraint, it can be used for any reliability 
problem [36]. The first-order reliability algorithm is usually 
suitable for limit state functions near linear design points, 
but when the fracture surface has a large curvature, this 
algorithm cannot estimate the safety index effectively and 
accurately. Hence, a second-order curvature surface is used in 
the second-order reliability method to approximate the limit 
state function at the design point. When the curvature of a 
curved surface conforms to that of the limit state function, the 
failure probability in the second-order approximation method 
is found as follows:
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Where k is the limit state function curvature at MPP and n 
is the No. of random variables [37].

5- Reliability-based sensitivity analyses
In this method, the reliability index sensitivity is found 

through a small turmoil in the random variables. First-order 
estimation methods present the importance factor ( )2

iα  as 
a function of the linearized limit state function derivative. 
These factors are the conductor cosines vector in the search 
process that should satisfy the following relation:
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Where   iα is, in fact, the sensitivity coefficient of the 
reliability index at the point with the highest fP  and its 
physical meaning shows the relative share of each random 
variable from fP  (the variable with the highest sensitivity 
coefficient that has the greatest share in determining the 
problem reliability index). Using the definition of the 
reliability index ( β ), which is the distance of the limit state 
function at point0 = ( )g U   from the origin in the normal 
standard space [36], we will have:

   
 

1
1

f Vn x iP I Vf iiN h VV i
 



 
 
  

                                                                            (13) 

 

 

Minimize    2

1

n

i
i

U


   

Subject to       0g U                                                                                                           (14) 

 

 

1m m m mU U s d                                                                                                           (15) 
 

   
     

T
m m m

m m mT
m m

g U U g U
d g U U

g U g U
 

  
 

                                                 (16) 

 

   
     

T
m m mHL

m mT
m m

g U U g U
U g U

g U g U
 

 
 

                                                                             (17) 

 

 
     

T
m m

m m mT
m m

g U U
d g U U

g U g U


  
 

                                                               (18) 

 

 
 

 11
1 1 12

1

i
mi i

m m m

m

g U
U U g U

g U


  



  


                                                                             (19) 

 


11
2

1
( ) 0 ( ) (1 )

n

f i
i

p P g X k 




                                                             (20) 

 

2 2 2
1 2 1i                                                                                               (21) 

 

2 2 2
1 2( i

i i

i
i

uu u
u u

u 


 
  


  


                                                                        (22) 

 

 (22)

6- Coefficient of correlation among random variables
Correlation can be defined as the effects of a random 

variable on other variables or the degree of linear dependence 
between two variables; hence, the linear correlation is best 
defined by a coefficient as follows:
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 (23)

Where XYρ  is the correlation coefficient between random 
variables X and Y with averages xµ  and  yµ and standard 
deviations xσ  and yσ  and [ ] .COV X Y  is the covariance 
between them defined as follows:
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 (24)

Since XYρ  is an important parameter in structure safety 
calculations ( 1 1ρ− ≤ ≤ ), XYρ  = 0 means that variables are 
independent (lack correlation) and its positive and negative 
values mean direct and inverse relations, respectively [23].



A. Bahrpeymah et al., AUT J. Civil Eng., 6(1) (2022) 3-14, DOI: 10.22060/ajce.2022.19547.5740

8

7- Finding the reliability of single-layered space domes by 
the height-to-span ratio
7- 1- Model description and random parameters

This section examines five dome structures with 
height-to-span ratios of 0.1, 0.2, 0.3, 0.4, and 0.5 (Fig. 
3) each having 156 hollow-steel-pipe members divided 
into 4 groups (Fig. 4), 61 nodes and 20m span length 
with curvature radii of 26, 14.50, 11.33, 10.25, and 10 
m, respectively. The domes have been designed under 3 
different load combinations as follows: The equipment 
load, which is concentrated and usually acts on the structure 

vertex vertically, is 10 ,kN  and the dead load, including 
the weights of the members, joints, structure cover, and 
snow, is 0.2 2 /kN m . These loads were calculated, 
assuming a covered structure surface (nodes’ effective 
loading surface), to find unequal concentrated forces 
acting on the nodes. Elasticity modulus, yield stress, dead 
and snow loads, nodes’ coordinates in the Z-direction, and 
section-area of members were random variables, and their 
statistical characteristics including the probability distribution 
type, mean and standard deviation are listed in Table 1. 

 
Fig. 3. Side view of a space dome with five different height-to-span ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Side view of a space dome with five different height-to-span ratios.

 

 
Fig. 4. Dome-space member groups. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Dome-space member groups.
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7- 2- Efficiency and accuracy of different reliability methods
In space structures, random variables are numerous and 

the reliability index determination is quite time-consuming. 
Hence, this section tries to propose a method that can find this 
index quickly and precisely using FORM, SORM, IS, and 
MCS for the required analyses and the vertical displacement 
performance function for the vertex node because it has the 
highest displacement; the allowable vertical displacement 
is assumed to be 2.5 cm. Accordingly, space dome b with 
a height-to-span ratio of 0.2, and geometric and statistical 
specifications given in Table 1 was selected for reliability 
analyses with an Intel (R) Core i5 CPU M480 @ 2.67GHz 
computer and the results are shown in Table 2. As shown, 
FORM, the fastest among the presented methods, has 
used both the Hasofer Lind and Gradient algorithms to 
calculate the reliability index. Although the two values are 
not significantly different, the convergence speed of the 
gradient-based FORM is greater than that of the Hasofer 
Lind method. If the MC-based calculated reliability index 

is assumed as a reference, the relative error of the gradient-
based FORM is 1.65% compared to the reference. SORM 
requires 28 sec to calculate the reliability index and the error 
in this method is about 1.06% which is less than that of the 
FORM. The IS error is less than those of FORM and SORM, 
but its calculation time is 1285 sec; the slowest is MCS with 
15425 sec. It can be concluded, in general, that in space 
structures with numerous random variables, simulation 
methods are not cost-effective because they are quite time-
consuming.

Therefore, FORM and SORM (approximation methods) 
are preferable for reliability index calculations. SORM 
yields better results than FORM because it uses a parabolic 
surface to approximate the limit state function; however, 
its calculation time increases significantly with an increase 
in the number of random variables because it requires a 
second-order derivative. A comparison of the two methods 
can reveal that their reliability indices are close and FORM 
can be used to continue the work.

Table 1. Statistical parameters of random variables.
 

Table 1. Statistical parameters of random variables. 
 

R. V. Description Distribution mean COV 

Pd(kN) Dead load Gauss 1.03 5% 
Ps(kN) Snow load Gauss 7.13 30% 

E(kN/cm2) Young s modulus Lognormal 2.059e4 5% 
Fy(kN/cm2) Yield strength Lognormal 23.536 5% 

A1(cm2) Cross-sectional area Lognormal 9.50 5% 
A2(cm2) Cross-sectional area Lognormal 6 5% 
A3(cm2) Cross-sectional area Lognormal 8 5% 
A4(cm2) Cross-sectional area Lognormal 5.5 5% 
Zi(cm) Nodal coordinates in z directions normal --- 3cm 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Reliability indices, consumed time, and errors of several reliability methods.
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Table 3. Comparing the effects of different performance functions on the reliability index for 
different height-to-span ratios.
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7- 3- Comparing the effects of different performance 
functions on finding the reliability Index

Past studies have generally used the displacement 
performance function to assess the reliability of space 
structures, but this paper has used different height-to-span 
ratios to study the effects of the displacement and stress 
performance functions (g1 and g2) on determining the 
reliability index; results from the FORM reliability analyses 
are given in Table 3. As shown, an increase in the height-to-
span ratio increases the reliability index because the former 
will change the loading and arch behavior of the dome 
structures. For both the displacement and stress performance 
functions, the minimum reliability index is related to a height-
to-span ratio of 0.1. 

In this case, the domes are relatively flat and shallow, and 
the internal forces created in the members (by external loads) 
are mainly bending moments that create small axial forces in 
the members. Here, the dome behavior resembles that of a 
flat, single-layered, grid system that has small stiffness and 
large deformations under external loads perpendicular to the 
structure plane. 

An increase in the height-to-span ratio reduces the effects 
of the external loads (snow) and arch behavior of the structure 
creating axial forces in the members and reducing their 
bending moments, causing them to deform. At a height-to-
span ratio of 0.50, the arch behavior increases the structural 
stiffness and highly reduces its displacement. It means that 
an increase in the height-to-span ratio increases the structure 
bearing capacity and, hence, increases the reliability. 
Therefore, in domes with a height-to-span ratio < 0.3, g1 is the 
suitable displacement performance function and for ratios > 
0.3, g2 (the stress performance function) should be considered 
as the effective (critical) limit state function. In short, it can 
be concluded that a change in the height-to-span ratio in 
space domes changes the structure’s performance function.

7- 4- Sensitivity analyses of space domes with different 
height-to-span ratios

This section has done the sensitivity analyses of the 
displacement and stress performance functions (g1 and g2) for 
random variables of domes with height-to-span ratios of 0.1, 
0.2, 0.3, 0.4, and 0.5 (Figs. 5 and 6) considering the member 
cross-section, elasticity modulus, yield stress, snow and 
dead loads and nodes’ coordinates (in the vertical direction) 
as random variables. Since the applied load and structure 
shape are symmetrical, the sensitivity coefficient is the same 
for nodes located in each ring. Hence, one node is selected 
from each ring because the space is not enough; z1 is node 1 
(vertex), z2 is the node in ring 1, z7 is the node in ring 2, and 
z19 is the node in ring 3. Some random parameters have been 
neglected because of their small sensitivity coefficients and 
negligible effects. According to Figs. 5 and 6, an increase in 
the height-to-span ratio gradually increases the sensitivity of 
the coefficients of the displacement and stress performance 
functions to the changes in the external loads. Since an 
increase in the height-to-span ratio reduces the maximum 
deformation in these domes, the increase in the sensitivity 
coefficient of the displacement performance function would 
be less than that of the stress performance function. 

7- 5- Inter-random variable correlation effects on the 
reliability

Since it is rather rare, in engineering problems, that 
effective parameters of a structure may not correlate, it is 
necessary to consider the correlation coefficient to arrive at 
real and more accurate solutions. This section has studied the 
effects of the variations of this coefficient on the reliability, 
for materials and geometry of space domes with different 
height-to-span ratios, considering the elasticity modulus 
and yield stress of the members and assuming other random 
variables to be independent (Table 4). 

 
Fig. 5. Sensitivity coefficient of the displacement limit state function g1 vs. random variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Sensitivity coefficient of the displacement limit state function g1 vs. random variables.
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As shown, for space domes with height-to-span 
ratios of 0.1 and 0.2, failure occurs due to yield stress 
(which is related to the elasticity modulus) because the 
members’ high bending moments and low slenderness 
cause the stress to exceed the yield point in some 
members; hence, a change in the correlation coefficient 

yEFρ  changes the reliability. However, for 0.3, 0.4, 
and 0.5 ratios, the mentioned change has no effects on 
the reliability because the axial stress is high at these 
ratios and the bending is negligible, which means axial 
behavior is dominant in the members. On the other hand, 
an increase in slenderness causes the maximum stress to 
occur due to buckling (buckling stress is found in Euler’s 
formula). Therefore, buckling stress is dependent on 
the elasticity modulus rather than on the yield stress. 
Next, to study the inter-node correlation effects on the 
reliability of space domes, one node is selected from 
each ring. Here, the nodes are z1, z2, z7, and z19, and the 
reliability is calculated by changing the coefficient of 
correlation between every two nodes assuming it to be 
zero for other nodes. According to Fig. 7, the correlation 
coefficient variation between z1 and z2 ( 1 2ZZρ ) has the 
greatest effect on reliability. For positive correlation 
coefficients, an increase in the coefficient will increase 
the reliability, but for negative ones, the increase will 

reduce it; in other nodes, this variation does not affect 
the reliability considerably. Fig. 8 shows the correlation 
coefficient variations between nodes z1 and z2 (

1 2ZZρ
) for domes with different height-to-span ratios, an 
increase in the positive/negative correlation coefficient 
increases/decreases the reliability. 

7- 6- Comparison of the effects of rigid and hinged nodes on 
the reliability

Modeling members’ connections (joints) is an important 
task in the design of single-layered space domes. Although 
they are usually modeled rigidly (fixed) to prevent structure 
instability, most recent papers have considered them to be 
hinged. The current study has examined the effects of both 
rigid and hinged joints on the reliability of space domes 
with different height-to-span ratios (Fig. 9).

Internal forces are mainly flexural, and the related 
effects are negligible, but they cause errors in reliability 
calculations. However, an increase in the height-to-span 
ratio will increase the dome curvature causing its arch 
behavior to reduce the bending moment and increase the 
axial force in the members. At height-to-span ratios > 0.3, 
the members’ bending moments reduce considerably due to 
which the difference between the reliabilities found by rigid 
and hinged joints is small.

Table 4. Effects of correlation coefficient variations on the reliability index.
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Fig. 6. Sensitivity coefficient of the stress limit state function g2 vs. random variables. 
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Fig. 7. Effects of inter-node correlation coefficient on the reliability index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Effects of inter-node correlation coefficient on the reliability index.

 

 
Fig. 8. Effects of inter-z1-z2-node correlation coefficient variations on the reliability index in domes with different height-

to-span ratios. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Effects of inter-z1-z2-node correlation coefficient variations on the reliability index in domes 
with different height-to-span ratios.
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8- Conclusion
This paper has studied the effects of space domes’ 

different height-to-span ratios on the reliability, sensitivity, 
and correlation among random variables and concluded 
the following: 

1- Reliability indices of space domes with different 
height-to-span ratios were calculated by FORM, SORM, 
IS, and MCS, and the results showed that in domes with 
numerous random variables, the first two performed faster 
than MCS and IS, and their reliability indices were close, 
concluding that FORM could be used to continue the work.

2- In space domes with a ratio of height to opening 
less than 0.3, the effective function is the displacement 
function, and for ratios greater than 0.3, the stress function 
should be considered as the critical function.

3- For the displacement performance function, an 
increase in the height-to-span ratio did not change the 
sensitivity to the random variations of the space dome’s 
nodes’ coordinates. 

4- An increase in the height-to-span ratio gradually 
increased the coefficients of the sensitivity of the 
displacement and stress performance functions to the 
changes in the external loads. Since an increase in the 
height-to-span ratio reduced the maximum deformation.

5- The change in the correlation coefficient between 
the members’ elasticity moduli and the yield stress random 
variable (

yEFρ ) at the height-to-span ratio of 0.1 and 0.2 
changed the reliability, but in other ratios, the change in 
the correlation coefficient did not increase or decrease the 
reliability.

 
Fig. 9. Comparison of the reliability index of space domes with rigid and hinged nodes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison of the reliability index of space domes with rigid and hinged nodes.
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