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ABSTRACT: A finite group G is said to be (l,m, n)-generated, if it is a quotient
group of the triangle group T (l,m, n) =

〈
x, y, z|xl = ym = zn = xyz = 1

〉
. In [J.

Moori, (p, q, r)-generations for the Janko groups J1 and J2, Nova J. Algebra and
Geometry, 2 (1993), no. 3, 277–285], Moori posed the question of finding all the
(p, q, r) triples, where p, q and r are prime numbers, such that a non-abelian finite
simple group G is (p, q, r)-generated. Also for a finite simple group G and a con-
jugacy class X of G, the rank of X in G is defined to be the minimal number of
elements of X generating G. In this paper we investigate these two generational prob-
lems for the group PSL(3, 7), where we will determine the (p, q, r)-generations and
the ranks of the classes of PSL(3, 7). We approach these kind of generations using
the structure constant method. GAP [The GAP Group, GAP – Groups, Algorithms,
and Programming, Version 4.9.3; 2018. (http://www.gap-system.org)] is used in our
computations.
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1. Introduction

The problem of generation of finite groups has great interest and has many applications to groups and their
representations. The classification of finite simple groups is involved heavily and play a pivotal role in most general
results on the generation of finite groups. The study of generating sets in finite groups has a rich history, with
numerous applications. We are interested in two kinds of generations of a finite simple group G, namely the
(p, q, r)-generation and the ranks of conjugacy classes of G.

A finite group G is said to be (l,m, n)-generated, if G = 〈x, y〉 , with o(x) = l, o(y) = m and o(z) = n, where
z = (xy)−1. Here [x] = lX is the conjugacy class of x in G and the elements in this class are of order l. Similarly for
the classes [y] = mY and [z] = nZ. In this case G is also a quotient group of the triangular group T (l,m, n) and, by
definition of the triangular group, G is also (σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may
assume that l ≤ m ≤ n. In a series of papers [17, 16, 18, 19, 20, 23, 24], Moori and Ganief established all possible
(p, q, r)-generations, p, q and r are distinct primes, of the sporadic groups J1, J2, J3, HS, McL, Co3, Co2 and
F22. Ashrafi in [2, 3] did the same for the sporadic groups He and HN. Also Darafsheh and Ashrafi established
in [13, 12, 14, 15], the (p, q, r)-generations of the sporadic groups Co1, Ru, O

′
N and Ly. Basheer and Seretlo

in [4] and [9] established the (p, q, r)-generations of the Mathieu sporadic group M22 and the alternating group
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A10 respectively. They also [8] looked at the 2 generation method where besides the (p, q, r) generations they also
established the conjugacy class ranks of the group PSL(3, 7).

From another side, for a finite simple group G and non-trivial class nX of G, the rank of nX in G, denoted by
rank(G : nX), is defined to be the minimal number of elements of nX generating G. One of the applications of
ranks of conjugacy classes of a finite group is that they are involved in the computations of the covering number
of the finite simple group. We recall from Zisser [27] that for a finite simple group G, the covering number of
G is the smallest integer n such that Cn = G, for all non-trivial conjugacy classes C of G and by Cn we mean
{c1c2 · · · cn| c1, c2, · · · , cn ∈ C}. In [22, 25, 26], J. Moori computed the ranks of the involutry classes of the Fischer
sporadic simple group Fi22. He found that rank(Fi22:2B) = rank(Fi22:2C) = 3, while rank(Fi22:2A) ∈ {5, 6}.
The work of Hall and Soicher [21] implies that rank(Fi22:2A) = 6. Then in a considerable number of publications
(see the list of references of [6]) various authors explored the ranks for many of the sporadic simple groups.

The motivation for studying the (p, q, r)-generations and the ranks of classes in a finite simple group G is outlined
in the above mentioned papers and the reader is encouraged to consult these papers for background material as
well as basic computational techniques.

This paper intends to be a continuation to the above series on simple groups, where we will establish all the
(p, q, r)-generations together with the ranks of the conjugacy classes of the projective special linear group PSL(3, 7).
Note that, in general, if G is a (2, 2, n)-generated group, then G is a dihedral group and therefore G is not simple.
Also by [10], if G is a non-abelian (l,m, n)-generated group, then either G ∼= A5 or 1

l + 1
m + 1

n < 1. Thus for
our purpose of establishing the (p, q, r)-generations of G = PSL(3, 7), the only cases we need to consider are when
1
p + 1

q + 1
r < 1. Therefore excluding the triples (2, 2, p) and those that do not satisfy the condition 1

p + 1
q + 1

r < 1,

we remain with 380 triples (p, q, r), p ≤ q ≤ r to consider. We found that out of these 380 triples, 348 of them
generate PSL(3, 7). The main result on the (p, q, r)-generations of the projective special linear group PSL(3, 7) can
be summarized in the following theorem.

Theorem 1.1. Let S = {B,C,D} and T := {A,B,C,D,E, F}. The projective special linear group PSL(3, 7) is
generated by all the triples (pX, qY, rZ), p, q and r are primes dividing |PSL(3, 7)| if and only if (pX, qY, rZ) is
one of the following triples:

1. (2A, 3A, 19Y );(2A, 7X, 7X); (2A, 7X, 19Y ); (2A, 19Y, 19Z), X ∈ S; Y, Z ∈ T ;

2. (3A, 3A, 7X); (3A, 3A, 19Y );(3A, 7X, 7X); (3A, 7X, 19Y );(3A, 19Y, 19Z); X ∈ S; Y, Z ∈ T ;

3. (7A, 7X, 7X); (7V, 7W, 7X); (7A, 7X, 19Y ); (7A, 19Y, 19Z);(7X, 19Y, 19Z); V, W, X ∈ S;Y, Z ∈ T ;

4. (19X, 19Y 19Z); X, Y, Z ∈ T.

The proof of Theorem 1.1 will be done through sequence of propositions that will be established in Subsections
3.1, 3.2 and 3.3.

Also the main result on the ranks of non trivial classes of G can be summarized in the following theorem.

Theorem 1.2. Let G be the projective special linear group PSL(3, 7). Then

1. rank(G:2A) = rank(G:7A) = 3,

2. rank(G:nX) = 2 for all nX 6∈ {1A, 2A, 7A}.

The proof of Theorem 1.2 will be established in Propositions 4.1, 4.2, 4.3 and 4.4.
In [5],the ranks of the classes of the group A10 using the structure constant method were determined. In this

paper we use the same technique to determine the (p, q, r)-generations and ranks of conjugacy classes of PSL(3, 7).
Therefore for the notation, description of the structure constant method and known results, we follow precisely
[7, 5, 6, 4].

2. The projective special linear group PSL(3, 7)

The projective special linear group PSL(3, 7) is a simple group of order 1876896 = 25 × 32 × 73 × 19. By the Atlas
[11], the group PSL(3, 7) has exactly 22 conjugacy classes of its elements, of which 12 of these classes have elements
of prime orders. These are the classes 2A, 3A, 7A, 7B, 7C, 7D, 19A, 19B, 19C, 19D, 19E and 19F . Also PSL(3, 7)
has 8 conjugacy classes of maximal subgroups, where representatives of these classes of maximal subgroups can be
taken as follows:

H1
∼= H2 = 72:SL(2, 7):2 H3

∼= H4
∼= H5 = PSL(3, 2):2 H6 = 3.A4:2

H7 = 32:Q8 H8 = 19:3
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Throughout this paper and unless otherwise stated, by G, we always mean the projective special linear group
PSL(3, 7). For a subgroup H of G containing a fixed element g such that gcd(o(g), [NG(H):H]) = 1, we let h(g,H)
be the number of conjugates of H in G containing g. This number is given by χH(g), where χH is the permutation
character of G with action on the conjugates of H. Using Theorem 2.2 of [6] we computed the values of h(g,Hi) for
all the non-identity classes of elements and all the maximal subgroups Hi, 1 ≤ i ≤ 8, of G and we list these values
in Table 1.

Table 1: The values h(g,Hi), 1 ≤ i ≤ 8 for non-identity classes and maximal subgroups of PSL(3, 7)

H1 H2 H3 H4 H5 H6 H7 H8

2A 9 9 98 98 98 196 84 0
3A 3 3 6 6 6 13 4 24
4A 1 1 2 2 2 4 12 0
6A 3 3 2 2 2 1 0 0
7A 8 8 0 0 0 0 0 0
7B 1 1 0 0 7 0 0 0
7C 1 1 7 0 0 0 0 0
7D 1 1 0 7 0 0 0 0
8A 1 1 2 2 2 0 0 0
8B 1 1 2 2 2 0 0 0
14A 2 2 0 0 0 0 0 0
16A 1 1 0 0 0 0 0 0
16B 1 1 0 0 0 0 0 0
16C 1 1 0 0 0 0 0 0
16D 1 1 0 0 0 0 0 0
19A 0 0 0 0 0 0 0 1
19B 0 0 0 0 0 0 0 1
19C 0 0 0 0 0 0 0 1
19D 0 0 0 0 0 0 0 1
19E 0 0 0 0 0 0 0 1
19F 0 0 0 0 0 0 0 1

3. The (p, q, r)-generations of the PSL(3, 7)

In this section we investigate all the generation of PSL(3, 7) := G by the triples (pX, qY, rZ), p, q and r are primes
that divide the order of G. That is p, q, r ∈ {2, 3, 7, 19}.

3.1. The (2, q, r)-generations of G

The (2, q, r)-generations comprise three cases, namely (2, 3, r)-, (2, 7, r)- and (2, 19, r)-generations. The condition
1
p + 1

q + 1
r < 1, implies that if G is (2A, 3A, rZ)-generated, then we must have r > 6. That is r = 7 or r = 19.

Throughout the paper, let S and T be as in Theorem 1.1; that is S = {B,C,D} and T = {A,B,C,D,E, F}.

Proposition 3.1. G is (2A, 3A, 19Y )-generated group for Y ∈ T.

Proof. The computations with GAP [1] show that ∆G(2A, 3A, 19Y ) = 57, for all Y ∈ T. From Table 1 we can
see that only H8 = 19:3 is the maximal subgroup of G that contains elements of order 19. However we can
see that the order of H8 is an odd and thus there is no fusion from this subgroup into the class 2A of G. It
follows that there is no contribution from any maximal subgroup of G to ∆∗G(2A, 3A, 19X), for any X ∈ T. Thus
∆∗G(2A, 3A, 19Y ) = ∆G(2A, 3A, 19Y ) = 57, for all Y ∈ T. Hence G is generated by all the triples (2A, 3A, 19Y ), for
Y ∈ T.

Proposition 3.2. G is neither (2A, 7A, 7X)- nor (2A, 7A, 19Y )-generated group for all X ∈ {A,B,C,D} and
Y ∈ T. Also G is not (2A, 7W, 7X)-generated group, for all W, X ∈ S,X 6= W.

Proof. The GAP computations reveals that ∆G(2A, 7A, 7X) = ∆G(2A, 7A, 19Y ) = 0 for all X ∈ {A,B,C,D} and
Y ∈ T. Also, the computations reveals that ∆G(2A, 7W, 7X) = 0 for all W, X ∈ S, X 6= W. Hence the result.

Proposition 3.3. The group G is (2A, 7X, 7X)-generated, X ∈ S
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Proof. From Table 1 there are five maximal subgroups of G whose elements fuse into either 7B, 7C or 7D. These
are subgroups H1 = H2 and H3 = H4 = H5. The intersection of any two of these maximal subgroups are as follows:
H1 ∩ H2

∼= SL(2, 7):2, H1 ∩ H3
∼= D16, H1 ∩ H4

∼= D12 and H1 ∩ H5
∼= 7:6. Note that from SL(2, 7):2 we have

7a→ 7A.
Similar intersections for H3, H4 and H5 hold for H2. Also H1 ∩H2 ∩H5

∼= Z6, which clearly has no element of
order 7. Computations show that h(7D, 7:6) = 7 and also

∑
7:6(2a, 7a, 7a) = 0. Also 7a in H3 fuses to 7B, 7a in H4

fuses into 7C and 7a in H5 into 7D. We also have from H1, 7a→ 7A, 7b→ 7A while 7c→ 7B, 7d→ 7C, 7e→ 7D.
The fusions also hold for H2. We also have that the computations show that ∆G(2A, 7X, 7X) = 147 for all X ∈ S.

Also
∑
H1

(2A, 7A, 7A) =
∑
H2

(2A, 7A, 7A) = 0. We also have
∑
H3

(2a, 7a, 7a) =
∑
H4

(2a, 7a, 7a) =
∑
H5

(2a, 7a, 7a) = 7

From Table 1, we have h(7X,H1) = h(7X,H2) = 1 for each X ∈ S. We also have 7a in H3 fuses into 7C and 7a
in H4 fuses into 7B and 7a in H5 into 7D and computations give us and h(7C,H3) = h(7B,H4) = h(7D,H5) = 7.
Finally

∆∗G(2A, 7B, 7B) = ∆G(2A, 7B, 7B)− 1×
∑
H1

(2a, 7c, 7c)− 1×
∑
H2

(2a, 7c, 7c)

− 7×
∑
H3

(2a, 7a, 7a)

= 147− 13− 13− 49

= 72 > 0

Hence (2A, 7B, 7B) generate G.
Similarly ∆∗G(2A, 7C, 7C) = 72. and hence (2A, 7C, 7C) generates G.
Finally

∆∗G(2A, 7D, 7D) = ∆G(2A, 7D, 7D)− 1×
∑
H1

(2a, 7e, 7e)− 1×
∑
H2

(2a, 7e, 7e)

− 7×
∑
H5

(2a, 7a, 7a) + 7×
∑

H1∩H5

(2a, 7a, 7a)

= 147− 13− 13− 49 + 0

= 72 > 0

Again, (2A, 7D, 7D), generates G.
The Proposition is proved.

Proposition 3.4. G is (2A, 7X, 19Y )-generated group for all X ∈ S, Y ∈ T

Proof. The computations with GAP show that ∆G(2A, 7X, 19Y ) = 57, for all X ∈ S, Y ∈ T. From Table 1, we can
see that only H8 = 19:3 is the maximal subgroup of G that contains elements of order19. However we can see that
the order of H8 is neither divisible by 2 nor by 7 and thus there is no fusion from classes of H8 into the classes 2A
and 7X of G. It follows that there is no contribution from any maximal subgroup of G to ∆∗G(2A, 7X, 19Y ), for
any X ∈ T. Thus ∆∗G(2A, 7X, 19Y ) = ∆G(2A, 7X, 19Y ) = 57, for all X ∈ S, Y ∈ T. Hence G is generated by all
the triples (2A, 7X, 19Y ), for X ∈ S, Y ∈ T.

We now look at the last case of the (2, q, r)-generations, namely the (2, 19, 19)-generations.

Proposition 3.5. G is (2A, 19Y, 19Z)-generated group for all Y, Z ∈ T.

Proof. The computations with GAP show that ∆G(2A, 19Y, 19Z) = 171, for all Y, Z ∈ T. The treatment is same
as in Propositions 3.1 and 3.3 and thus ∆∗G(2A, 19Y, 19Z) = ∆G(2A, 19Y, 19Z) = 171, for all Y, Z ∈ T. Hence G is
generated by all the triples (2A, 19Y, 19Z), for Y, Z ∈ T .

3.2. The (3, q, r)-generations of G

In this subsection we consider all the (3, q, r)-generations, which constitutes the cases (3, 3, r)-, (3, 7, r)- and (3, 19, r)-
generations. The condition 1

p + 1
q + 1

r < 1, implies that if G is (3A, 3A, rZ)-generated, then we must have r > 3.
That is r = 7 or r = 19.

Proposition 3.6. G is not (3A, 3A, 7A)-generated group.
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Proof. From Table 1 we can see that only H1 = H2
∼= 72:GL(2, 7):2 are the only maximal subgroup of G that

contains elements of orders 3 and 7 that have fusions into 3A and 7A. We also know that H1

⋂
H2
∼= SL(2, 7):2,

which has fusions into both 3A and 7A. Now the computations give that ∆G(3A, 3A, 7A) = 4802,
∑
H1

(3a, 3a, 7a) =∑
H2

(3a, 3a, 7a) = 2744,
∑

H1
⋂

H2

(3a, 3a, 7a) = 14, h(7A,H1

⋂
H2) = 49. From Table 1, we also have h(7A,H1) =

h(7A,H2) = 8. It follows that

∆∗G(3A, 3A, 7A) = ∆G(3A, 3A, 7A)− 8×
∑
H1

(3a, 3a, 7a)− 8×
∑
H2

(3a, 3a, 7a)

+ 49×
∑

H1
⋂

H2

(3a, 3a, 7a) = 4802− 43904 + 686

< |CG(7A)|

where by CG(nX) we mean the centralizer of a representative of class nX of G. Showing the non-generation of G
by (3A, 3A, 7A).

Proposition 3.7. G is (3A, 3A, 7X), X ∈ S-generated group.

Proof. Here we have five maximal subgroups of G are involved, namely H1 = H2 and H3
∼= H4

∼= H5. We know
from the proof of Proposition 3.3 that H1

⋂
H2
∼= GL(2, 7):2, H1

⋂
H3
∼= D16, H1

⋂
H4
∼= D12, H1

⋂
H5
∼= 7:6, and

H1

⋂
H2

⋂
H5
∼= Z6. The unique class of elements of order 7 in H1

⋂
H2
∼= SL(2, 7):2 fuses into the class 7A of G. We

can see that the order of H1

⋂
H3
∼= D16, H1

⋂
H4
∼= D12 are both not divisible by 7, while the order of H1

⋂
H5
∼=

7:6 is divisible by both 3 and 7. Also the order of H1

⋂
H2

⋂
H5
∼= Z6 is neither divisible by 7. Note the intersections

of H1 also hold for H2. We also noted that in H3, 7a → 7B, in H4, 7a → 7C and H5 we had 7a → 7D. We thus
conclude that there will be no contribution from the intersections of H1, H2, H3, H4 and H5 (pairwise or the three
of them) in the computations of ∆∗G(3A, 3A, 7X). Now the computations show that ∆G(3A, 3A, 7X) = 1715. Also∑
H1

(3a, 3a, 7x) =
∑
H2

(3a, 3a, 7x) = 686, x ∈ {c, d, e} and
∑
H3

(3a, 3a, 7a) =
∑
H4

(3a, 3a, 7a) =
∑
H5

(3a, 3a, 7a) = 21. We

also have
∑
7:6

(3a, 3a, 7a) = 0 From Table 1 we also have h(7X,H1) = h(7X,H2) = 1, h(7X,H3) = h(7X,H4) =

h(7X,H5) = 7, and h(7D,H1

⋂
H5) = 7. It follows that for X ∈ {B,C}, x ∈ {c, d} and i ∈ {3, 4} we get

∆∗G(3A, 3A, 7B) = ∆G(3A, 3A, 7B)− 1×
∑
H1

(3a, 3a, 7c)− 1×
∑
H2

(3a, 3a, 7c)

− 7×
∑
H3

(3a, 3a, 7a))

= 1715− 2× 686− 7× 21 = 193 > 0,

Similarly, keeping in mind the fusions, ∆∗G(3A, 3A, 7C) = 193 > 0. Also

∆∗G(3A, 3A, 7D) = ∆G(3A, 3A, 7D)− 1×
∑
H1

(3a, 3a, 7e)− 1×
∑
H2

(3a, 3a, 7e)

− 7×
∑
H5

(3a, 3a, 7a) + 7×
∑
7:6

(3a, 3a, 7a)

= 1715− 2× 686− 7× 21 + 0 = 193 > 0,

establishing the generation of G by (3A, 3A, 7X), X ∈ S.

Proposition 3.8. G is (3A, 3A, 19Y )-generated group for all Y ∈ T.

Proof. From Table 1 we can see that H8 = 19:3 is the only maximal subgroup of G containing elements of order
19 and also has fusions into the class 3A of G. In addition to the identity class 1a, the group H8 has two classes
of elements of order 3, namely 3a and 3b; and has 6 conjugacy classes of elements of order 19, namely 19a, 19b,
19c, 19d, 19e, and 19f. Let M := {a, b, c, d, e, f}. For class 3a of H8 and with the aid of GAP we found that∑
H8

(3a, 3a, 19x) = 0 for all x ∈ M, while for class 3b of H8 we found that
∑
H8

(3b, 3b, 19x) = 0 for all x ∈ M. We

also found that ∆G(3A, 3A, 19Y ) = 1349, for all X ∈ T. It follows that

∆∗G(3A, 3A, 19X) = ∆G(3A, 3A, 19Y )

= 1349 > 0.
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Hence G is generated by all the triple (3A, 3A, 19Y ), for Y ∈ T.

Next we turn to look at the (3, 7, r)-generations.

Proposition 3.9. G is not (3A, 7A, 7X)-generated group for X ∈ {A,B}.

Proof. The computations with GAP show that ∆G(3A, 7A, 7A) = 343 and from the Atlas [11] we can see that
|CG(7A)| = 686, where by CG(nX) we mean the centralizer of a representative of class nX of G. Now the non-
generation of G by (3A, 7A, 7A) follows by Lemma 2.7 of [6].

For the other case (3A, 7A, 7X), X ∈ S we can see from Table 1 that only H1 = H2 = 72:SL(2, 7):2 are the
maximal subgroups of G that have fusions into the classes 3A, 7A and 7B of G. In fact each of H1 and H2 has 7a
and 7b that fuse to class 7A of G. We also have that from H1 and H2 we have 7c→ 7B, 7d→ 7C and 7e→ 7D and
last one class of elements of order 3 that fuse to class 3A of G. The intersection of H1 and H2 has no element of
order 7 that fuse to class 7X of G. Now the computations with GAP reveal ∆G(3A, 7A, 7X) = 98, Let x ∈ {c, d, e}∑
H1

(3a, 7a, 7x) +
∑
H1

(3a, 7b, 7x) = 0 + 49 = 49,
∑
H2

(3a, 7a, 7x) +
∑
H2

(3a, 7b, 7x) = 0 + 49 = 49. Also from Table 1 we

have h(7X,H1) = h(7X,H2) = 1. Therefore we get

∆∗G(3A, 7A, 7X) = ∆G(3A, 7A, 7X)− 1× (
∑
H1

(3a, 7a, 7x) +
∑
H1

(3a, 7b, 7x))

− 1× (
∑
H2

(3a, 7a, 7xb) +
∑
H2

(3a, 7a, 7x)) = 98− 49− 49 = 0,

showing the non-generation of G by (3A, 7A, 7X) and completing the proof.

Proposition 3.10. G is (3A, 7X, 7X)-generated group, where X ∈ S.

Proof. In this case five maximal subgroups are involved, namely, H1, H2 and also H3, H4 and H5. For both H1

and H2 we have 7a, 7b fusing to 7A. We have 7c → 7B, 7d → 7C and 7e → 7D. Also for H3, H4 and H5 we have
7a → 7B, 7a → 7C and 7a → 7D respectively. We also have, from H1

⋂
H5, 7a → 7D. We also have We use the

following computations to obtain ∆∗G(3A, 7X, 7X). By GAP we have ∆G(3A, 7X, 7X) = 882,
∑
H1

(3a, 7x, 7x) = 100,∑
H2

(3a, 7x, 7x) = 98, for x ∈ {c, d, e}
∑
Hi

(3a, 7a, 7a) == 14, i = 3 · · · 5 Also
∑

H1
⋂

H5

(3a, 7a, 7a) = 0 We also have

H7X,H1) = h(7X,H2) = 1 and h(7X,H3) = 7 and] h(7D,H1

⋂
(H5)) = 7. It renders that

∆∗G(3A, 7X, 7X) = ∆G(3A, 7X, 7X)− 1×
∑
H1

(3a, 7x, 7x)− 1×
∑
H2

(3a, 7x, 7x)

− 7×
∑
Hi

(3a, 7a, 7a) = 882− 98− 98− 7× 14 = 884− 294

= 588 > 0.

Hence G is (3A, 7X, 7X)-generated group.

Corollary 3.11. G is (3A, 7W, 7X)-generated group, where W, X ∈ S,W 6= X.

Proof. This is the same as above only ∆G(3A, 7W, 7X) = 1225 and
∑

H1
(3a, 7x, 7y) =

∑
H2

(3a, 7x, 7y) = 98, x, y ∈
{c, d, e}.
For H3, H4 and H5 for each there can only be fusion into one class and no two fuse to the same class. So there will
be no contribution from these. So we have

∆∗G(3A, 7W, 7X) = ∆G(3A, 7W, 7X)−
∑
H1

(3a, 7x, 7y)−
∑
H2

(3a, 7x, 7y)

= 1225− 98m− 98

= 1029 > 0

Hence G is (3A, 7W, 7X)-generated group.

Proposition 3.12. G is (3A, 7X, 19Y )-generated group for X ∈ {A,B,C,D} and Y ∈ T.
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Proof. From Table 1 we can see that H8 = 19:3 is the only maximal subgroup of G that contains elements of order
19. Clearly order of H8 is not divisible by 7 and thus there is no contribution by any maximal subgroup of G in the
computations of ∆∗G(3A, 7X, 19Y ) for 7A and X ∈ S and Y ∈ T. That is ∆∗G(3A, 7A, 19Y ) = ∆G(3A, 7A, 19Y ) =
∆∗G(3A, 7X, 19Y ) = ∆G(3A, 7X, 19Y ) for 7A ∈ 7X and X ∈ S and Y ∈ T. Now the computations show that
∆G(3A, 7A, 19Y ) = 57 and ∆G(3A, 7X, 19Y ) = 1064 for 7A ∈ 7X and for all X ∈ S and Y ∈ T. Hence G is
(3A, 7A, 19Y ) and also (3A, 7X, 19Y ) -generated group for 7A ∈ 7X,X ∈ S and Y ∈ T.

The last part of our investigation on the (3, q, r)-generations of G is to look at the (3, 19, 19)-generations, which
is the context of the next proposition.

Proposition 3.13. G is (3A, 19Y, 19Z)-generated group for all Y, Z ∈ T.

Proof. The computations with GAP show that ∆G(3A, 19Y, 19Z) = 2850, for all Y, Z ∈ T. Again H8 is the
only maximal subgroup of G with classes that fuse to classes 3A and 19Y of G for Y ∈ T. By GAP we ob-

tained that
∑
H8

(3x, 19y, 19z) = 0, for x ∈ {a, b} and y, z ∈ M, where M as in the proof of Proposition 3.7.

Thus ∆∗G(3A, 19Y, 19Z) = ∆G(3A, 19Y, 19Z) = 2850, for all Y, Z ∈ T. Hence G is generated by all the triples
(3A, 19Y, 19Z), for Y, Z ∈ T.

3.3. The (7, q, r)- and (19, q, r)-generations of G

In this subsection we look at the (7, q, r)-generations of G, which comprise of the cases (7, 7, r)- and (7, 19, r)-
generations.

Proposition 3.14. G is neither (7A, 7A, 7A) nor (7A, 7A, 7X) - nor (7A, 7A, 19Y )-generated group for X ∈ S and
Y ∈ T.

Proof. The GAP computations give ∆G(7A, 7A, 7A) = 89 and ∆G(7A, 7A, 7X) = 14. From the Atlas we can see
that |CG(7A)| = 686 and |CG(7X)| = 49. Now the non-generation of G by (7A, 7A, 7X) for X ∈ S follows by
Lemma 2.7 of [6].
For the other case of (7A, 7A, 19Y ), for Y ∈ T, the direct computations show that ∆G(7A, 7A, 19Y ) = 0, for all
Y ∈ T. Hence the result.

Proposition 3.15. G is (7A, 7X, 7X)-generated group and also (7V, 7W, 7X), V,W,X ∈ S-generated group.

Proof. The maximal subgroups of G with elements that fuse to class 7X of G are H1, H2 and H3, H4 and H5,
while those maximal subgroups with elements that fuse to both classes 7A and 7X of G are H1 and H2 only, where
7a, 7b → 7A. Now we consider the case (7A, 7X, 7X) firstly. The intersection of H1 and H2 has no element of

order 7 that fuse to any class 7X of G and thus
∑

H1
⋂

H2

(7a, 7x, 7x) = 0. Using GAP we get ∆G(7A, 7X, 7X) = 118,∑
H1

(7a, 7x, 7x) +
∑
H1

(7b, 7x, 7x) = 13 + 7 = 20,. where x ∈ {c, d, e}
∑
H2

(7a, 7x, 7x) +
∑
H2

(7b, 7x, 7x) = 13 + 7 = 20.

We also have h(7X,H1) = H7X,H2) = 1. It follows that

∆∗G(7A, 7X, 7X) = ∆G(7A, 7X, 7X)− 1× (
∑
H1

(7a, 7x, 7x) +
∑
H1

7b, 7x, 7x))

− 1× (
∑
H2

(7a, 7x, 7x) +
∑
H2

(7b, 7x, 7x))

= 118− 20− 20 = 78 > 0,

showing the generation of G by (7A, 7X, 7X).
We are now left with three cases namely (7W, 7W, 7X), (7W, 7W, 7X) and (7V, 7W, 7X) the intersection of H1

and H2 has no element of order 7 that fuse to classes 7B, 7C and 7D of G. The intersection of H1 with either H3

or H4 has no element of order 7 at all. While H1

⋂
H5
∼= 7:6 and has an element of order 7 that fuses to class 7D

of G. The intersection of H1, H2 and H5 is Z6. Also
∑

H1

⋂
H5

(7a, 7a, 7a) = 5 < |CH1|
⋂

H5
(7a). Hence there is not

generation that involves H1

⋂
H5 by (7a, 7a, 7a). Therefore there is no any contribution from the intersection of

any subgroups of G in the computations of:

(i) ∆∗G(7X, 7X, 7X)

(ii) ∆∗G(7X, 7X, 7Y )
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(iii) ∆∗G(7X, 7Y, 7Z)

X,Y, Z ∈ S. Using GAP we obtained:

(i) ∆G(7X, 7X, 7X) = 1358

(ii) ∆G(7X, 7X, 7Y ) = 602

(iii) ∆G(7X, 7Y, 7Z) = 1106 > 0

Also noting that each of H3, H4 and H5 has only one class 7a that fuses into 7B, 7C and 7D of G respectively and
also since 7a and 7b from H1 and H2 fuse into 7A in G and 7c, 7d and 7e from each of H1 and H2 fuse into 7B, 7C
and 7D of G respectively we get:∑
H1

(7x, 7x, 7x) =
∑
H2

(7x, 7x, 7x) = 35, and
∑
Hi

(7x, 7x, 7x) < |CHi
(7x)|, i = 1, 2, x ∈ {c, d, e}. That is no

contribution from Hi(7x, 7x, 7x). Also
∑
H3

(7a, 7a, 7a) =
∑
H4

(7a, 7a, 7a) =
∑
H5

(7a, 7a, 7a) = 12. We also have

h(7B,H3) = h(7C,H4) = h(7D,H5) = 7. Therefore we get

∆∗G(7X, 7X, 7X) = ∆G(7X, 7X, 7X)− 7×
∑
Hj

(7x, 7x, 7x)

= 1358− 7× 12

= 1358− 84 = 1274 > 0.

Hence G is (7X, 7X, 7X)-generated group.
Also G is (7W, 7W, 7X) generated . First none of the 7a from H3, H4 and H5 fuse into the same class. Hence
there is no contribution from these on ∆G(7W, 7W, 7X). Also we have ∆G(7W, 7W, 7X) = 602 and hence we have
∆∗G(7X, 7X, 7X) = ∆G(7X, 7X, 7X) = 602
Similarly ∆∗G(7V, 7W, 7X) = ∆G(7V, 7W, 7X) = 1106
The proposition is proved.

Proposition 3.16. G is (7A, 7X, 19Y ), (7W, 7X, 19Y )-generated group for W,X ∈ S and Y ∈ T.

Proof. For the triple (7A, 7X, 19Y ), we can see from Table 1 that H8 = 19:3 is the only maximal subgroup of G
containing elements of order 19. HoweverH8 does not contain elements of order 7. Thus there will be no contribution
by any maximal subgroup of G in the computations of ∆∗G(7A, 7X, 19Y ) for Y ∈ T. That is ∆∗G(7A, 7X, 19Y ) =
∆G(7A, 7X, 19Y ) for Y ∈ T. Now the computations show that ∆G(7A, 7X, 19Y ) = 57 for all Y ∈ T. Hence G is
(7A, 7X, 19Y )-generated group for Y ∈ T. For the cases (7W, 7X, 19Y ) we have :

The case W = X, we have (7X, 7X, 19Z), Z ∈ T, we recall from Proposition 3.4 that G is (2A, 7X, 19Z)-
generated group for all Z ∈ T. It follows by Lemma 2.5 of [6] that G is also (7X, 7X, (19Z)2)-generated group for
all Z ∈ T ; that is G is (7X, 7X, 19Y )-generated group for all Y ∈ T, where (19Z)2 = 19Y. Hence the result.

For the last case W 6= X, we have, (7W, 7X, 19Y ), W,X ∈ S, Y ∈ T, W 6= X, we have ∆G(7W, 7X, 19Y ) =
779. Noting that there will be no contribution by any maximal subgroup of G. We have ∆∗G(7W, 7X, 19Y ) =
∆G(7A, 7X, 19Y ) = 779
Hence G is (7W, 7X, 19Y ) - generated.

The last part of this subsection is to study the (7, 19, r)-generations of G.

Proposition 3.17. For Y ∈ T, the group G is (7A, 19Y, 19Y )-generated, and also for Y,Z ∈ T and Y 6= Z, the
group G is (7A, 19Y, 19Z)-generated.

Proof. The direct computations show that ∆G(7A, 19Y, 19Y ) = 114, for all Y ∈ T. We know that H8 is the only
maximal subgroup of G that has elements of order 19. However it does not contains elements of orders 7. Thus
there will be no contribution from any maximal subgroup of G in the computations of ∆∗G(7A, 19Y, 19Z); that is
∆∗G(7A, 19Y, 19Z) = ∆G(7A, 19Y, 19Z) = 114, establishing the generation of G by (7A, 19Y, 19Y ) for Y ∈ T.
For the case (7A, 19Y, 19Z), where Y, Z ∈ T and Y 6= Z, the computations show that ∆G(7A, 19Y, 19Z) = 171. Like
above, we know thatH8 is the only maximal subgroup ofG that has elements of order 1. However it does not contains
elements of orders 7. Thus there will be no contribution from any maximal subgroup of G in the computations
of ∆∗G(7A, 19Y, 19Z); that is ∆∗G(7A, 19Y, 19Z) = ∆G(7A, 19Y, 19Z) = 171, establishing the generation of G by
(7A, 19Y, 19Z) for Y,Z ∈ T and Y 6= Z.

Proposition 3.18. G is (7X, 19Y, 19Z) for all X ∈ S, and Y,Z ∈ T.
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Proof. As in the proof of Proposition 3.17, there will be no contribution from any maximal subgroup of G in the
computations of ∆∗G(7X, 19Y, 19Y ); that is ∆∗G(7X, 19Y, 19Y ) = ∆G(7X, 19Y, 19Y ). The computations with GAP
show that ∆G(7X, 19Y, 19Y ) = 2128 while ∆G(5B, 19Y, 19Z) = 1995, for Y 6= Z and both Y and Z are in T. This
establishes the generation of G by (7X, 19Y, 19Z) for Y,Z ∈ T.

Finally we handle the case (19, q, r)-generation of G. This comprises of only the case (19, 19, 19).

Proposition 3.19. G is (19X, 19Y, 19Z)-generated group for all X,Y, Z ∈ T.

Proof. Using GAP we obtained that ∆G(19X, 19X, 19X) = 4959, . Now H8 is the only maximal subgroup of G
that has elements of order 19. It has 6 conjugacy classes of elements of order 19, where each class fuses into
a class of elements of order 19 in G. Again the computations with GAP show that

∑
H8

(19x, 19y, 19z) = 0,
x, y, z ∈ {a, b, c, d, e, f}. Since h(19X,H8) = 1 for all X ∈ T, it follows that

∆∗G(19X, 19Y, 19Z) = ∆G(19X, 19Y, 19Z)− 1×
∑
H8

(19x, 19y, 19z)

∈ {4949, 5645, 4959}.

Therefore ∆∗G(19X, 19Y, 19Z) > 0 and hence G is generated by all the triples (19X, 19Y, 19Z), for all X,Y, Z ∈
T.

4. The ranks of the classes of PSL(3, 7)

In this section we determine the ranks for all the non-trivial conjugacy classes of elements of the group PSL(3, 7).
We start our investigation on the ranks of the non-trivial classes of PSL(3, 7) := G by looking at the unique

class of involutions 2A. It is well-known that two involutions generate a dihedral group. Thus the lower bound
of the rank of an involutry class in a finite group G 6= D2n (the dihedral group of order 2n) is 3. The following
proposition gives the rank of class 2A in G.

Proposition 4.1. rank(G:2A) = 3.

Proof. By Proposition 3.1 we have G is (2A, 3A, 19Y )-generated group, for all Y ∈ T, where T as in the pre-
vious section. It follows that by Lemma 2.3 of [6], G is (2A, 2A, 2A, (19Y )3)-generated group; that is G is
(2A, 2A, 2A, 19Z)-generated group, for some Z ∈ T. Therefore rank(G : 2A) ≤ 3. Since rank(G : 2A) 6= 2, it
follows that rank(G : 2A) = 3.

Lemma 4.2. rank(G:7A) 6= 2.

Proof. For the class 7A of G, let

S = {7A, 7B, 7C, 7D}, T = {19A, 19B, 19C, 19D, 19E, 19F} and R = {16A, 16B, 16C, 16D}.

Direct computations show that ∆G(7A, 7A, kX) = ∆G(7A, 7A, lY ) = ∆G(7A, 7A,mZ) = 0 for all kX ∈ S, lY ∈ T
and mZ ∈ R. Thus G is neither (7A, 7A, kX)- nor (7A, 7A, lY )- nor (7A, 7A,mZ)-generated group for all kX ∈ S,
lY ∈ T and kZ ∈ R. Also we have (7A, 7, 2A) = 0, so that G is also not a (7A, 7A, 2A)- generated group. Last, we
laso have

∆G(7A, 7A, 3A) = 18 < 36 = |CG(3A)|,
∆G(7A, 7A, 4A) = 8 < 16 = |CG(2A)|,
∆G(7A, 7A, 6A) = 6 < 36 = |CG(6A)|,
∆G(7A, 7A, 8A) = ∆G(7A, 7A, 8B) = 8 < 16 = |CG(8A)| = |CG(8B)|,

∆G(7A, 7A, 14A) = 7 < 14 = |CG(14A)|,

It follows that G cannot be generated by only two elements from class 7A.

Proposition 4.3. rank(G:7A) = 3.

Proof. From Proposition 4.2 we have shown that rank(G:7A) 6= 2. From Proposition 3.12 we have that G is
(3A, 7A, 19Y )-generated group, Y ∈ T. It follows that by Lemma 2.3 of [6], G is (7A, 7A, 7A, (19Y )3)-generated
group; that is G is (7A, 7A, 7A, 19Z)-generated group where Z ∈ T. Hence rank(G:7A) ≤ 3. That is rank(G:7A) =
3, since rank(G:7A) 6= 2. The proposition is proved.
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Proposition 4.4. Let R = {3A, 4A, 6A, 7B, 7C, 7D, 8A, 8B, 14A, 16A,16B, 16C, 16D, 19A, 19B,19C, 19D, 19E, 19F}.
Then rank(G:nX) = 2 for all nX ∈ R.

Proof. The aim here is to show that G is (nX, nX, 19A)-generated group for all nX ∈ R. We recall from Table
1 that H8 = 19:3 is the only maximal subgroup of G containing elements of order 19. Now for nX ∈ R, we

give in Table 2 some information about ∆G(nX, nX, 19A) := ∆G, h(19A,H8),
∑
H8

(nX, nX, 19A) :=
∑
H8

, and

∆∗G(nX, nX, 19A) := ∆∗G.

Table 2: Some information on the classes nX ∈ S

nX ∆G h(19A,H8)
∑
H8

h(19A,H8)
∑
H8

∆∗G

3A 2850 1 0 0 2850
4A 7182 1 0 0 7182
6A 12141 1 0 0 12141
7B 779 1 0 0 779
7C 779 1 0 0 779
7D 779 1 0 0 779
8A 7853 1 0 0 7853
8B 7853 1 0 0 7853
14A 9405 1 0 0 9405
16A 7353 1 0 0 7353
16B 7353 1 0 0 7353
16C 7353 1 0 0 7353
16D 7353 1 0 0 7353
19A 5645 1 2 2 5643
19B 5645 1 2 2 5643
19C 5645 1 2 2 5643
19D 5645 1 2 2 5643
19E 5645 1 2 2 5643
19F 5645 1 2 2 5643

The last column of Table 2 establishes the generation of G by the triple (nX, nX, 19A) for all nX ∈ R. It follows
that rank(G:nX) = 2 for all nX ∈ R.

Remark 4.5. For all nX ∈ R of Proposition 4.4, it is possible show that G is (2A,nX, 19A)-generated group. Now
the result follows by Corollary 2.6 of [6].
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