تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,748 |
Normal supercharacter theory of the dihedral groups | ||
AUT Journal of Mathematics and Computing | ||
مقاله 9، دوره 4، شماره 1، 2023، صفحه 79-85 اصل مقاله (370.17 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2022.21268.1082 | ||
نویسنده | ||
Hadiseh Saydi* | ||
Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
Diaconis and Isaacs defined the supercharacter theory for finite groups as a natural generalization of the classical ordinary character theory of finite groups. Supercharacter theory of many finite groups such as the cyclic groups, the Frobenius groups, etc. were well studied and well-known. In this paper we find the normal and automorphic supercharacter theories of the dihedral groups in special cases. | ||
کلیدواژهها | ||
Dihedral group؛ Supercharacter؛ Superclass؛ Lattice of normal subgroups | ||
مراجع | ||
[1] F. Aliniaeifard, Normal supercharacter theories and their supercharacters, J. Algebra, 469 (2017), pp. 464– 484.
[2] C. A. M. Andre´, Basic characters of the unitriangular group, J. Algebra, 175 (1995), pp. 287–319.
[3] J. L. Brumbaugh, M. Bulkow, P. S. Fleming, L. A. Garcia German, S. R. Garcia, G. Karaali, M. Michal, A. P. Turner, and H. Suh, Supercharacters, exponential sums, and the uncertainty principle, J. Number Theory, 144 (2014), pp. 151–175.
[4] K. Conrad, Dihedral Groups II. Available online at: http://www.math.uconn.edu/~kconrad/blurbs/ grouptheory/dihedral2.pdf, 2018.
[5] P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc., 360 (2008), pp. 2359–2392.
[6] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, vol. 7 of Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1971.
[7] A. Hendrickson, Supercharacter theories of finite cyclic groups, PhD thesis, Department of Mathematics, University of Wisconsin, 2008.
[8] A. O. F. Hendrickson, Supercharacter theory constructions corresponding to Schur ring products, Comm. Algebra, 40 (2012), pp. 4420–4438.
[9] G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, New York, second ed., 2001. | ||
آمار تعداد مشاهده مقاله: 532 تعداد دریافت فایل اصل مقاله: 322 |