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ABSTRACT: In this paper, we introduce the concept of biamenability of Banach
algebras and we show that despite the apparent similarities between amenability and
biamenability of Banach algebras, they lead to very different, and somewhat opposed,
theories. In this regard, we show that commutative Banach algebras and the group
algebra L1(G), for each locally compact group G, tend to lack biamenability, while
they may be amenable and highly non-commutative Banach algebras such as B(H)
for an infinite-dimensional Hilbert space H tend to be biamenable, while they are not
amenable. Also, we show that although the unconditional unitization of an amenable
Banach algebra is amenable but in general unconditional unitization of a Banach alge-
bra is not biamenable. This concept may be applied for studying the character space
of some Banach algebras and also for studying some spansion or density problems.
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1. Introduction

A derivation from a Banach algebra A to a Banach A-bimodule X with the continuous module operations is a
bounded linear mapping d : A→ X such that

d(ab) = d(a)b+ ad(b), (a, b ∈ A).

For each x ∈ X the mapping δx : a→ ax− xa, (a ∈ A) is a bounded derivation, called an inner derivation.
Let X be a Banach A-bimodule. Then X∗ is a dual Banach A-bimodule, by defining a.f and f.a, for each a ∈ A
and f ∈ X∗ by

a.f(x) = f(xa), f.a(x) = f(ax) (x ∈ X).

Similarly, the higher duals X(n) can be made into Banach A-bimodules in a natural fashion.
A Banach algebra A is called amenable if for each Banach A-bimodule X, the only derivations from A to X∗

are inner derivations. For more details about this notion see [10].
Let A be a Banach algebra and X be a Banach A-bimodule, a bounded bilinear mapping D : A × A → X is

called a biderivation if D is a derivation with respect to both arguments. That is the mappings aD : A → X and
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Db : A→ X are derivations. Where

aD(b) = D(a, b) = Db(a) (a, b ∈ A).

We denote the space of such biderivations by BZ1(A,X).
Consider the subspace Z(A,X) = {x ∈ X : ax = xa ∀a ∈ A} of X. Then for each x ∈ Z(A,X), the mapping

∆x : A×A→ X defined by
∆x(a, b) = x[a, b] = x(ab− ba) (a, b ∈ A)

is a basic example of a biderivation and called an inner biderivation. We denote the space of such inner biderivations
by BN1(A,X). For more applications of biderivations, see [5, Section 3]. Some algebraic aspects of biderivations
on certain algebras have been studied by many authors; see for example [3, 7], which the structures of biderivations
on triangular algebras and generalized matrix algebras have been investigated, and particularly the question of
whether biderivations on these algebras are inner, has been studied.

We define the first bicohomology group BH1(A,X) as follows,

BH1(A,X) =
BZ1(A,X)

BN1(A,X)
.

Obviously BH1(A,X) = 0 if and only if every biderivation from A×A to X is an inner biderivation. Now we are
motivated to define the concept of biamenability of Banach algebras as follows.
A Banach algebra A is biamenable if for each Banach A-bimodule X we have BH1(A,X∗) = 0.

Although one might expect that biderivations and biamenability must run parallel to derivations and amenability
of Banach algebras what is true is that although there are some external similarities between them they lead to
very different, and somewhat opposed, theories. Indeed we show that commutative Banach algebras tend to lack
biamenability, while highly non-commutative Banach algebras tend to be biamenable. Thus, for instance, the
ground algebras C and R are not biamenable (while they are trivially amenable) and B(H), the algebra of all
bounded operators on an infinite dimensional Hilbert space H, is biamenable, but not amenable. Moreover, if
H is finite-dimensional, it turns out that B(H) is amenable, but it fails to be biamenable. We show also, the
unconditional unitization of a Banach algebra A is not biamenable. Although it may be amenable when A is
amenable[10].

We may apply this concept for studying the character space of some Banach algebras and also for studying
some Spansion or density problems. For example, we show that the character space of B(H) and some module
extension Banach algebras constructing with B(H) is empty and for some Banach algebras such as A = L1(G), for
some locally compact group G, Span[A,A] = Span{ab − ba; a, b ∈ A} 6= A. Also we study some density problems
in section 3.

2. biamenable Banach algebras

For an example of a biamenable Banach algebra we commence with the next lemmas. The following lemma is
similar to Corollary 2.4 of [4], where it is introduced for a biderivation D : A×A→ A.

Lemma 2.1. For each Banach A-bimodule X and each biderivation D : A×A→ X,

D(a, b)[c, d] = [a, b]D(c, d) (a, b, c, d ∈ A).

In Proposition 2.1.3 of [10] it is shown that if A has a bounded approximate identity, and one of module actions is
trivial, then the only derivations from A to X∗ are inner derivations. The following lemma introduces a condition
that not only implies the innerness of biderivations but it also forces them to be zero.

Lemma 2.2. If a Banach algebra A has a bounded left approximate identity and span{ab− ba : a, b ∈ A} is dense
in A, then for every Banach A-bimodule X such that XA = 0 we have BZ1(A,X) = 0.

Proof. Let (eα) be a left approximate identity of A. Lemma 2.1 says that for each D ∈ BZ1(A,X),

[a, b]D(c, d) = 0 (a, b, c, d ∈ A).

So by density we have aD(b, c) = 0, for each a, b, c ∈ A. Now since XA = 0 we have

D(a, b) = lim
α
D(eαa, b)

= lim
α

[eαD(a, b) +D(eα, b)a]

= 0.

That is BZ1(A,X) = 0. �
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A very similar proof may be applied if A has a right approximate identity and the left module action is trivial.
The following lemma introduces a condition that under which some biderivations are inner. This result will lead
to a condition implying biamenability of a Banach algebra. We shall see that B(H), for each infinite dimensional
Hilbert space H, satisfies this condition.

Lemma 2.3. If A is unital and A = span{ab− ba : a, b ∈ A}, then for every unital Banach A-bimodule X, every
biderivation D : A×A→ X is an inner biderivation.

Proof. Let D be a biderivation and e be the identity of A. Since A = span{ab− ba : a, b ∈ A}, there exist ai and
bi in A such that e =

∑
i[ai, bi]. So by Lemma 2.1, for every a, b ∈ A, we have

D(a, b) = D(a, b)e

= D(a, b)
∑
i

[ai, bi]

=
∑
i

D(a, b)[ai, bi]

=
∑
i

[a, b]D(ai, bi)

= [a, b]λ.

Where λ =
∑
iD(ai, bi). Similarly we have D(a, b) = λ[a, b], and so

λ[a, b] = [a, b]λ (a ∈ A, b ∈ B).

Now since A = span{ab− ba : a, b ∈ A}, λ ∈ Z(A,X). So D = ∆λ is an inner biderivation. �

Lemma 2.4. If a Banach algebra A has a bounded approximate identity and span{ab − ba : a, b ∈ A} is dense in
A, then the following statements are equivalent.

(i) A is biamenable.

(ii) BH1(A,X∗) = 0, for every left approximately unital Banach A-bimodule X.

(iii) BH1(A,X∗) = 0, for every right approximately unital Banach A-bimodule X.

(iv) BH1(A,X∗) = 0, for every approximately unital Banach A-bimodule X.

Proof. We only prove (i) is equivalent to (ii). The equivalence of (i) and (iii) is similar and then the equivalence
of (i) and (iv) is obvious.
Clearly if A is biamenable then (ii) is true. Now let BH1(A, Y ∗) = 0, for every left approximately unital Banach
A-bimodule Y and let X be a Banach A-bimodule. Then Corollary 2.9.26 of [6] implies that X0 = AX is a left
approximately unital closed submodule of X. Also A( XX0

) = 0 and so ( XX0
)∗A = 0. Therefore Lemma 2.2 says that

BZ1(A,X⊥0 ) = BZ1(A, ( XX0
)∗) = 0.

Let D ∈ BZ1(A,X∗) and J : X0 → X be the inclusion mapping. Then J∗ ◦D ∈ BZ1(A,X∗0 ) and by assumption
J∗ ◦D = ∆φ0 , for some φ0 ∈ Z(A,X∗0 ). Now the equation X∗ = X∗0 ⊕X⊥0 , which is implied from Theorem 4.9 of
[9], shows that there exists an extension φ of φ0 such that φ ∈ Z(A,X∗).
Define D0 = D −∆φ. Then D0 ∈ BZ1(A,X⊥0 ) = 0 and so D = ∆φ. �

A similar result of the previous lemma in the area of amenability is given in Proposition 2.1.5 of [10].
Now combination of the Lemmas 2.3 and 2.4 gives the following theorem that leads to a condition for biamenability
of Banach algebras and then we can find some examples of biamenable Banach algebras which are not amenable.

Theorem 2.5. Each unital Banach algebra A with A = span{ab− ba : a, b ∈ A}, is biamenable.

Corollary 2.6. If A = span{ab− ba : a, b ∈ A} and A has an identity, then the only biderivation D : A×A→ A∗

is zero.

Proof. Let D : A × A → A∗ be a biderivation. By Theorem 2.5 A is biamenable, so D is inner. That is there
exists an f ∈ Z(A,A∗) such that for every a, b ∈ A, D(a, b) = f [a, b]. Now

〈f, [a, b]〉 = 〈fa− af, b〉 = 0.

Hence our assumption implies that f = 0 and so D = 0. �
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Every bounded bilinear mapping f : X × Y → Z on normed spaces X,Y and Z, has two natural extensions f∗∗∗

and f t∗∗∗t from X∗∗ × Y ∗∗ to Z∗∗ as follows.
We define the adjoint f∗ : Z∗ ×X → Y ∗ of f by

〈f∗(z∗, x), y〉 = 〈z∗, f(x, y)〉,

where x ∈ X, y ∈ Y and z∗ ∈ Z∗. We then define f∗∗ = (f∗)∗ and f∗∗∗ = (f∗∗)∗. Let f t : Y ×X −→ Z be the flip
map of f which is defined by f t(y, x) = f(x, y) (x ∈ X, y ∈ Y ). If we continue the latter process with f t instead of
f , we come to the bounded bilinear mapping f t∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗.
Where π is the multiplication of a Banach algebra A, π∗∗∗ and πt∗∗∗t are actually the first and second Arens
products, which are denoted by � and ♦, respectively. For more detailes see [2] and [1].

Now we give some examples of biamenable Banach algebras.

Example 2.1. According to Lemma 5.8 of [11], since for each infinite dimensional Hilbert space H and every
integer n ≥ 0,

B(H)(2n) = span{au− ua : a ∈ B(H), u ∈ B(H)(2n)}.
So Theorem 2.5 help us to find some biamenable Banach algebras such as the Banach algebra B(H)(2n) and the
module extension Banach algebra B(H)⊕B(H)(2n) with the product and norm as follows.

(a, u)(b, v) = (ab, av + ub), ‖(a, u)‖ = ‖a‖+ ‖u‖, (a, b ∈ B(H), u, v ∈ B(H)(2n)).

Although B(H) is not amenable in general. Note that since {au − ua : a ∈ B(H), u ∈ B(H)(2n)} is a subset of
{uv− vu : u, v ∈ B(H)(2n)} and {[a, v]− [b, u] : a, b ∈ B(H), u, v ∈ B(H)(2n)}. Therefore the commutators span the
whole of B(H)(2n) and B(H)⊕B(H)(2n).
Also similar to last corollary we can show that the only biderivation from B(H)×B(H) to B(H)(2n+1) is zero.

A similar method as Lemma 5.7 of [11], can show that for the Banach algebra K(H) of compact operators on
H,

K(H) = span{ku− uk : k ∈ K(H) : u ∈ B(H)}.
So similarly B(H)⊕K(H) is biamenable. Although Remark 5.10 of [11] says that it is not amenable.

Let G be a locally compact group. m ∈ L∞(G)∗ is a mean on L∞(G) if m(1) = ‖m‖ = 1. A mean m on L∞(G) is
called a left-invariant mean if for each x ∈ G and g ∈ L∞(G), m(δx ∗ g) = m(g). G is called amenable if there is a
left-invariant mean on L∞(G).
Consider L∞(G) as an L1(G)-bimodule with the left and right module actions

π` : L1(G)× L∞(G)→ L∞(G) πr : L∞(G)× L1(G)→ L∞(G),

defined by π`(f, g) = f ∗ g and πr(g, f) = (
∫
G
f)g. Then we have the following proposition.

Proposition 2.7. Let G be a locally compact group such that Z(L1(G), L∞(G)∗) contains an element n such that
n(1) 6= 0. Then L1(G) is amenable.

Proof. Define |n| by |n|(φ) = |n(g)|, for each g ∈ L∞(G). Thenm = |n|
|n(1)| is a positive element of Z(L1(G), L∞(G)∗)

such that m(1) = 1. Therefore by [10, Proposition 1.1.2], m is a mean on L∞(G).
Now we have

〈m, f ∗ g〉 = 〈m,π`(f, g)〉
= 〈π∗` (m, f), g〉
= 〈πt∗tr (f,m), g〉
= 〈m,πr(g, f)〉

= 〈m, g〉
∫
G

f

= 〈m, g〉 (f ∈ P (G), g ∈ L∞(G)).

Where P (G) = {f ∈ L1(G); ‖f‖1 = 1, f ≥ 0}. So [10, Lemma 1.1.7] and Johnson’s theorem imply that L1(G) is
amenable. �

As a direct result of the last proposition, we conclude that for every abelian group G, L1(G) is amenable. Of course,
this is a known result by applying Johnson’s theorem and the Example 1.1.5 of [10]. However, in the following
example, we show that a big class of Banach algebras, such as L1(G), are not biamenable, although they may be
amenable.
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Example 2.2. (i) If there is a Banach A-bimodule X such that Z(A,X) = {0} and there is a non zero bideriva-
tion from A×A into X∗, then A is not biamenable. Since in this case Z(A,X∗) = {0} and so the only inner
biderivation D : A×A→ X∗ is zero.

(ii) For every locally compact group G, L1(G) is not biamenable. Since if we consider L∞(G) as an L1(G)-module
with the zero right module action and the left module action π` defined by π`(f, g) = f ∗g, for every f ∈ L1(G)
and g ∈ L∞(G), then for each nonzero g ∈ L∞(G), the bilinear mapping D : L1(G) × L1(G) → L∞(G)
defined by D(f, h) = f ∗ h ∗ g is a nonzero biderivation. But since Z(L1(G), L∞(G)) = {0}, the only inner
biderivation from : L1(G)× L1(G) to L∞(G) is zero.

(iii) Let σ(A) be the spectrum of A. If σ(A) 6= ∅, then A is not biamenable. Since if f is an element in σ(A) and
X is a non zero Banach A-bimodule with module actions

ax = 0, xa = f(a)x (a ∈ A, x ∈ X).

Then Z(A,X) = {0}. But for a non-zero element h ∈ X∗

D : A×A → X∗

(a, b) 7→ f(a)(bh− hb)

is a non-zero biderivation.
In particular, by Theorem 1.3.3 of [8], we conclude that every unital commutative Banach algebra is not
biamenable. For example, C, R, C(Ω), for each Hausdorff space Ω and the group algebra M(G), for each
locally compact abelian group G are not biamenable. In the next section, we extend this result to arbitrary
commutative Banach algebras.
Also, let A be a Banach space and θ be a non zero element of A∗. Then A is a Banach algebra with the
multiplication

ab = θ(a)b, (a, b ∈ A).

Now since θ ∈ σ(A), A with this multiplication is not biamenable.

(iv) If there exists a non-zero derivation d : A → A∗∗ on a commutative Banach algebra A such that for some
a, b ∈ A, d(a)�d(b) 6= 0, then A is not biamenable. Since the map

D : A×A −→ A∗∗

(a, b) 7→ d(a)�d(b)

where � denotes the first Arens product of A∗∗, defines a biderivation which is not inner.

As an application, a combination of Lemma 2.2, Example 2.1 and Example 2.2 implies the following results.

Corollary 2.8. (i) For every locally compact group G, Span[L1(G), L1(G)] 6= L1(G).

(ii) For each integer n ≥ 0 and each infinite dimensional Hilbert space H, σ(B(H)(2n)) = ∅ and σ(B(H) ⊕
B(H)(2n)) = ∅.

3. Some properties

In this section we study some properties of biamenable Banach algebras and we tend to some another examples of
non biamenable Banach algebras.

Theorem 3.1. Let A be a Banach algebra and consider C as a Banach A-bimodule. If there is a nonzero derivation
d : A→ C, then biamenability of A implies amenability of A.

Proof. Let X be a Banach A-bimodule and d′ : A→ X∗ be a bounded derivation. Then

D : A×A → X∗

(a, b) 7→ d(a)d′(b)

is a bounded biderivation and so there is f ∈ Z(A,X∗) such that

d(a)d′(b) = D(a, b) = f [a, b] (a, b ∈ A).

Therefore for every b ∈ A and for some a ∈ A such that d(a) 6= 0 we have d′(b) = δ− fa
d(a)

(b). �
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Example 3.1. Let D = {z ∈ C; |z| ≤ 1} be the unit disc, and A(D) be the disc algebra. We can consider C as an
A(D)-bimodule with module actions αf = αf(0) = fα and

d : A(D) → C
f 7→ f ′(0)

is a nonzero derivation. Therefore since A(D) is not amenable so it is not biamenable.

We know that every amenable Banach algebra has an approximate identity (See Proposition 2.2.1 of [10]). A similar
result is given in the following.

Proposition 3.2. If A = span{ab−ba : a, b ∈ A} and A is biamenable, then A has a bounded approximate identity.

Proof. If A is biamenable, then for the biderivation

D : A×A → A∗∗

(a, b) 7→ [a, b]

there is E ∈ Z(A,A∗∗) such that for each a, b ∈ A, E[a, b] = [a, b]. Now let (eα) be a bounded net in A which is
w∗-convergent to E. Then we have

limα eα[a, b] = w − limα eα[a, b]
= E[a, b]
= [a, b]
= [a, b]E
= w − limα[a, b]eα
= limα[a, b]eα,

and by assumption, A has an approximate identity (eα). �

Note that the converse of this proposition is not true in general. For example, in the sequel, we see that every
commutative Banach algebra is not biamenable. Although it may be unital or approximately unital.

For each integer n ≥ 0 put

AA(2n) +A(2n)A = {aa(2n) + b(2n)b : a, b ∈ A, a(2n), b(2n) ∈ A(2n)}.

Then we have the following proposition.

Proposition 3.3. If A is biamenable, then for each integer n ≥ 0, span(AA(2n) +A(2n)A) is dense in A(2n).

Proof. If span(AA(2n) + A(2n)A) is not dense in A(2n), then there exists a non-zero linear functional f ∈ A(2n+1)

such that it is zero on span(AA2n +A(2n)A). Now the bilinear mapping

D : A×A → A(2n+1)

(a, b) 7→ f(a)f(b)f

is a biderivation which is not inner. So A is not biamenable, which is a contradiction. �

Let A be a Banach algebra and

An = span{a1...an : ai ∈ A} (n ∈ N).

As a corollary of the latter proposition we have:

Corollary 3.4. If A is biamenable then for each n ∈ N, An is dense in A.

Proof. By Proposition 3.3 A2 is dense in A. Now by applying the density of A2 in A we can prove that A3 is dense
in A and also by an inductive method we can prove that for each n, An is dense in A. �

For a Banach algebra A, put

[A,A] = {[a, b] : a, b ∈ A} and [A,A]A = {[a, b]c : a, b, c ∈ A}.

The following proposition gives a big class of non-biamenable Banach algebras.
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Proposition 3.5. Let A be a biamenable Banach algebra. Then span([A,A] ∪ [A,A]A) is dense in A.

Proof. Suppose S = span([A,A] ∪ [A,A]A) is not dense in A. Then there exists a nonzero element f ∈ A∗ such
that f |S = 0. In particular for each a, b, c ∈ A, we have f(ab) = f(ba) and c.f(ab) = c.f(ba). Consider X = f.A as
an A-bimodule with module actions

(f.a).b = f.ab, and b.(f.a) = 0 (a, b ∈ A).

Then Z(A,X∗) = {0} and so the only inner biderivation from A × A to X∗ is zero. Now by Corollary 3.4 the
bilinear mapping D : A×A→ X∗ defined by

〈D(a, b), f.c〉 = f(abc), (a, b, c ∈ A)

is nonzero. Also for each a, b, c, d ∈ A we have

〈D(ab, c), f.d〉 = f(abcd)

= f(bcda)

= 〈D(b, c), f.da〉
= 〈D(b, c), (f.d).a)〉
= 〈aD(b, c), f.d〉
= 〈aD(b, c) +D(a, c)b, f.d〉,

and similarly
〈D(a, bc), f.d〉 = f(abcd)

= f(cdab)

= (b.f)(cda)

= (b.f)(acd)

= f(acdb)

= 〈D(a, c), f.db〉
= 〈bD(a, c) +D(a, b)c, f.d〉.

So D is a nonzero biderivation and so it is not inner. That is a contradiction. �

Note that if a biamenable Banach algebra A has a right approximate identity, then [A,A] ⊆ [A,A]A and therefore
span([A,A]A) is dense in A. This may be compared with the converse of Proposition 3.2, for each biamenable
Banach algebra.

Corollary 3.6. Every non zero commutative Banach algebra is not biamenable.

Theorem 3.7. Let A be a Banach algebra, X be a Banach A-bimodule and I be a closed ideal of it such that
Z(A,X∗) = Z(I,X∗). Then if BH1(I,X∗) = {0} and A

I is biamenable, then BH1(A,X∗) = {0}.

Proof. Let D : A × A → X∗ be a biderivation. Then D0 = D|I×I ∈ BZ1(I,X∗) and so D0 = ∆E , for some
E ∈ Z(A,X∗). Put D̃ = D−∆E . Then D̃(I×I) = 0 and so D : AI ×

A
I → X∗, defined by D((a+I, b+I)) = D̃((a, b))

is a well defined map.
Put X0 = IX +XI. Then

(
X

X0
)∗ = X⊥0 = {φ ∈ X∗;φi = 0 = iφ, for all i ∈ I}.

and so we can consider X⊥0 as an A
I -bimodule with the module actions (a + I).φ = a.φ and φ.(a + I) = φ.a, for

each a ∈ A and φ ∈ X⊥0 . On the other hand we have

D̃(a, b)ij = (D̃(ai, b)− aD̃(i, b))j

= D̃(ai, bj)− bD̃(ai, j)− aD̃(i, bj) + abD̃(i, j)

= 0, (i, j ∈ I, a, b ∈ A).

Similarly we can show that ijD̃(a, b) = 0. Therefore by density of I2 in I (Proposition 3.3) we conclude that
D(AI ×

A
I ) ⊆ X⊥0 and then we can coclude that D : AI ×

A
I → X⊥0 is a biderivation. So there is ψ ∈ Z(AI , X

⊥
0 ) ⊆

Z(A,X∗) such that D −∆E = D̃ = ∆ψ. Hence D = ∆E+ψ and E + ψ ∈ Z(A,X∗). �
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We know that a Banach algebra A is amenable if and only if the unconditional unitization A[ of A (see [6, Definition
1.3.3]) is amenable [10, Corollary 2.3.11]. But it is not true for biamenability of Banach algebras. Indeed we show
that the unconditional unitization of each Banach algebra is not biamenable.

Lemma 3.8. If θ : A → B is a continuous homomorphism of Banach algebras with dense range and A is bia-
menable, then so is B.

Proof. Let X be a Banach B-bimodule. Consider X as an A-bimodule with module actions ax = θ(a)x and
xa = xθ(a). Now for each D ∈ BZ1(B,X∗), D ◦ (θ × θ) ∈ BZ1(A,X∗) and biamenability of A implies that
D ◦ (θ × θ) = ∆φ for some φ ∈ Z(A,X∗). Now by density we conclude that φ ∈ Z(B,X∗) and D = ∆φ . �

Corollary 3.9. If A is biamenable then for each closed ideal I of A, A
I is biamenable.

For analoges of the above two results in the area of amenability see Proposition 2.3.1 and Corollary 2.3.2 of [10].
Now we have the following theorem for the unconditional unitization A[ of a Banach algebra A.

Theorem 3.10. For each Banach algebra A, the unconditional unitization A[ is not biamenable.

Proof. If A[ is biamenable then C = A[

A is biamenable by Corollary 3.9 (recall that A is a closed ideal in A[). A
contradiction. �
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