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ABSTRACT: Process and production planning play an important role in petrochemical production 
systems. Planning models are essential to optimize the combination of multiple non-linear production 
processes involved and therefore improve the commercial competitiveness of the such plant. Artificial 
neural networks offer an effective petrochemical plant planning tool, especially when configured in 
hybrid form as a back propagation artificial neural network coupled with an optimizer to assist with 
feature selection. A plant with eight feedstock inputs and thirteen petrochemical products is evaluated, 
firstly to show the capabilities of a basic backpropagation network model in predicting product outputs. 
The involvement of a particle swarm optimizer assists in filtering the dataset to remove outlying data 
records and identifying the input variables that are influential in determining specific product output 
volumes. The hybrid back propagation network-particle swarm optimization model assists by determining 
the logical relationship between input and output variables and expressing them in the form of an index 
matrix. The matrix leads to improved predictions of production outputs and faster convergence of the 
planning model. The modified back propagation network achieved maximum, minimum, and average 
relative errors of 59.1%, 0.0%, and 9.9%, respectively. Prediction errors in that range are considered 
acceptable for the collective production processes of a large-scale petrochemical complex evaluated with 
a nonlinear planning program. 
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1- Introduction
Petrochemical production processes rely on raw materials 

including crude oil, natural gas, and natural gas liquids 
to produce primary petrochemicals including methanol, 
olefins  (ethylene, propylene, etc.), aromatics (benzene, 
toluene, xylene, etc.) [1]. These primary petrochemicals are 
themselves feedstocks for processes forming a wide range of 
other products. In particular, they are:

Converted into petrochemical intermediates and 
derivatives such as acetic acid, vinyl chloride, sulfuric acid, 
solvents, ethylene oxide, and many more.

Polymerized into a number of more complex and larger 
molecules, such as styrene into different polystyrene products, 
ethylene into polystyrene, and propylene into polypropylene. 

Classifying and describing petrochemical products is 
difficult because there are so many of them and they are used 
to make many thousands of end products. The most common 
end products tend to include polymers and copolymers and 
various forms of plastic. However, elastomers and fibers 
are also in high demand. Petrochemicals are also major 
constituents of coatings and paints, packaging (particularly 
in the food and drinks industries),  pharmaceuticals,  
solvents, detergents, dyes, pigments, synthetic rubber, and 

cosmetics [2]. Consequently, petrochemical industries 
are commercially important to many nations and they are 
widely traded internationally [3]. Petrochemical plants 
are typically associated with substantial intervention, 
turnaround, operating, and maintenance costs. Consequently, 
it is important to manage such plants with an efficient and 
practically achievable plan; failing to do so invariably leads to 
unnecessary production losses and sub-optimal commercial 
returns [4]. An effective production strategy facilitates more 
efficient use of available resources which, in turn, improves 
a plant’s competitive market position. Understanding 
the strategic, tactical, and operational issues involved in 
linking markets, products, and resources is essential for any 
petrochemical plant to compete in today’s global marketplace. 
[5]. Petrochemical industries were estimated to be worth 
more than $600 billion worldwide in 2015 and continue to 
grow [6]. Therefore, establishing an optimal production plan 
makes financial sense for plants to compete effectively in 
global petrochemical markets.

Artificial Neural Networks (ANNs) are mathematical 
systems structured to work as simplified animal brains. An 
ANN is composed of an interconnection of computational 
elements (referred to as neurons or nodes assembled in 
layers to simulate the way that neurons operate in biological 
brains. The development of ANN is based on essential *Corresponding author’s email: s.meshkat@che.uut.ac.ir
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computational elements. A key breakthrough in developing 
the perceptron was achieved by Frank Rosenblatt (1957). 
ANN is trained through experience using appropriate learning 
examples gaining their knowledge by detecting patterns and 
relationships in the data variables they process [7]. 

Efficient petrochemical production and product planning 
require both learning from experience and continuous 
optimization. Various optimization strategies have been 
applied in attempts to achieve more efficient petrochemical 
plants. These include efficient production planning, 
exploiting the benefits of economies of scale (e.g., through 
mergers and acquisitions), integration of petrochemical 
plants with refineries to diversify products, dynamic capacity 
adjustments, spatial reorganization of production train 
layouts, and optimal supply chain management. A number of 
goals, such as minimizing total costs, resource requirements, 
downtime, and environmental impacts, and maximizing 
profitability remain ongoing challenges for the petrochemical 
industry [6]. 

Generally, there are three ways to approach and improve 
process planning [8]: Manual: This type of planning is known 
as man-variant process planning and is the commonest type 
of planning used for production today:

Manual Process Planning: This type of planning is known 
as man-variant process planning and is the commonest type of 
planning used for production today. Planning the operations 
to be used to produce a part requires knowledge of two groups 
of variables:

The part requirements (as indicated by an engineering 
drawing).

The available machines and processes, and the capabilities 
of each process.

Automated Process Planning: Man-variant process 
planning (at times) becomes a boring and tedious job. It 
produces erroneous process plans. This, coupled with the 
labor intensity of man-variant planning, has led many 
industries to investigate the automation of process planning. 
A completely automated process planning system would 
eliminate all human effort between the preparation of an 
engineering drawing and a complete process plan for every 
manufacturing operation.

Generative Process Planning: Generative process 
planning may be defined as a system that synthesizes process 
information in order to create a process plan for a new 
component automatically. Process plans are created from 
information available in a manufacturing database with little 
or no human intervention.

Process planning automation typically involves 
developing software to apply effective algorithms that 
collectively can be configured to act as automated expert 
systems for certain applications [9]. However, expert systems 
have their limitations with respect to plant design and control 
options [10]. Attempts have been made to integrate intelligent 
process planning within the structural configurations of 
relational databases [11]. Learning and optimization can be 
achieved by combining the benefits of ANN and Particle 
Swarm Optimization (PSO) algorithms enabling them 

to effectively model systems that are both complex and 
nonlinear [12]. A Multi-Layer Perceptron (MLP) employing a 
Back Propagation (BP) learning algorithm is widely used for 
petrochemical applications [13]. This configuration is referred 
to in this study as a Back-Propagating Network (BPN). 
Weights and biases within a BPN network are progressively 
adjusted as the BP algorithm iteratively attempts to minimize 
a specified cost or error function. The Mean Squared Error 
(MSE) between the MLP predictions from its output layer 
versus observed output variable values are often used as 
the BPN error function to be minimized. The BP algorithm 
employs a gradient-descent method. Although BP is effective 
in some cases, often its convergence rate during training can 
be slow and it is prone to become trapped at local minima. 
Moreover, BP convergence tends to be dependent on the 
selection of the initial weight and bias values applied to the 
BPN connections. It is also influenced by the learning rates 
and error thresholds adopted.

These limitations tend to render BPNs inconsistent and 
unpredictable, for certain applications at least. Therefore, to 
improve BPN predictive performance, an alternative effective 
method to optimize BPN has been proposed [14]. The PSO 
algorithm can be effectively exploited to do this. Table 1 lists 
published engineering applications of BPN, PSO, and hybrid 
BPN-PSO concentrating on those focused on process planning. 

This paper applies a BPN-PSO algorithm in a novel way 
to optimize and forecast production planning in a complex 
petrochemical plant. Industrially acquired, real data (eight 
input variables) are used to train and test the BPN performance 
in three distinct configurations. The multi-layered BPN 
predicted outputs are compared for accuracy with the 
actual measured data. The study indicates the hybridized 
BPN-PSO model can simulate the effect of a wide range of 
operating conditions on the production mass flow behavior 
of the petrochemical plant to a high degree of accuracy. This 
makes it an effective analytical tool for improving efficiency 
and productivity and reducing plant operational costs. The 
main innovation of this study, applying a BPN-PSO hybrid 
algorithm that combines PSO with a BPN to optimization of 
the performance of a multilayer neural network by adjusting 
the weightings applied to its nodes for organizing an effective 
petrochemical plant planning tool.

2- Method and Materials 
The feedstock, processes, and products of a complex 

petrochemical plant are specified evaluated, and optimized 
for this study. The feedstock includes liquid gases and heavy 
naphtha, which is supplied mainly from a nearby oil refinery. 
In addition, various cuts of petrochemicals are also used 
as feedstock for the production of certain products. There 
are five main product production trains: olefin, benzene, 
polyethylene, polystyrene, and Acrylonitrile Butadiene 
Styrene (ABS). The plant is supported by several utility 
units supplying: water, steam, cooling (via a cooling tower), 
compressed air, and nitrogen.

In the olefin unit, different feed chemicals are introduced, 
and, following cracking, a range of primary petrochemical 
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products including ethylene and propylene are separated. 
These products are either fed into other processing units 
to produce secondary petrochemical products or are sold 
directly as bulk primary chemicals. Tests are carried out on 
the olefin products to measure their binary bonds, conjugate 
bonds, and water contents to improve product specifications. 
The polyethylene unit produces two types of polyethylene: 
light and heavy. Laboratory tests are conducted to determine 
ethylene purity, the percentage of polymerization, and the 
quality of the products in terms of resistance, softening 
temperature, density, and granulation.

In the benzene unit, following catalytic reforming, 
benzene is purified and also used in the preparation of styrene 
and polystyrene in specialized process units. Three types 

of polystyrene are typically produced, a) general purpose b) 
resistant, and c) expandable. In addition, various grades of 
ABS are produced is a specialized ABS unit. The quality of 
these products, including a stretching test, is determined in the 
laboratory and the processes are adjusted to ensure that product 
specification requirements are satisfied and maintained.

Purified water is produced in a dedicated water unit from 
soft fresh water. That unit applies reverse osmosis and ion 
exchange resins to generate ion-free water.  That ion-free 
water is then used to produce steam and to provide water for 
cooling systems. A Combined Heat and Power (CHP) plant 
is employed to cogenerate electricity and produce steam at 
various pressure-temperature conditions. Fig. 1(a) displays a 
schematic flow diagram of the integration of the mentioned 

Table 1. Published research relating to the application of the ANN and PSO relevant to production and 
process planning.

Table 1. Published research relating to the application of the ANN and PSO relevant to 
production and process planning.  

 
No. Topics Description Ref. 

1 
Simulation 
Process planning  
PSO 

Applying PSO to optimize process planning  [15] 

2 
Process planning  
Expert system  
ANN 

Rule-based expert system integrating an 
ANN [16] 

3 Constraints 
Production planning Petrochemicals 

Constraint-based programming to optimize 
production planning and to maximize 
profitability 

[17] 

4 
Multi-objective decisions 
Pareto optimization 
Petrochemical planning 

Multi-objective mixed-integer optimization 
model  [18] 

5 Hybrid ANN algorithms  Review of hybrid ANN structure and 
applications [19] 

6 Multi-objective linear program 
Petrochemical planning 

Strategic model applied to a national 
company  [2] 

7 Process planning  
Scheduling Integrates process planning with scheduling [20] 

8 Integrating refinery with petrochemical processes 
Process planning 

Planning of multi-site integrated refining and 
petrochemical processes exploiting 
stochastic algorithms. 

[21] 

9 Process planning Multi-product process planning [22] 

10 BPN-PSO 
Multiple process streams 

BP-PSO applied to multiple daily process 
streams [23] 

11 Teaching-learning-based-optimizer (TLBO) 
Petrochemical process planning 

MLP optimized with an elitist TLBO 
algorithm [24] 

12 Multiple-level planning Petrochemical processes 
Application and Limitations of the multi-
level planning system for petrochemical 
industries in Saudi Arabia 

[6] 

13 Strategic planning model  Integrated 
petroleum/petrochemical supply chains 

Multi-objective, multi-period  strategic 
optimization applied to supply chains [25] 

14 PSO application 
Integrated process planning and scheduling 

Integrated Process Planning And Scheduling 
(IPPS) model optimized by PSO [26] 
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(b) 
Fig. 1.  (a) Block Flow Diagram; (b) black box model of the studied petrochemical complex 

Fig. 1. (a) Block Flow Diagram; (b) black box model of the studied petrochemical complex
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processes in the petrochemical plant evaluated.

3- Applied Hybrid Algorithm
3- 1- ANN algorithm

ANNs attempt to mimic the neural interconnection of 
animal brain structures in a simplified format. The Neural 
Network (NN) finds patterns or correlations in the large 
complex dataset (i.e., multiple variables including non-
parametric distributions and limited correlations). NN can be 
configured to provide useful future predictions of dependent 
variables [27]. NN can be trained to solve problems that 
are difficult for simple regression and correlation statistical 
techniques to resolve accurately. Consequently, NN is widely 
used in engineering, finances, and many other practical 
applications (Demuth, 2021). ANNs, in particular MLPs,  are 
widely used in the petrochemical and refining industries to 
model production flows and optimize production throughputs 
[28]. Complex Petrochemical plant production data is 
typically characterized by multiple dimensions, a degree 
of operational uncertainty, and noise. Consequently, it is 
difficult to accurately optimize and predict the energy usage 
of such plants. Therefore, a Data Envelopment Analysis 
(DEA) technique that integrates ANN (DEA-ANN) has been 
proposed [29].

Commonly, NN is trained so that a particular set of input 
variable values accurately predict a specific target output (Fig. 
2). The NN control parameters are progressively adjusted, 
based on a comparison of the predicted output and the known 
measured value of the target. This is repeated until the NN 
predicts the output matches the target as closely as possible. 
Many such input/target variable pairs are evaluated to train an 
NN (Demuth, 2021).

In this study, a back-propagating MLP neural network 
(BPN) model using MATLAB software (Demuth & Beale, 
2021) is employed as the basic ML engine. Although BPN 
is an effective ML algorithm, its training, usually with back-
propagating or other gradient descent algorithms, tends to 
involve very slow convergence and becomes easily trapped 
at local minima. 

3- 2- PSO algorithm
PSO is a highly effective evolutionary algorithm applying 

swarm intelligence that is effectively used to optimize 
processes in many industries, including production process 
planning and scheduling (Table 1). It applies velocity vector 
information alongside the best local and global particle 
quality information to update the current values of each 
particle in the swarm for each iteration of the algorithm. It 
uses this information to calculate an optimization function 
for each particle in the swarm. Moreover, the velocity vector 
associated with each particle is updated in each iteration 
based on the historical performance of each particle’s position 
/values. This history stores the knowledge gained by each 
particle in the swarm that can be used for learning purposes 
as the PSO iterations evolve. Consequently, poor-performing 
particle positions can be eliminated/avoided by exploiting the 
swarm’s social variable memories to adjust particle positions 
to move towards previous promising locations within the 
feasible solution space. This avoids the inefficiency of the 
algorithm repeatedly researching unpromising positions. The 
PSO method can be used and applied to solve a wide range of 
optimization problems. These include:

Unconstrained optimization problems
Constrained optimization problems

  

 

Fig. 2. Schematic representation of the architecture of a generic ANN model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic representation of the architecture of a generic ANN model.
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Nonlinear programming (such as polymerization 
processes)

Multi-objective optimization (predicting the best 
combinations of multiple products)

Stochastic programming (utilizing probabilistic 
information for certain input variables)

Hybrid optimization problems (improving the 
optimization of ML algorithms)

3- 3- Hybrid BPN-PSO algorithm
BPN-PSO is a hybrid ML-optimization algorithm that 

combines PSO with a BPN to optimize the performance of 
a multilayer neural network by adjusting the weightings 
applied to its nodes/neurons and layer biases. Whereas 
the PSO algorithm is highly effective at finding global 

solutions without becoming trapped at local optima, the 
BP algorithm has a tendency to find local optima rather 
than determine the global optimum in an optimization 
problem. By constructing a hybrid BPN-PSO algorithm, 
the PSO component is used to locate the global optimum 
more rapidly and thereby accelerate the training speed. 
When the optimizer fitness value does not change after 
a specified number of iterations, or the fitness function 
arrives at a value that is smaller than a predefined number, 
the solution space search algorithm can be changed to use 
a slower gradient descent method to explore solutions 
around the PSO global solution [14].

This study demonstrates how BPN-PSO can be effectively 
used to optimize production planning for a multi-product / 
process petrochemical plant.

 

Fig. 3. Flowchart of PSO algorithm, where: pbest refers to the local best position for each 

particle, and gbest refers to the global best position for the particle swarm as a whole. 

 

 

 

 

 

 

 

Fig. 3. Flowchart of PSO algorithm, where: pbest refers to the local best position for each particle, 
and gbest refers to the global best position for the particle swarm as a whole.
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4- Problem Formulation
The model evaluated in this study is designed to reflect 

the inputs and outputs of a real and operational complex 
petrochemical plant (Fig.1 (b)). It involves the following 
eight influencing parameters shown in Table 2 (decision or 
input variables):

All values of the eight input variables values are compiled 
from the studied petrochemical plant control system (DCS) 
for each day across a single year, establishing a dataset with 
366 data records. Table 3 lists example data record input 
values for ten days of operations observed at the plant. 

The model is evaluated in four steps: 
Step 1- Data analysis and pre-processing
Step 2- Evaluating all data records with a basic ANN 

(BPN) tool
Step 3- Data record classification into two categories 

using the PSO algorithm: those input combinations that are 
effective and those that are ineffective in optimizing the 
petrochemical plant’s product slate.

Step 4- Evaluating the data with a modified BPN tool
Model inputs (left side) and outputs (right side) are 

distinguished.

Table 2. List of eight influencing parameters in the planning of a problem case studyTable 2.List of eight influencing parameters in the planning of a problem case study 
 

Row No. Input Number Input variable full name Input variable 
abbreviation name Variable unit 

1 Input (1) 
Mass flow rate of source reagent gas 
(SRG: including both heavy and light 
naphtha compositions) 

MFSRG ton/d 

2 Input (2) Mass flow rate of Liquid Petroleum Gas 
(LPG) MFLPG ton/d 

3 Input (3) Mass flow rate of Styrene (S) MFS ton/d 
4 Input (4) Mass flow rate of Benzene (B) MFB ton/d 

5 Input (5) Mass flow rate of Polybutadiene Rubber 
(PBR) MFPBR ton/d 

6 Input (6) Mass flow rate of butene-1 MFB1 ton/d 
7 Input (7) Mass flow rate of Mineral Oil (MO) MFMO ton/d 
8 Input (8) Mass flow rate of Acrylonitrile (ACN) MFACN ton/d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Example of ten days of feedstock input data (8 input variable mass flow rates) for the 
petrochemical plant.

Table 3. Example of ten days of feedstock input data (8 input variable mass flow rates) for the 
petrochemical plant. 

 

Daily 
Data Records 

Input 

SR
G

 

L
PG

 

PB
R

 

B
E

N
 

ST
Y

R
E

N
E

 

A
C

N
E

 

M
O

 

B
U

T
E

N
E

-1
 

1 975.38 241.039 10.5 130.4 187.3 0 7.73 34.48 
2 1029.04 247.089 10.5 135.9 149 24 7.65 35.64 
3 1041.4 241.941 15.4 134.3 72.8 0 7.72 33.75 
4 1036.06 245.858 12.6 130.8 184.1 27 12.6 34.5 
5 1032.85 256.595 10.5 131.1 167.7 8 7.63 35.77 
6 1035.05 245.759 10.5 132.3 134.3 12 7.64 35.87 
7 1030.16 267.202 14.7 126.4 180.7 3.2 7.68 34.4 
8 1021.64 265.542 15.75 120.1 222.3 43 7.68 35.28 
9 1005.73 288.238 10.5 116 125.7 26 7.65 35.46 
10 1008.12 291.085 11.62 109.8 140.1 14 7.74 35.4 
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Each data record incorporates daily production quantities 
for thirteen output products. These variables are presented in 
Table 4: 

Fig. 1 (b) identifies the 8 inputs and 13 outputs used to 
model the petrochemical plant. The process can be expressed 
by a simple material balance formulation (Eq. (1)) 

   
8 13

1 1
i j

i j
input output

 

                                                                                                  (1) 

 

 2

(%)
1 100

MSC

CS datavalue Calculated value by BPN
n


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  (2) 

 

max min
max

max

w ww w t
T


                                                                                                           (3) 

 

Re ( )(%)

100

lative Error RE

DCS datavalue ANN datavalue
DCS datavalue






                                       (4) 

 

   (1)

5- Results and Discussion
5- 1- Data analysis

The data analysis step examines the quality of the data 
and how each input variable is statistically distributed. 
This analysis utilizes Excel’s statistical functions and the 
results are presented in Table 5.  None of the input variables 
follow a symmetrical normal distribution and they display 
substantially different degrees of dispersion. 

Table 6 lists Pearson’s correlation coefficients (R) 
between the independent variables (the inputs) and the 
dependent variables (the outputs). If R is 1.0, it indicates a 
direct or perfect positive relationship between two variables. 
Whereas if R is -1, it indicates an inverse or perfect negative 

relationship between the two variables. On the other hand, 
when R is zero, there is no linear relationship between the two 
variables. It is apparent from the results displayed in Table 
6 that R values between the variables show a main range of 
poor to moderate positive and negative correlations among 
the input and output variables.

Propylene, CFO, fuel oil and C7-C9 products show 
relatively high positive R values with the SGR input variable. 
Also, ABS shows a moderate negative R value and Toluene 
and a moderate positive R value with Benzene.  However, 
the correlations between all other output products and input 
feeds are low as reflected in the mean of the R values for 
each input variable with all the output variables (Table 6). 
This confirms the necessity of using nonlinear models, such 
as BPN, to analyze the petrochemical plant processes and 
define the complex relationships between input and output 
variables. Table 6 displays the maximum residual coefficient 
calculated between each dependent and independent variable. 
The high maximum residual coefficients for input variables 
SRG and LPG highlight the unreliability of exploiting 
mathematical relationships between the input and output 
variables collectively to predict this petrochemical plant’s 
production performance based on variations in the input feed 
values. 

Table 4. List of thirteen output products in the planning of problem case studyTable 4. List of thirteen output products in the planning of problem case study 
 

Row No. Output Number Output variable full name Output variable 
abbreviation name Variable unit 

1 Output (1) Mass flow rate of POLYETHYLENE MFPE ton/d 

2 Output (2) Mass flow rate of HIPS MFHIPS ton/d 

3 Output (3) Mass flow rate of GPPS MGPPS ton/d 

4 Output (4) Mass flow rate of EPS MEPS ton/d 

5 Output (5) Mass flow rate of ABS MABS ton/d 

6 Output (6) Mass flow rate of TOLUENE MFTOL ton/d 

7 Output (7) Mass flow rate of BD MFBD ton/d 

8 Output (8) Mass flow rate of PENTANE MFPEN ton/d 

9 Output (9) Mass flow rate of PROPYLENE MFPROPYLENE ton/d 

10 Output (10) Mass flow rate of C4 Raffinate MFC4R ton/d 

11 Output (11) Mass flow rate of CFO MFCFO ton/d 

12 Output (12) Mass flow rate of Fuel Oil MFFO ton/d 

13 Output (13) Mass flow rate of C7-C9 MFC7C9 ton/d 
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5- 2- BPN model
The basic BPN architecture includes an input layer with 

eight nodes, a hidden layer with 10 nodes, and an output layer 
with 13 nodes, with each node in the output layer representing 
a specific product output (Fig. 4). A sigmoid transfer function 
is applied between the input and hidden layer, and a linear 
transfer function is applied between the hidden layer and 
output layer of the BPN. The BPN is trained with the 
Levenberg-Marquart algorithm. The transfer functions and 
the training algorithm were selected based on trial and error 
tests of the BPN. All input variables were normalized to a 
scale range of 0 to 1.

The data records were split into three subsets: training, 
validation, and testing subsets. Based on trial and error testing, 
the 366 total data records were split between the subsets: 256 
data records (70% of the total) to the training subset; 55 data 
records (15% of the total) to the validation subset; and, 55 
data records (15% of total) to the testing subset.

Fig. 5 shows the measured versus predicted output values 
for the basic BPN model applied to the training, validation, 
and testing subsets and all the data records compiled for the 
studied petrochemical plant. The predicted output values 
track the measured output values quite well for each subset 
and the total dataset, as revealed by the R values between 
about 0.96 and 0.98 recorded for each subset evaluated. The 
predicted values from the BPN model are compared with the 
recorded (actual DCS) values for the thirteen output variables 
and the errors between those measurements are recorded. The 
target of the model is to minimize collectively the sum of the 

errors associated with all 13 output variables for each data 
record. The predicted versus target values are plotted in Fig. 
5. As shown in Table 7 and Fig. 4, the BPN model has 8 input 
variables and 13 output variables. All variables are expressed 
in mass flow units of tons per day. The clustering of data in 
Fig. 6 is a consequence of the output variables extending 
over different tons per day ranges.  For cases where predicted 
values (Y) are equal to target values (T) (Fig. 5), the data point 
falls along the Y = T line displayed with zero prediction error 
(target value- predicted value = 0).

 The performance curve of the BPN with 10 neurons in the 
hidden layer is shown in Fig. 7 in terms of the Mean Squared 
Error (MSE) of its objective function. MSE is:
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Fig. 6 indicates the iteration at which the validation 
performance reached a minimum. The training continued for 
9 more iterations before training stopped. This figure does not 
indicate any major problems with the training. The validation 
and test curves are very similar. If the test curve had increased 
significantly before the validation curve increased, then it 
would suggest that some overfitting had occurred.

The impact of MSE and R on each subset with different 
numbers of neurons in the one hidden layer of the BPN is 
displayed in Table 7. Five different numbers of neurons in the 

Table 5. Data distribution analysis for each input variable (ton/d) was actually compiled from the plant DCS.

Table 5. Data distribution analysis for each input variable (ton/d) was actually compiled from the 
plant DCS. 
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Standard Deviation (S) 144.87 44.77 8.28 47.74 114.13 10.87 4.04 11.55 
Variance 23266.15 2121.75 68.44 2279.68 12988.05 117.73 16.37 133.17 
Variation range 1076.12 306.56 47.25 225.10 521.70 43.00 48.40 40.00 
Coefficient of Variation (CV)*  0.15 0.19 0.52 0.49 0.73 1.16 0.46 0.60 
Skewness -4.76 -2.60 0.98 -0.61 0.62 0.77 3.40 0.28 
Kurtosis  26.60 11.06 1.22 -0.08 -0.06 -0.38 29.95 -1.25 
Min. 35.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Max. 1111.45 306.56 47.25 225.10 521.70 43.00 48.40 40.00 
Mean (𝑥̅𝑥) 987.10 238.26 15.80 98.18 156.16 9.37 8.69 19.17 
Median 1010.68 244.20 13.00 108.00 144.20 0.00 7.85 14.38 
* 𝐶𝐶𝐶𝐶 = 𝑆𝑆/𝑥̅𝑥 
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Table 6. Results of Pearson Correlation Coefficients
Table 6.Results of Pearson Correlation Coefficients 
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Dependent variable Pearson Correlation Coefficients 

POLYETHYLENE 0.54 0.51 0.05 -0.11 -0.14 -0.18 0.09 0.30 
HIPS -0.07 -0.11 0.14 -0.10 0.18 0.07 0.09 -0.10 
GPPS -0.08 0.25 0.01 -0.09 -0.16 -0.19 0.30 0.33 
EPS -0.01 -0.13 0.06 -0.03 0.25 0.24 0.03 0.12 
ABS -0.20 -0.11 -0.04 -0.47 0.59 0.13 0.03 0.16 
TOLUENE 0.35 0.05 -0.06 0.57 -0.40 0.20 0.00 -0.02 
BD 0.06 -0.01 -0.06 0.09 0.06 -0.01 0.01 0.05 
PENTANE 0.08 0.13 -0.08 0.10 -0.27 -0.17 -0.01 0.05 
PROPYLENE 0.89 0.77 0.04 0.28 -0.47 -0.16 0.13 0.21 
C4 RAFFINATE -0.07 -0.09 -0.07 -0.19 0.13 -0.10 -0.04 0.10 
C.F.O 0.72 0.36 0.16 0.04 -0.01 0.07 0.06 0.05 
FUEL OIL 0.58 0.47 0.24 0.23 -0.37 0.02 0.20 0.10 
C7-C9 0.61 0.47 0.18 0.21 -0.32 -0.04 0.17 -0.06 
*Min. 0.01 0.01 0.01 0.03 0.01 0.01 0.00 0.02 
**Max. 0.89 0.77 0.24 0.57 0.59 0.24 0.30 0.33 
***Mean 0.33 0.27 0.09 0.19 0.26 0.12 0.09 0.13 
Dependent variable Regression Residual Coefficients 
POLYETHYLENE 0.1973 0.1054 0.0006 0.0030 0.0506 0.0001 0.0026 0.1012 
HIPS 0.0035 0.0100 0.0376 0.0165 0.0521 0.0025 0.0148 0.0154 
GPPS 0.0100 0.0586 0.0000 0.0065 0.0296 0.0379 0.0873 0.0972 
EPS 0.0002 0.0209 0.0020 0.0010 0.0551 0.0524 0.0005 0.0101 
ABS 0.0416 0.0158 0.0024 0.2257 0.3453 0.0213 0.0008 0.0237 
TOLUENE 0.1268 0.0034 0.0000 0.3324 0.1563 0.0320 0.0013 0.0025 
BD 0.0002 0.0040 0.0029 0.0132 0.0023 0.0013 0.0000 0.0018 
PENTANE 0.0138 0.0335 0.0067 0.0107 0.0617 0.0208 0.0002 0.0044 
PROPYLENE 0.8054 0.5753 0.0030 0.0735 0.2343 0.0233 0.0154 0.0425 
C4 RAFFINATE 0.0061 0.0066 0.0025 0.0312 0.0137 0.0069 0.0030 0.0096 
C.F.O 0.5245 0.1337 0.0218 0.0032 0.0019 0.0053 0.0060 0.0046 
FUEL OIL 0.3359 0.2275 0.0702 0.0697 0.1335 0.0001 0.0556 0.0092 
C7-C9 0.3640 0.2366 0.0495 0.0379 0.0957 0.0066 0.0428 0.0065 
*Min. 0.0002 0.0034 0.0000 0.0010 0.0019 0.0001 0.0000 0.0018 
**Max. 0.8054 0.5753 0.0702 0.3324 0.3453 0.0524 0.0873 0.1012 
***Mean 0.1869 0.1101 0.0153 0.0634 0.0948 0.0162 0.0177 0.0253 
* Min=min(abs(xi)) 
** Max=max(abs(xi)) 
*** Mean=mean(abs(xi)) 
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hidden layer are considered: 5, 10, 15, 20, and 100. Changing 
the number of neurons does not have a considerable effect 
on R for all data records, which varies from 0.968-0.978. 
All-R refers to the weighted average for the R values for the 
training, validation, and testing subsets. However, the MSE 
values for the independent testing subset are revealing, as 
MSE increases for BPN with greater than 10 neurons (i.e., 
>740 tons/day). This suggests that the BPN models with one 
hidden layer and greater than 10 neurons have a tendency to 
overfit this dataset.

The less than perfect prediction accuracy achieved by the 
BPN model is likely due to several influencing factors. These 
include:

Unrealistic data distribution values
Measurement errors in some variables in certain data 

records
Substantial operational changes during daily product 

production

Inappropriate hidden relationships established within the 
neural network

Low influence of some input variables on output variable 
values

Careful consideration of the data distributions led to some 
outlying data records being discarded from the dataset. The 
most important reason for rejecting some of the compiled 
actual data records is that they incorporate some outlying 
extreme values of the input variables. For the data records 
selected the distribution statistics are presented in Table 5. 
Variable values outside of the distribution ranges defined in 
Table 5 are not considered by the model, as to do so would 
reduce its efficiency.

5- 3- Hybrid BPN and PSO model
The maximum correlation coefficient achieved between 

predicted and actual output values by the basic BPN model 
is 0.978 (Table 7). Various factors contribute to this less than 

 

 
Fig. 4. Basic BPN model architecture. 

 

 

 

 

 

Fig. 4. Basic BPN model architecture.
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Fig. 5. Results of the BPN model comparing predicted with measured target plant output values. 
Note that each data point displayed represents the outcome for an individual output variable not 

the output of the entire petrochemical plant. 
 

 

 

Fig. 5. Results of the BPN model comparing predicted with measured target plant output values. Note that 
each data point displayed represents the outcome for an individual output variable not the output of the 

entire petrochemical plant.
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Fig. 6. BPN performance for the 10 neurons in the hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. BPN performance for the 10 neurons in the hidden layer.

Table 7. BPN prediction performance for different numbers of neurons in the hidden layer.
Table 7.BPN prediction performance for different numbers of neurons in the hidden layer. 

 
 

Number of neurons in the hidden layer 5 10 15 20 100 
Training subset data records 256 256 256 256 256 
Validation subset data records 55 55 55 55 55 
Testing subset data records 55 55 55 55 55 
Training MSE 627 426 356 430 227 
Validation MSE 794 856 539 936 961 
Testing MSE 733 726 926 747 1394 
Training R 0.97 0.98 0.983 0.98 0.99 
Validation R 0.962 0.958 0.975 0.955 0.956 
Testing R 0.965 0.965 0.956 0.966 0.932 
All R 0.968 0.974 0.978 0.974 0.976 

 

PSO input data 
Particle size: 10 
Number of parameters: 8 
Epoch: 5 
c1: learning factor: 1.4047 
c2: learning factor: 1.494 
wmax: maximum inertia weight: 0.9 
wmin: minimum inertia weight: 0.4 
ANN input data 
ANN type: generalized regression neural 
network (GRNN) 
Spread: 0.01 
Number of neurons per hidden layer: 10 
Number of hidden layers: 2 
Transfer function of the first layer: radial 
basis 
Transfer function of the second layer: 
purelin 
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perfect accuracy. These factors include:
Inappropriate distribution of data variable values
Measurement errors in the recorded data
Severe short-term changes in plant operating conditions
Inadequate mathematical model
The ineffectiveness of some input variables in influencing 

specific output variable values
Some of these factors can be corrected, by further filtering 

the data records and refining the mathematical model. By 
depicting minimum, maximum, and average values, some 
data record outliers were discarded.  The hybrid PSO and 
BPN model was then applied to identify the main influencing 
variables, the model was configured to generate an index 
matrix, based on a feed-forward BPN optimized by PSO. 
This optimization algorithm was employed to identify the 
key variables influencing each specific output variable on the 
overall training performance of the BPN. In this matrix, the 
number 1 means that an input variable is influential and a 
zero value means that the variable has no effect on the target 
function (Table 8). Lists of the control parameter values 
used in the configured hybrid BPN-PSO model have been 
illustrated below:

Table 7.BPN prediction performance for different numbers of neurons in the hidden layer. 
 
 

Number of neurons in the hidden layer 5 10 15 20 100 
Training subset data records 256 256 256 256 256 
Validation subset data records 55 55 55 55 55 
Testing subset data records 55 55 55 55 55 
Training MSE 627 426 356 430 227 
Validation MSE 794 856 539 936 961 
Testing MSE 733 726 926 747 1394 
Training R 0.97 0.98 0.983 0.98 0.99 
Validation R 0.962 0.958 0.975 0.955 0.956 
Testing R 0.965 0.965 0.956 0.966 0.932 
All R 0.968 0.974 0.978 0.974 0.976 

 

PSO input data 
Particle size: 10 
Number of parameters: 8 
Epoch: 5 
c1: learning factor: 1.4047 
c2: learning factor: 1.494 
wmax: maximum inertia weight: 0.9 
wmin: minimum inertia weight: 0.4 
ANN input data 
ANN type: generalized regression neural 
network (GRNN) 
Spread: 0.01 
Number of neurons per hidden layer: 10 
Number of hidden layers: 2 
Transfer function of the first layer: radial 
basis 
Transfer function of the second layer: 
purelin 

 

 

 

 

 

 

 

 

 

 

 

The PSO algorithm requires tuning parameters to be 
assigned. These include inertia weight w, the total number of 

Table 8. Index matrix of variables 
Table 8.Index matrix of variables  
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Dependent variable Index values 

PE 1 1 0 1 0 0 1 1 5 
HIPS 0 1 1 0 0 0 1 0 3 Min. 
GPPS 0 1 1 0 0 0 0 1 3 Min. 
EPS 1 1 1 1 1 0 1 1 7 Max. 
ABS 1 1 1 0 1 1 1 0 6 
TOL 1 1 1 1 0 1 1 1 7 Max. 
BD 1 1 1 0 1 0 1 0 5 
PEN 1 1 1 1 1 1 0 0 6 
PROP 1 1 1 0 0 1 0 1 5 
C4 R 1 1 1 0 1 1 1 0 6 
CFO 1 1 1 1 0 1 1 1 7 Max. 
FO 1 1 0 0 0 1 1 0 4 
C7-C9 1 1 0 0 0 1 1 0 4 
Sum 11 13 10 5 5 8 10 6 
  Max.  Min. Min.     
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particles m, acceleration constants c1 and c2, maximum limit 
to velocity vmax, the maximum number of iterations Tmax, and 
computed precision ɛ. Of them, w, m, c1, c1, and vmax represent 
algorithm control parameters that are dataset-specific. On 
the other hand, Tmax and ɛ are used to determine algorithm-
stopping conditions and to influence progressive changes 
in w  as the algorithm progresses through its iterations, as 
shown in Eq. (3).
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Where maxw is the maximum inertia weight, and wmin 
is the minimum inertia weight (typically, ~maxw 0.9 and 

~maxw  0.4); t is current iteration number; Tmax is the 
maximum iteration number.

The reason that in some cases there is no relationship 
between independent and dependent variables is that in the 
production of some products (the dependent variables), some 
of the input feeds (independent variables) are not involved.

In Table 8, the index values displayed reflect the degree 
of influence the independent variables exert on the dependent 
variables. For no output products (specific dependent 
variables) do all the independent variables exert an influence. 
The LPG variable did though exert an influence on all thirteen 
output variables. Of the dependent variables, EPS and CFO 
had the highest number of influential independent variables 
(i.e., 7 out of the 8 input variables involved). By exploiting 
these identified influences, the PSO-BPN model improves the 
prediction accuracy of the basic BPN model for the studied 
petrochemical plant.

In the first iteration of the hybrid BPN-PSO model, the 
index and gbest matrix are allocated the same values in all 
matrix elements equal to 2 and 1 as initial assumptions, 

respectively. After 5 iterations, each striving to optimize MSE 
between target and predicted values and calculating R for 
each step, the prediction performance of the BPN-PSO model 
is assessed (Table 9). The mean R value achieved 0.984 after 
5 iterations, i.e., an improvement on the BPN model. Pentane 
achieves the lowest R value (0.963) and propylene has the 
highest R value (0.997).

The primary objective of the BPN-PSO algorithm is 
to identify the independent variables that exert a specific 
influence on each dependent variable. It effectively achieves 
that (Table 8) and the information it provides can be used in 
feature selection for a customized BPN model, as described 
in section 5.3. Finally, according to Table 9, the regression 
coefficients are calculated and reported in Table 9 at the end 
of the 5th iteration of the modified BPN.

5- 4- Modified BPN model exploiting feature selection 
suggested by the BPN-PSO model

After filtration of all data by using a hybrid BPN-PSO 
algorithm and deletion of previous outlying data records, 
a modified ANN structure was configured and evaluated 
with training, validation, and testing subsets. As described 
in Section 4.2, the generalized regression neural network 
method was used for the modified BPN utilizing the newgrnn 
MATLAB function, configured as follows:

Net. =newgrnn (P, Spread) takes three inputs,
P: R-by-Q matrix of Q input vectors
T: S-by-Q matrix of Q target class vectors
Spread: Spread of radial basis functions (default = 1.0)
Generalized regression neural networks (grnns) utilize a 

Radial Basis Function (RBF) to train their predictions. This 
enables them to be designed and converges very quickly. 
In this study, the newgrnn function was applied using its 
MATLAB software default setting. After 5 iterations for each 
dependent variable separately, the MSE objective function 
reached a minimum value. 

Table 9. Final regression coefficient (R) results using the hybrid BPN-PSO model.
Table 9. Final regression coefficient (R) results using the hybrid BPN-

PSO model. 
 
Dependent variable Regression coefficient 
POLYETHYLENE 0.994 
HIPS 0.996 
GPPS 0.99 
EPS 0.982 
ABS 0.983 
TOLUENE 0.978 
BD 0.966 
PENTANE 0.963 
PROPYLENE 0.997 
C4 RAFFINATE 0.995 
C.F.O 0.988 
FUEL OIL 0.971 
C7-C9 0.984 
Max. 0.997 
Min. 0.963 
Mean 0.984 
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The best indicator of the modified BPN model 
performance is the prediction accuracy it achieves when 
applied to the testing subset, which consists of 55 filtered data 
records. Predictions are in close agreement with the observed 
output variable values (Table 10).  Maximum, minimum, 
and average Relative Error (RE) values are 59.1%, 0.0%, 
and 9.9%, respectively. This level of accuracy is considered 
acceptable for a nonlinear production planning model applied 
to a large scale petrochemical plant. The influence matrix 
established by the hybrid BPN-PSO model is used for feature 
selection to enable the modified BPN model to generate 
acceptable Relative Error (RE) accuracies when applied to 
the testing subset data records, as displayed in Table 10. In 
this table, RE is defined as Eq. (4).
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In summary, the study models and optimizes the 
throughputs of the considered petrochemical plant in four 
stages:

1- basic BPN
2- PSO algorithm to optimize feature selection

3- hybrid BPN-PSO algorithm
4- modified BPN
The basic BPN delivered sub-optimal relationships 

between the input and output variables in predicting the 
performance of the overall plant. There are two reasons for 
this outcome: 1) the inclusion of some unrepresentative data 
records; and, 2) some input variables may have little impact 
on specific output variables. To solve the first problem, 
the statistical distributions of the variables were used to 
identify and remove outlying data records. To resolve the 
second problem, the PSO algorithm was used to identify the 
influential input variables (features) for each specific output 
variable (Table 8). By eliminating outlying data records 
and using only the effective features as input variables, the 
output variable values were predicted using a modified BPN 
tuned with an RBF function. The modified BPN yielded 
substantially more accurate plant output predictions. Clearly, 
the elimination of outlying data records and concentration 
on the most influential input features are more efficient 
for creating an accurate model for predicting outputs for 
the production planning of complex petrochemical plants. 
The regression coefficients achieved between predicted 
and measured values for specific output products applying 
the hybrid PSO-BPN model vary between 0.963 and 0.997 
(Table 10). These values indicate the ability of the developed 
hybrid model to accurately predict product output values.

Table 9. Final regression coefficient (R) results using the hybrid BPN-PSO model.
Table 10.Prediction accuracy results for the modified BPN model expressed in terms of relative 

error for the testing subset data records 
 

Relative errors (RE) for example data records from the testing subset evaluated by the modified 
BPN model 
Data 
No. PE HIPS GPPS EPS ABS TOL. BD 

3 3.27% 0.67% 14.63% 14.71% 23.30% 7.74% 12.34% 
9 21.41% 0.98% 2.44% 3.12% 5.91% 31.25% 3.85% 
12 1.52% 1.35% 3.70% 0.00% 0.00% 20.00% 9.52% 
16 1.27% 1.63% 1.11% 17.50% 35.88% 25.00% 5.18% 
20 11.48% 0.00% 5.06% 15.38% 34.86% 28.57% 8.45% 
24 3.81% 3.55% 2.38% 28.57% 0.76% 27.63% 7.77% 
29 1.29% 0.97% 10.77% 2.78% 9.44% 21.36% 24.30% 
33 5.29% 7.56% 3.12% 8.33% 31.60% 1.64% 7.11% 
36 0.48% 12.78% 5.52% 10.53% 2.57% 1.33% 6.03% 

Relative errors (RE)… 
3 PEN. PROP. C4 R CFO FO C7-C9 
9 17.50% 0.92% 9.30% 3.47% 11.36% 6.17% 

12 14.75% 4.70% 10.00% 16.01% 15.08% 10.37% 

16 12.53% 5.40% 0.19% 0.37% 22.53% 0.72% 

20 3.80% 0.13% 8.70% 9.71% 10.00% 5.68% 

24 0.36% 6.19% 7.53% 10.84% 5.09% 14.01% 

29 22.04% 1.29% 1.12% 7.09% 11.56% 1.41% 

33 31.00% 3.93% 5.99% 10.78% 6.17% 2.00% 

36 4.91% 2.72% 0.25% 12.23% 9.52% 1.88% 
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6- Conclusion
There are many factors that may result in uncertainty in 

a manufacturing plant that can lead to poor productivity and 
diminished profitability. The most common uncertainties are 
associated with processing time, process set-up time, and 
transportation time. Production planning models are therefore 
essential in optimizing the performances of large scale 
production plants such as those required in the petrochemical 
and refining sectors. 

In this study, three neural networks are evaluated 
associated with a large complex petrochemical plant with 
the objective of optimizing its production outputs in terms of 
production volumes. These models are:

a basic back-propagating network (BPN).
a hybrid basic network combined with a particle swarm 

optimizer (BPN-PSO) model.
a generalized regression neural network (GRNN) utilizing 

features selected by the BPN-PSO model
All models consider eight input variables in their efforts 

to predict the outputs of 13 products (dependent variables) 
as accurately as possible. The basic BPN model could only 
achieve a correlation coefficient between actual versus 
predicted product production volumes of about 0.984 
(mean of correlation coefficients). This prediction accuracy 
although good is considered to be insufficient for a plant of 
this type. The main limitation of the basic BPN model is that 
it considers all input features when predicting each output 
product. Applying the hybrid BPN-PSO model identified 
which of the input variables were influential in predicting the 
production volumes of each output product individually.  The 
BPN-PSO model revealed that three of the output products 
are influenced by seven of the input variables, whereas the 
remaining output products are influenced by less than seven 
of the input variables. Indeed, two of the output products are 
only influenced by three of the input variables. 

Applying the features selected for each output prediction 
identified by the BNP-PSO model to a modified BNP 
employing the newgrnn function (MATLAB) with default 
settings leads to improved predictions of the dependent 
variables as a whole. Applied to the testing subset the 
modified BNP achieved maximum, minimum, and average 
relative errors (RE) of 59.1%, 0.0%, and 9.9%, respectively. 
Prediction errors in that range are considered acceptable 

for the collective production processes of a large scale 
petrochemical complex evaluated with a nonlinear planning 
program.

NomenclatureNomenclature    
    
Abbreviations    
ABS Acrylo-Butyl-Styrene   
ANNs Artificial Neural Networks   
BD Butadiene   
BEN Benzene   
BPN Back Propagation Artificial 

Neural Network   
C4R C4 Raffinate   
CAN Acrylonitrile   
CHP Combined Heat And Power    
DCS Distributed Computer System   
DEA Data Envelopment Analysis    
FEPS Expanded Poly Styrene   
FO Fuel Oil   
GPPS General Purpose Poly Styrene   
GRNN Generalized Regression Neural 

Networks   
HIPS High Impact Polystyrene   
MF Mass Flow   
MLP Multi-Layer Perceptron   
MO Mineral Oil   
MSE Mean Squared Error   
NN Neural Network   
PBR Poly Butadiene Rubber   
PE Polyethylene   
PEN Pentane   
PEN Pentane   
Prop. Propylene   
R Pearson's Correlation Coefficients    
R.E. Relative Error   
SRG Of Source Reagent Gas   
TOL Toluene   
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