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1. Introduction

Finsler metrics are induced by sprays. Z. Shen has showed that the spray G can be deformed to a projective spray
in [14] as follows:

where S = S(q, 4v) is the S-curvature of (G, dV') and on TM™,Y := yt 82" is considered as the vertical field. The
spray Gisa projective spray with respect to a fixed volume form dV. Thus the curvature of G is the projective
invariant of a spray G with respect to a fixed volume form dV. The Ricci curvature defined by G is called projective

Ricci curvature of (G, dV) :

PRiC(G,dv) = R,iCG7
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that can be expressed as follows ([15]):

PRic Ric + ( 1){ Sio +[ 5 r} (1)
= n —
(G.dV) n+1 n+11J’

where Ric = Ricg is the Ricci curvature of the spray G, and S)q is the covariant derivative of S along the geodesics
of G. The projective Ricci curvature can be acceptable as a special weighted Ricci curvature. A spray G on M™
that is defined by a volume form dV on M™ is called projectively Ricci-flat, namely:

PRiC(G7dv) =0.

One can easily see that if G is Ricci-flat and S = dh for some scalar function h = h(z), then G is projectively Ricci-
flat. A Finsler metric F on M™ is said to be projectively Ricci-flat if the induced spray G = G is projectively
Ricci-flat. It is remarkable that every weak Einstein Finsler metric Ric = (n — 1)[3¢ + ¢|F? with vanishing S-
curvature satisfy PRic(g, 4v) = (n — 1)[% + ¢|F2. For some research on Finsler metrics of projectively Ricci-flat,
one can see [1, 7, 6, 8, 15].

Definition 1.1. Let F' be a Finsler metric on M™ and G = Gg be the induced spray of F'.
e Fis of isotropic projective Ricci curvature: if PRicg, qvy = (n — e(z)F?;
e Fis of constant projective Ricci curvature: if PRicg, qvy = (n — 1)cF?, where ¢ is a real constant;
e [ is called projectively Ricci-flat: if PRicg, qv) = 0.

Example 1.1. Every Einstein Finsler metric Ric = (n — 1)AF?, X\ = \x), with vanishing S-curvature is of
isotropic projective Ricci curvature. It is remarkable that every Einstein Kropina metric has vanishing S-curvature.
Thus an Finstein Kropina metric has isotropic projective Ricci curvature k = \.

Let (M™,F) and TM™ be an n-dimensional Finsler manifold, and its tangent bundle, respectively. Also, let
(z%,y%) be the coordinates in a local chart on TM™. In 1979, H. Shimada introduced a class of Finsler metric called
m-~th root Finsler metric, [16]. It has been introduced with the following form:

F= VA,

where A = a4 4, (m)y“ ... y'm and Gy ...i,, Symmetric in all its indices . It is easy to see that Riemannian
metrics F' = \/a;j(x)y'y’ are the simplest m-th root Finsler metrics. F is called cubic metric and quartic metric
if m is equal to 3 and 4, respectively. Recent works show that the theory of m-th root Finsler metrics plays an
essential role in physics, theory of space-time structures, gravitation, general relativity, and seismic ray theory
[16, 12, 13]. For some new progress on these metrics, see [9, 17, 19, 18].

In [11], Matsumoto and Numata studied the cubic metrics and showed that a cubic Finsler metric on M™,(n > 3),

F = {/a;j1(x)y'yiy*, can be written in the form of an (a, 3)-metric:

F =ag(s), o&(s)= Vs + azs?,

by choosing suitable non-degenerate quadratic form a = \/a;;(z)y'y? and 1-form 8 = b;(z)y’, where a; and as are
real constants such that a; + a2b® # 0. Thus, a cubic metric is a special («, 3)-metric. On the other hand, Kim
and Park obtained a fundamental function for the m-th root Finsler metric which admits an («, §)-metric, [10]:
(m > 3)

s
F=" E Cm72r0427‘ﬂm727‘7 s <

m
2 )
r=0

where ¢’s are arbitrary constants and s is an integer. The rich class of («, 8)-metrics expressed by F = a¢(s),

s = o, a:= a(r,y) = \/ai(r)y'y’. Here, a is a Riemannian metric, 5 := B(y) = bi(z)y' is a 1-form, and
¢(s) € C* is a positive function on some open interval. In the class of («, §)-metrics with the form

52
F:a—l—sﬁ—i—kg,

where € and k # 0 are constants, there is a special kind of («, 8)-metric which has an interesting geometric
properties. Let ¢ = 2 and k = 1, then the metric ' becomes a square metric. A square metric is defined by

F =ad(s), ¢(s)=(1+s).

In [3], we proved that a square metric F must be projectively Ricci-flat if F is of isotropic projective Ricci curvature.
In this paper, we discuss the problem for a non-Riemannian m-th root metric. Then, we have the following theorem:

124



M. Gabrani et al., AUT J. Math. Comput., 4(2) (2023) 123-128, DOI:10.22060/ajmc.2022.21830.1113

Theorem 1.2. Let F = VA, A := a;,_; (x)y" ...y"" be a non-Riemannian m-th root metric on M™ (n > 2,
m >3 ). Suppose that F is of isotropic projective Ricci curvature, then it is projectively Ricci-flat.

A Finsler metric F' is of weakly isotropic projective Ricci curvature, namely (WIPRC): if there is a volume

form dV on M™, that is,

. 30
PRic(g, av) = (n — 1)[f + C]F27 (2)

where 0 = 0,y is a 1—form and ¢ = ¢(z) is scalar function on M".

Example 1.2. For a constant number a € R", consider the Randers metirc F' = o+ 8 as follows:

_ VA= laPlaMlyP? + (22 < a,y > -2 < a,x >< z,y >)?

1—|af?[=[* ’
5. |z < a,y > -2 <a,x>< 2,9y >
' 1—[a?|z|*
This Randers metrics satisfy the following equations
S = (n+1)KF,

Ric= (n—1)(3koF + 0F?),
where
Ki=<a,r >, ko= HKmy™, 0:=3<a,x>>-2|a?|z|%.

For more details, see [2]. Then by (1) we can see

PRic = (n— 1)[4—;0 + K2 + 8] F.

4
Therefore F is of WIPRC with 0 = ? and ¢ = K2 +90.

Theorem 1.3. Let F = VA, A:= a4, (X)y" ...y’ be a non-Riemannian m-th root metric on a M™ (n > 2,
m >3 ). Suppose that F is of WIPRC, then it is projectively Ricci-flat.

2. Preliminary

Let F be a Finsler metric on M™. It induces a spray [5]:
0 .0
2G

(2

ori oyt’

G=y
where G? are given by

, 1.
G = Zgzl{[ Fz]mkylyk - [ F2]ml}7

g" is defined as the inverse of the fundamental tensor g;; := [%F 2 Jyiyi- If F is a Riemannian metric, then G* can
be expressed by the Christoffel symbols, G*(z,y) = %F;k(x)yjyk.

Let F' be a Finsler metric defined by F = W, A= a4, (ac)gﬂ1 .. yPm, with G, ...i,, Symmetric in all its
indices, [16]. Then F is called an m-th root Finsler metric. Clearly, A is homogeneous of degree m in y.
F is an m-th root Finsler metric on U C R"™ where U is an open subset. For convenience, consider

oA oA oA
- oyk’ - o8 T gk

Ak AO = Axkyk7 AOl = Amiylyi'
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Suppose that the matrix (Ay;) defines a positive definite tensor and (Ag;)~! = A*. Then the following relations
hold

Am—? 2 m— 2
gkl = —[MAAL + (2 — m) AR A, g = A7 [mAAAM + — gk,
m m—1
1 =
ykAk = mA7 :l/kAkl = (m — 1)1417 Y = EAE?lAky
Kl k kl 1 l Kl m
A Ali = 6z 5 A Ak = =Y, AkAlA =—A
m—1 m—1

Then, the spray coefficients of an m-th root Finsler metric on an open subset U C R™ are given in [20] as follows:

1
GF = 5(,401 — A AR (3)

Lemma 2.1. [20] The spray coefficients of an m-th root Finsler metric on an open subset U C R™ are rational
functions in y.

The S-curvature is given by as follows:

=G = g [ 0w g

where dVp = op(z) dz' A--- A dz" is the Busemann - Hausdorff volume form. A Finsler metric F is called of
isotropic S-curvature if S = (n + 1)cF for some scalar function ¢ = ¢(z) on M™.

By (3) and (4), we have the following lemma:
Lemma 2.2. The S-curvature of an m-th root Finsler metric on an open subset U C R" is a rational function in
Y.
Proposition 2.3. Let F = VA, A:= Ak, 1, (2)Y* . y*™ be a non-Riemannian m-th root metric on a manifold
M™ (n>2, m>3). Suppose that F is of isotropic S-curvature, then S = 0.

Proof. By Lemma 2.2, we have that S is a rational function in y. Since, F' is of isotropic S-curvature, i.e.,
S = (n+ 1)cF. Then, F Finsler metric is not a rational function, that is, F' Finsler metric is not Riemannian.
Therefore, c = 0. (I

For any € M™ andy € T,M™ \ {0}, the Riemann curvature R, = Rij% ® dz? is defined by
R o 267@ B 9?G x 0°G B L@@Gk
P77 00 dakay” ayFoyi oyt ayi
Ric is the Ricci curvature and is defined as the trace of the Riemann curvature, i.e., [4]
Ric = R")

m*

kyoa

()

Ric is defined as a scalar function on TM™\ { 0 }. If there is a scalar function ¢ = ¢(xz) on M™, then F is called
an Einstein metric, namely, Ric = (n — 1)cF?.
Using (5) and Lemma 2.1, one can give the following lemma:

Lemma 2.4. Rij and Ric = R", are rational functions in y.
To prove the main theorems, we need the following proposition:

Proposition 2.5. [3] Let F be a Finsler metric on M™ and G = Gp be the induced spray of F. The followings
are equivalent:

(1) F is of WIPRC,
(2) for any volume form (dV, M™), there is a scalar function g on M™, that is,

. 2 36
PR]C(G,dV) = (’I’L — 1){g0|0 - gg + mgoS} + (n — 1)[F + C]F2, (6)

(8) for any volume form (dV, M™), there is a scalar function g on M™, that is,

. - - 30
Rch:—(n—l){:‘o—l—:Q}—&—(n—l)[F—FC]FQ, (7)
where “ | 7 is the horizontal covariant derivative with respect to G, go := ggm(z)y™, 2 = niﬂ — go and

S =Sgav).0 = 0;y% is a 1—form and c = c(x) is scalar function on M™.
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3. m-th root metrics of isotropic projective Ricci curvature

Proof of Theorem 1.2: Let F = VA, A := Ay ke ()Y*1 . yFm be an m-th root Finsler metric. U C R is an

m

open subset. Then F' is introduced by the following spary coefficients, [20]:
1
GF = 5 (Ao = Ag) AR, (8)

where (Ag) = % is a tensor that is positive definite, and (A*") denotes the inverse tensor of (Ay). G* are
expressed as a rational function of y. Suppose that F' is of isotropic projective Ricci curvature, then by Proposition
2.5, we have a scalar function g on M™ such that (when 6 = 0)

2
PRic —(n—1 — g6+ ——=g0S} = (n— 1)cF?, 9
(G.av) — ( ){90\0 90 (n+ 1)90 } ( ) (9)
where ¢ = ¢(x) is scalar function on M™. By (1), Lemma 2.2 and Lemma 2.4, it is easy to see that the left side of
the above equation is a rational function of i and F? is not a rational function, and F is not Riemannian. Then,
we have ¢ = 0. Hence,

gOS}a (10)

. 2
PRic(gav) = (n — 1){gojo — 95 + CE)

namely, F' is projectively Ricci-flat, [15, Theorem 3.1]. O

4. m-~th root metrics of WIPRC

Proof of Theorem 1.3: Let F = VA, A := Ay k,, (T)y* ... y*m be an m-th root Finsler metric. U C R" is

an open subset. Note that, F' Finsler metric’s spray coefficients are rational functions of y. Assume that F' is of
WIPRC. Then by Proposition 2.5, there is a scalar function g on M™,

. 2
PRicg av) — (n — 1){goj0 — 95 + mgos} = (n—1)(30F + cF?), (11)

where § = 0,y* is a 1-form and ¢ = ¢(z) is scalar function on M™. It is easy to see that the left side of the above
equation is a rational function of y. Thus, we consider the following cases:

Case i. If ¢ # 0, then we obtain the following equation by (4.1):

—3(n—1)9i\/9(71—1)292+4(n—1)c{PRic—(n—1)[go‘g—gg—&-ﬁgoS]}
F= 2 (n—1) c '

On the other hand, F = /ay, . (z)y¥* ... y*k=. Thus, we get

F = 77{/ak71<--k'm (‘/Ij)ykl A ykm

—3( n-1 )01\/9( n—1)20% 4 4( n—1 )e{ PRic—( n—1 )[gojo—g8+ 21 90S] }
2( n—1)c '

Since m > 3, then we conclude that 6 = 0 or F is a 1-form. If 8 = 0, then F is an m-th root metric of
isotropic projective Ricci curvature. By Theorem 2.3, we conclude that F' is projectively Ricci-flat. If F'is a
1-form, then F' is not positive definite. But it is meaningless.

Case ii. If 6 # 0, we obtain

2
3(n—1)0F = PRic —(n-1 - g+ ————goS}.
( ) (G,dV) ( ){90|0 Y0 (n+1 )90 }
Thus we get the result that F' is a 1-form and F is not positive definite. But, it is meaningless.

Considering the cases we have examined above, we can conclude that ¢ = 8§ = 0. Therefore, F' is projectively
Ricci-flat.
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