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ABSTRACT: In computer science, a binary decision diagram is a data structure
that is used to represent a Boolean function and to consider a compressed repre-
sentation of relations. This paper considers the notation of T.B.T (total binary
truth table), and introduces a novel concept of binary decision (hyper)tree and
binary decision (hyper)diagram, directly and in as little time as possible, unlike
previous methods. This study proves that every T.B.T corresponds to a binary de-
cision (hyper)tree via minimum Boolean expression and presents some conditions
on any given T.B.T for isomorphic binary decision (hyper)trees. Finally, for faster
calculations and more complex functions, we offer an algorithm and so Python
programming codes such that for any given T.B.T, it introduces a binary decision
(hyper)tree.
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1. Introduction

The theory of hypergraphs was invented in 1960 by Berge, who was considered the modern of combinatory and
graph theory in this regard and as well as graph theory, has some applications in hypernetworks and all sciences
in this scope. Today, some features of hypergraphs are used in complex hypernetwork such as computer science.
The reason why hypergraphs seem apt to depict relations in information systems, social networks, and document-
centered information processing, web information systems, and computer science, are the relationships among
services within a service-oriented architecture [4, 5, 7]. Further materials regarding graphs and hypergraphs are
available in the literature too [1, 4, 5, 2, 6]. The theory of Boolean algebra was created in 1847 by the English
mathematician George Boole. His combination of ideas from classical logic and algebra resulted in what is called
Boolean algebra as modern algebra (a complemented distributive lattice). Boolean algebra has found applications
in such diverse areas as anthropology, biology, chemistry, ecology, economics, sociology, and especially computer
science, electronic circuit design (gating networks), programming languages, databases, complexity theory, and
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complex hypernetworks. In cooperative game theory, monotone Boolean functions are called simple games (voting
games); this notion is applied to solve problems in social choice theory [8].

Regarding these points, this paper considers the concept of hypertrees and applies it in computer science. In this
regard considers the notation of switching functions and investigates the relation between hypergraphs and switching
functions. This paper considers the notation of T.B.T (total binary truth table) and introduces a novel concept of
binary decision hypertree and binary decision hyperdiagram. This study proves that every T.B.T corresponds to a
binary decision hypertree (hyperdiagram) via minimum Boolean expression and presents some conditions on T.B.T
for the isomorphism of binary decision hyperdiagram and binary decision hyperdiagram. The main motivation
of this work is extracting binary decision hypertree from a novel method different from previous methods. This
method generates the binary decision tree directly and quickly, and that conveyed the importance of our work.
Finally, we present an algorithm and so Python programming (with complete and original codes) such that for
any given T.B.T, introduces a binary decision hypertree(hyperdiagram) and explanation of this method with two
examples of real-life world problems.

2. Preliminaries

In this section, we recall some definitions and results, which we need in what follows. Let X be an arbitrary set.
Then we denote P ∗(X) = P (X)∖ ∅, where P (X) is the power set of X.

Definition 2.1 ([1]). Let G = {x1, x2, . . . , xn} be a finite set. A hypergraph on G is a pair H = (G, {Ei}
m

i=1)

such that for all 1 ≤ i ≤ m, ∅ ≠ Ei ⊆ G and

m⋃
i=1

Ei = G. The elements x1, x2, . . . , xn of G are called hyper vertices,

and the sets E1, E2, . . . , Em are called the edges ( hyperedges) of the hypergraph H.

Definition 2.2 ([4]). Let G = {x1, x2, . . . , xn} be a finite set. A hyperdiagram on G is a pair H = (G, {Ek}
m

k=1)
such that for all 1 ≤ k ≤ m,Ek ⊆ G and |Ek| ≥ 1. Clearly every hypergraph is a hyperdiagram, while the converse

is not necessarily true. We say that two hyperdiagrams H = (G, {Ek}
m

k=1) and H ′ = (G′, {E′
k}

m′

k=1) are isomorphic
if m = m′ and there exists a bijection φ : G → G′ and a permutation τ : {1, 2, . . . ,m} → {1, 2, . . . ,m′} such that
for all x, y ∈ G, if for some 1 ≤ i ≤ m,x, y ∈ Ei, then φ(x), φ(y) ∈ Eτ(i), if for all 1 ≤ i ≤ m,x, y ̸∈ Ei, then
φ(x), φ(y) ̸∈ Eτ(i) and if for some 1 ≤ i ≤ m,x ∈ Ei, for all 1 ≤ j ≤ m, y ̸∈ Ej, then φ(x) ∈ Eτ(i) and φ(y) ̸∈ Ej.
Since every hypergraph is a hyperdiagram, define isomorphic hypergraphs in a similar way.

Theorem 2.3. [3] Let n ∈ N.

(i) Then every (T.B.T ) T (f ̸≡ 0, x1, x2, . . . , xn) corresponds to a hypergraph.

(ii) Every T.B.T corresponds to a minimum Boolean expression.

(iii) Let T (f, x1, x2, . . . , xn) be a T.B.T. If f is a hypergraphable Boolean function, then (f↗)↙ ∼ f .

(iv) Let T (f, x1, x2, . . . , xn) be a T.B.T. If f(x1, x2, . . . , xn) is a d.n.f and m ≥ 1+2n−1, then it is a hypergraphable
Boolean function.

(v) Let 0 ≤ j, j′ ≤ m. If T (f (j), x1, . . . , xn) and T ′(f (j′), x1, . . . , xn) are equivalent, then their Boolean function–
based hypergraph are isomorphic.

Definition 2.4 ([3]). Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. For all 1 ≤ j ≤ 2n define Unitor(fj) =
{(x1, x2, . . . , xn) | fj(x1, x2, . . . , xn) = 1} and will denote by Un(fj), in a similar way Unitor(f) is defined and it
is denoted by Un(f).

Definition 2.5 ([3]). Let n ∈ N,m ∈ N∗, 1 ≤ k ≤ n and T (f (0), . . . , f (m), x1, . . . , xn) be a T.B.T, where for

0 ≤ t ≤ m, f (t)(x1, . . . , xn) =

2n∑
i=1

f
(t)
i (x1, x2, . . . , xn). Then

(i) I(n, f (t), 1) = {j | f (t)
j (x1, x2, . . . , xn) = 1, where 1 ≤ j ≤ 2n};

(ii) P (k, x1, x2, . . . , xk, 1) = {
n∏

i=1

xi | (
k∏

i=1

xi)(

n∏
i=k+1

xi) = 1}.

Corollary 2.6 ([3]). Let n ∈ N and T (f, g, x1, x2, . . . , xn) be a T.B.T. Then
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(i) if Un(g) ⊆ Un(f), then (f + g) ∼ f ;

(ii) (f + g) ∼ f if and only if I(n, f + g, 1) = I(n, f, 1).

Theorem 2.7 ([3]). Let n ∈ N, 1 ≤ j ≤ n and T (f, g, x1, x2, . . . , xn) be a T.B.T and g ∼
k∏

j=1

xij , where 1 ≤

i1, i2, . . . , ik ≤ n.

(i) If I(n, f, 1) < 2n−1, then (f + g) ̸∼ f ;

(ii) If I(n, g, 1) = I(n, f, 1) and Un(g) ⊆ Un(f) imply that g ∼ f .

3. Switching Hypergraph

In this section, we apply the notation of total binary truth table (T.B.T) on Boolean variables and introduce the
concept of binary decision hypertree(hyperdiagram) using the concepts of hypergraphable Boolean functions and
Boolean functionable hypergraphs and investigate some of their properties.

By Theorem 2.3, Hamidi, et al. proved that for any given n ∈ N and T (f, x1, x2, . . . , xn), there exists a minimum
Boolean expression h(x1, x2, . . . , xn) in such a way that f ∼ h. Now, we have the following definition.

Definition 3.1. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a T.B.T and h(x1, x2, . . . , xn) =

m∑
j=1

kj∏
i=1

xi be the related minimum

Boolean expression in such a way that f ∼ h and ∀ 1 ≤ j ≤ m,xt ∈
kj∏
i=1

xi. Then consider xt as the root node and

so have two subtrees, one for the case where xt = 0 and one where xt = 1. Each of the two subtrees is now testing
another variable, each with another two subtrees, and so on. At the leaves, we have 1, which is the output of the
function on the inputs that constitute the path from the root to the leaf. The obtained acyclic-directed graph that
satisfies in above conditions, will call as a binary decision hypertree and will denote by 1-BDHT (T (f)). If add 0
the node in the last level(output) as a complementary and symmetric subtree with the existing subtree, we obtain an
acyclic-directed graph that will denote by (1⋉ 0)-BDHT (T (f)).

In the following Theorem, we prove that every T.B.T corresponds to a binary decision hypertree.

Theorem 3.2. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a T.B.T . Then (1⋉ 0)-BDHT (T (f)) is equivalent to T.B.T .

Proof. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a T.B.T . By Theorem 2.3, Every T.B.T corresponds to a minimum
Boolean expression, there exists a minimum Boolean expression h(x1, x2, . . . , xn) in such a way that f ∼ h. If

h(x1, x2, . . . , xn) =

m∑
j=1

kj∏
i=1

xi be the related minimum Boolean expression in such a way that f ∼ h. By definition

3.1, we obtain an acyclic directed graph that will denote by (1⋉ 0)-BDHT (T (f)). □

From now on, for a given (T.B.T ), T (f ̸≡ 0, x1, . . . , xn), we will show the (1⋉0)-BDHT (T (f ̸≡ 0, x1, . . . , xn)) =
(V,E,−→, 99K), where −→ is a solid directed line and 99K is a dashed directed line in its graph. For any given two
vertices x, y in a directed graph (1⋉ 0)-BDHT (T (f)) = (V,E,−→, 99K), we will denote (−→x, y) or (99Kx, y) by edges of

a directed graph (1⋉ 0)-BDHT (T (f)) = (V,E,−→, 99K) and will say that are adjacent vertices if, (−→x, y) or (99Kx, y).
Following lemma is a helpful tool in the computations of our works that we present and prove as follow.

Lemma 3.3. Let f1, f2, . . . , fn be Boolean functions. Then

(i) (f1 + f2) ∼
(
f1 + c(f1).f2

)
.

(ii) (f1 + f2 + · · ·+ fn) ∼
(
f1 + c(f1).(f2 + · · ·+ fn)

)
.

Proof. Are clear by definition. □

Example 3.1. Let H = {x1, x2, x3, x
′
1, x

′
2, x

′
3} and consider a (T.B.T ), T (f, x1, x2, x3) in Table 1.

By Theorem 2.3, we get an undirected hypergraph H′ = (H,E1, E2, E3, E4) in Figure 1, where E1 = {x′
1, x

′
2,

x′
3}, E2 = {x′

1, x2, x3}, E3 = {x1, x2, x
′
3} and E4 = {x1, x2, x3}. Since

E1 ∩ E2 = {x′
1}, E1 ∩ E3 = {x′

3}, E1 ∩ E4 = ∅, E2 ∩ E3 = {x2}, E2 ∩ E4 = {x2, x3} and E3 ∩ E4 = {x1, x2}, (1)
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Table 1: T. B. T with 3 variables T (f, x1, x2, x3)

x1 x2 x3 f(x1, x2, x3)

0 0 0 f1(x1, x2, x3) = 1
0 0 1 f2(x1, x2, x3) = 0
0 1 0 f3(x1, x2, x3) = 0
0 1 1 f4(x1, x2, x3) = 1
1 0 0 f5(x1, x2, x3) = 0
1 0 1 f6(x1, x2, x3) = 0
1 1 0 f7(x1, x2, x3) = 1
1 1 1 f8(x1, x2, x3) = 1

x′
2

x′
1

x′
3

x3

x1

x2

Figure 1: Hypergraph corresponding to T.B.T Table 1.
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Figure 2: 1-BDHT (T (f)) corresponding to T.B.T
Table 1.
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Figure 3: (1⋉0)-BDHT (T (f)) corresponding to T.B.T
Table 1.
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Figure 4: (1 ⋉ 0)-BDHD(T (f)) corresponding to
T.B.T Table 1.

we get that minimum Boolean expression h(x1, x2, x3) = x1x2 + x2x3 + x′
1x

′
2x

′
3. By Lemma 3.3 (i), h(x1, x2, x3) =

x1x2 + x′
1x2x3 + x′

1x
′
2x

′
3 and so the 1-BDHT (T (f)) and (1 ⋉ 0)-BDHT (T (f)) are obtained in Figures 2 and 3,

respectively.

Definition 3.4. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a (T.B.T ), and (1 ⋉ 0)-BDHT (T (f)) = (V,E,−→, 99K), be the
binary decision hypertree of (T.B.T ), T (f ̸≡ 0, x1, x2, . . . , xn). We eliminate the last level which is the output of
0, 1, replace only two nodes as 0, 1, and draw a tree such that all subtrees share 0, 1. We will call as a binary decision
hyperdiagram and will denote by (1⋉ 0)-BDHD(T (f)).

Example 3.2. Consider a (T.B.T ), T (f, x1, x2, x3) in Table 1. Then the (1 ⋉ 0)-BDHD(T (f)) is obtained in
Figure 4.
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Definition 3.5. Let n ∈ N and T (f, g, x1, x2, . . . , xn) be a T.B.T. We say that BDD(T (f)) = (V,E,−→, 99K)
is isomorphic to BDD(T (g)) = (V ′, E′,−→, 99K), if there exists a bijection φ : V → V ′ such that if two vertices

x, y are adjacent vertices in BDD(T (f)), then φ(x), φ(y) are adjacent in BDD(T (g)), (
−−−−−−−→
φ(x), φ(y)) or

99K
(φ(x), φ(y))

hold. In similar a way, an isomorphic between binary decision hyperdiagrams is defined.

In the following theorem, we investigate the conditions for the isomorphic binary decision (hyper)tree and
hyperdiagram.

Theorem 3.6. Let n ∈ N and T (f, g, x1, x2, . . . , xn) be a T.B.T. Then

(i) if f ∼ g, then BDD(T (f)) ∼= BDD(T (g));

(ii) if f ∼ g, then BDT (T (f)) ∼= BDT (T (g));

(iii) if f ∼ g , then (1⋉ 0)-BDHD(T (f)) ∼= (1⋉ 0)-BDHD(T (g));

(iv) if f ∼ g, then (1⋉ 0)-BDHT (T (f)) ∼= (1⋉ 0)-BDHT (T (g)).

Proof. (i) Since f ∼ g, for all 1 ≤ j ≤ 2n, fj(x1, x2, . . . , xn) = gj(x1, x2, . . . , xn). Now define a bijection
φ : V → V ′ by φ(xi) = xi and for all 1 ≤ i ≤ m,E′

i = φ(Ei). Clearly if two vertices x, y are adjacent vertices
in V , then φ(x), φ(y) are adjacent in V ′, we get that BDD(T (f)) ∼= BDD(T (g)).

(ii), (iii), (iv) It is similar to the item (i).
□

We are proved that for any T.B.T, there is a minimum Boolean expression different from its d.n.f . Now, apply
Theorem 2.3 and obtain the following theorem.

Theorem 3.7. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. There is minimum Boolean expression in different
with to its d.n.f as h(x1, x2, . . . , xn) such that BDD(T (f)) ∼= BDD(T (h)).

Proof. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. By Theorem 2.3, there exists a minimum Boolean expression
h(x1, x2, . . . , xn) in such a way that f ∼ h. Using Theorem 3.6, we have BDT (T (f)) ∼= BDT (T (g)) and so
BDD(T (f)) ∼= BDD(T (h)). □

Theorem 3.8. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a T.B.T . Then (1⋉ 0)-BDHD(T (f)) ∼= BDD(T (f)).

Proof. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a T.B.T and h(x1, x2, . . . , xn) =

m∑
j=1

kj∏
i=1

xi be the related minimum Boolean

expression in such a way that f ∼ h. We know that BDHD is the binary decision hyperdiagram corresponding
to the Boolean expression h and BDD is the binary decision diagram corresponding to the Boolean expression f .
Since f ∼ h, for all 1 ≤ j ≤ 2n, fj(x1, x2, . . . , xn) = hj(x1, x2, . . . , xn). Now define a bijection φ : V → V ′ by
φ(xi) = xi and for all 1 ≤ i ≤ m,E′

i = φ(Ei). Clearly if two vertices x, y are adjacent vertices in V , then φ(x), φ(y)
are adjacent vertices in V ′, we get that (1⋉ 0)-BDHD ∼= BDD. □

Theorem 3.9. Let T (f, f ′, x1, x2, . . . , xn) be a T.B.T.

(i) If f is a hypergraphable Boolean function, then BDD(T (f↗)↙) ∼= BDD(T (f));

(ii) If Un(f ′) = Un(f), then BDD(T (f)) ∼= BDD(T (f ′));

(iii) If Un(f ′) ⊆ Un(f) or I(n, f + f ′, 1) = I(n, f, 1), then BDD(T (f + f ′)) ∼= BDD(T (f));

(iv) If Un(f ′) ⊆ Un(f) and I(n, f ′, 1) = I(n, f, 1) imply that BDD(T (f)) ∼= BDD(T (f ′));

(v) If f(x1, x2, . . . , xn) is a d.n.f and m ≥ 1 + 2n−1, then BDD(T (f↗)↙) ∼= BDD(T (f));

(vi) Let 0 ≤ j, j′ ≤ m. If T (f (j), x1, . . . , xn) and T ′(f (j′), x1, . . . , xn) are equivalent, then BDD(T (f)) ∼=
BDD(T ′(f ′)).
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Proof. (i) If f is a hypergraphable Boolean function, then by Theorem 2.3, (f↗)↙ ∼ f . Thus by Theorem 3.6,
BDD(T (f↗)↙) ∼= BDD(T (f)).

(ii) If Un(f ′) = Un(f), then f ∼ f ′. Thus by Theorem 3.6, BDD(T (f)) ∼= BDD(T (f ′)).
(iii) If Un(f ′) ⊆ Un(f) or I(n, f + f ′, 1) = I(n, f, 1), then by Corollary 2.6, f + f ′ ∼ f . Thus by Theorem 3.6,

BDD(T (f + f ′)) ∼= BDD(T (f)).
(iv) If Un(f ′) ⊆ Un(f) and I(n, f ′, 1) = I(n, f, 1), then by Theorem 2.7, f ∼ f ′. Thus by Theorem 3.6,

BDD(T (f)) ∼= BDD(T (f ′)).
(v) If f(x1, x2, . . . , xn) is a d.n.f and m ≥ 1 + 2n−1, then by Theorem 2.3, (f↗)↙ ∼ f . Thus by Theorem 3.6,

BDD(T (f↗)↙) ∼= BDD(T (f)).
(vi) Let 0 ≤ j, j′ ≤ m. If T (f (j), x1, . . . , xn) and T ′(f (j′), x1, . . . , xn) are equivalent, then by Theorem 2.3,

f ∼ f ′. Thus by Theorem 3.6, BDD(T (f)) ∼= BDD(T ′(f ′)). □

The following corollary, analyzes how to the isomorphic binary decision (hyper)tree and hyperdiagram via the
unitalizer.

Corollary 3.10. Let T (f, f ′, x1, x2, . . . , xn) be a T.B.T.

(i) If f is a hypergraphable Boolean function, then (1⋉ 0)-BDHD(T (f↗)↙) ∼= (1⋉ 0)-BDHD(T (f));

(ii) If Un(f ′) = Un(f), then (1⋉ 0)-BDHD(T (f)) ∼= (1⋉ 0)-BDHD(T (f ′));

(iii) If Un(f ′) ⊆ Un(f) or I(n, f + f ′, 1) = I(n, f, 1), then (1⋉ 0)-BDHD(T (f + f ′)) ∼= (1⋉ 0)-BDHD(T (f));

(iv) If Un(f ′) ⊆ Un(f) and I(n, f ′, 1) = I(n, f, 1) imply that (1⋉ 0)-BDHD(T (f)) ∼= (1⋉ 0)-BDHD(T (f ′));

(v) If f(x1, x2, . . . , xn) is a d.n.f and m ≥ 1 + 2n−1, then (1⋉ 0)-BDHD(T (f↗)↙) ∼= (1⋉ 0)-BDHD(T (f));

(vi) Let 0 ≤ j, j′ ≤ m. If T (f (j), x1, . . . , xn) and T ′(f (j′), x1, . . . , xn) are equivalent, then (1⋉0)-BDHD(T (f)) ∼=
(1⋉ 0)-BDHD(T ′(f ′)).

In the following corollary, we summarize our results and the connection of BDD, (1⋉0)-BDHD and (1⋉0)-BDHT
in a Hass diagram as follows.

Corollary 3.11. Let T (f ̸≡ 0, x1, x2, . . . , xn) be a (T.B.T ). Then we have the following diagram HT in Figure 5.

BDD(1⋉ 0)-BDHD(1⋉ 0)-BDHT ▶▶◀

▶

Figure 5: Tree diagram HT of T (f ̸≡ 0, x1, x2, . . . , xn)

The method for the construction of a Boolean expression from a T.B.T is explained in Algorithm 1 based on [3].

Corollary 3.12. Let n,m ∈ N and T (f (0), f (1), . . . , f (m), (x1, . . . , xn)) be a T.B.T. Then BDHT (T (f (0)

, f (1), . . . , f (m), (x1, . . . , xn))) is obtained by Algorithm 2.

3.1. Accessible Binary Decision Hypertree Based on a Program

In this subsection, we present a program(Python programming) to access of binary decision hypertree for any given
T.B.T, based on Algorithm 2.

First source-code:

1 import x l rd
2
3 shee t = x l rd . open workbook ( ” input . x l sx ” ) . shee t by index (0 )
4
5 element names = shee t . row va lues (0 ) [ : −1 ]
6 e lements = [ ]
7 for i in range (1 , shee t . nrows ) :
8 e lements . append ( shee t . row va lues ( i ) )
9

10 i f len ( e lements ) != pow(2 , len ( element names ) ) :
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Algorithm 1

Input a T.B.T T (f, x1, x2, . . . , xn).
if f ≡ 0 or f ≡ 1 then
consider g ≡ 0 or g ≡ 1, respectively.

end if
if If there exists j ∈ {1 ≤ j1, j2, . . . , js ≤ 2n}, such that fj(x1, x2, . . . , xn) = 1 then
consider g ≡ 0 or g ≡ 1, respectively.

end if
for 1 ≤ i ̸= j ≤ k and k ∈ N do
set Fij = Ei ∩ Ej

end for
if for all 1 ≤ i ̸= j ≤ k, Fij = ∅ or |Fij | < n− 1 then

consider g(x1, x2, . . . , xn) =
∑

1≤i≤k

∏
α∈Ei

α.

end if
if there exists 1 ≤ r ≤ k, and i ̸= j ∈ {i1, i2, . . . , ir} such that Fij ̸= ∅ and |Fij | ≥ n− 1 then

put gij(x1, x2, . . . , xn) =
∏

α∈Fij

α

end if
if I(n,

∑
i1≤i≤ir
i1≤j≤is

gij , 1) = I(n, f, 1) then

consider g(x1, x2, . . . , xn) =
∑

i1≤i≤ir
i1≤j≤is

gij(x1, . . . , xn) that Un(gij) ⊆ Un(f)

end if
if I(n,

∑
i1≤i≤ir
i1≤j≤is

gij , 1) < I(n, f, 1) then

consider 1 ≤ s ≤ k, j ∈ {j1, j2, . . . , js}, fj(x1, x2, . . . , xn) =
∏

β∈Ej

β such that Un(
∑

i1≤i≤ir
i1≤j≤is

gij) ̸= Un(fj) ⊆ Un(f)

and I(n,
∑

i1≤i≤ir
i1≤j≤is

gij +

js∑
j=j1

fj , 1) = I(n, f, 1)

end if

11 print ( ”Error in input f i l e , rows count i s n ’ t equal to 2ˆn . ” )
12 e x i t (0 )
13
14 E i = [ ]
15 for i , elm in enumerate( e lements ) :
16 i f ( elm [−1] == 1) : # check i f f i s equa l to 1
17 E = [ ]
18 for c in range (0 , len ( elm )−1) :
19 i f ( elm [ c ] == 1) :
20 E. append ( element names [ c ] )
21 else :
22 E. append ( element names [ c ]+” ’ ” )
23 E i . append ( [ i , E ] )
24
25 def p r i n t g ( g expr ) :
26 print ( ”g ( ”+” , ” . j o i n ( element names )+” ) = ”+g expr )
27 input ( ”” )
28 e x i t (0 )
29
30 i f len ( E i ) == len ( e lements ) :
31 p r i n t g ( ”1” )
32
33 i f len ( E i ) == 0 :
34 p r i n t g ( ”0” )
35
36 F i j = [ ]
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Algorithm 2

Input a T.B.T T (f, x1, x2, . . . , xn).

Take the Boolean expression g(x1, x2, . . . , xn) =

m∑
j=1

gj from Algorithm 1 [3].

if there exists 1 ≤ i ≤ n, such that xi ∈
m⋂
j=1

gj then

rearrange xi =: x1 as the root node,
else

there does not exist 1 ≤ i ≤ n, such that xi ∈
⋂
j

gj) go to step 6.

end if
Consider for x1, leading solid line are labelled by 1 and for x′

1, leading dashed line are labeled by 0.
for 2 ≤ i ≤ n do
put xi as the next nodes, and for xi, the leading solid lines are labeled by 1, and for x′

i, leading dashed lines
are labeled by 0.

end for

By Lemma 3.3, consider h(x1, x2, . . . , xn) =

m′∑
j=1

hj = g1 + g′1(g2 + . . . + gm), where m ≤ m′ so there exists

1 ≤ i ≤ n, such that xi ∈
m′⋂
j=1

hj and go to step 3.

37 for i in E i :
38 F = [ ]
39 for j in E i :
40 i f ( i != j ) :
41 i n t e r s e c t i o n = [ x for x in i [ 1 ] i f x in j [ 1 ] ]
42 i f ( len ( i n t e r s e c t i o n ) >= ( len ( element names )−1) ) :
43 F . append ( [ j [ 0 ] , i n t e r s e c t i o n ] )
44 i f (F) :
45 F i j . append ( [ i [ 0 ] , F ] )
46
47 i f ( F i j == [ ] ) :
48 g = [ ]
49 for i in E i :
50 g . append ( ”” . j o i n ( i [ 1 ] ) ) # mul t i p l y e lements
51 p r i n t g ( ”+” . j o i n ( g ) )
52
53 g i j = [ ]
54 for i in F i j :
55 for j in i [ 1 ] :
56 g i j . append ( ”” . j o i n ( j [ 1 ] ) ) # mul t i p l y e lements
57 g i j = l i s t ( dict . fromkeys ( g i j ) ) # remove dup l i c a t e s
58 s i gma g i j = ”+” . j o i n ( g i j )
59
60 def ca l c mul t and ( expr ) :
61 expr = expr . s p l i t ( ”+” )
62 for i in expr :
63 i f ”0” not in i :
64 return 1
65 return 0
66
67 t r u e g i j = [ ]
68 for elm in e lements :
69 tmp g = s i gma g i j
70 for c in range (0 , len ( elm )−1) :
71 i f ( elm [ c ] == 1) :
72 tmp g = tmp g . r ep l a c e ( element names [ c ]+” ’ ” , ”0” )
73 tmp g = tmp g . r ep l a c e ( element names [ c ] , ”1” )
74 else :
75 tmp g = tmp g . r ep l a c e ( element names [ c ]+” ’ ” , ”1” )
76 tmp g = tmp g . r ep l a c e ( element names [ c ] , ”0” )
77 t r u e g i j . append ( ca l c mul t and ( tmp g ) )
78
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79 f j = [ ]
80 for i , elm in enumerate( e lements ) :
81 i f ( elm [−1] == 1 and t r u e g i j [ i ] == 0) :
82 f j . append ( ”” . j o i n ( [ x for x in E i i f x [ 0 ] == i ] [ 0 ] [ 1 ] ) )
83
84 p r i n t g ( ”+” . j o i n ( g i j + f j ) )

Second source-code:

1 # ht t p s :// g i t hub . com/BaseMax/BinaryTreePython
2 # ht t p s :// g i t hub . com/BaseMax/BinaryTreeDiagram
3 # ht t p s :// g i t hub . com/BaseMax/BinaryTreeDiagramDrawing
4
5 import i t e r t o o l s , graphviz as gvz
6 from math import log2 , f l o o r
7
8 matrix = {
9 ”xyz” : (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7) ,

10 ”xzy” : (0 , 1 , 4 , 5 , 2 , 3 , 6 , 7) ,
11 ”yxz” : (0 , 1 , 4 , 5 , 2 , 3 , 6 , 7) ,
12 ”yzx” : (0 , 4 , 1 , 5 , 2 , 6 , 3 , 7) ,
13 ”zxy” : (0 , 2 , 4 , 6 , 1 , 3 , 5 , 7) ,
14 ”zyx” : (0 , 4 , 2 , 6 , 1 , 5 , 3 , 7) ,
15 }
16
17 value = input ( ’ Enter a l l o f minterms in one l i n e with space : ’ )
18 combf = l i s t (map(lambda x : int ( x ) , va lue . s p l i t ( ) ) )
19 combf . s o r t ( )
20
21 def merge ( l s t ) :
22 r e s = [ ]
23 for i in range (0 , len ( l s t ) − 1 , 2) :
24 r e s . append ( ( l s t [ i ] , l s t [ i + 1 ] ) )
25 return r e s
26
27 def make form ( combf , f u l l t r e e ) :
28 r e s = [ ]
29 for i in range ( len ( matrix [ form ] ) ) :
30 i f matrix [ form ] [ i ] in combf :
31 r e s . append ( matrix [ form ] [ i ] )
32 else :
33 r e s . append (None )
34 while ( len ( r e s ) > 1) :
35 r e s = merge ( r e s )
36 return r e s [ 0 ]
37
38 def f i n d b e s t p o l y ( combf , f u l l t r e e , w=0) :
39 new combf = [ ]
40 for element in combf :
41 i f element in f u l l t r e e :
42 new combf . append ( element )
43 w += 1
44 i f len ( new combf ) < 2 :
45 return w
46 return f i n d b e s t p o l y ( l i s t ( i t e r t o o l s . combinat ions ( new combf , 2) ) ,merge ( f u l l t r e e ) , w)
47
48 my tree = [ ]
49
50 def draw ( tree , g , form , h=1) :
51 i f (hasattr ( t ree , ” i t e r ” ) ) :
52
53 l = draw ( t r e e [ 0 ] , g , form , 2 ∗ h)
54 r = draw ( t r e e [ 1 ] , g , form , 2 ∗ h + 1)
55
56 i f l == r and r != (1 , 1) :
57
58 g . node ( f ’ {h} ’ , f ’ { l [ 0 ] } ’ , s t y l e=” i n v i s ” i f l ==(0 ,0) else None)
59 g . node ( f ’ {2∗h} ’ , f ’ { l [ 0 ] } ’ , s t y l e=” i n v i s ” )
60 g . edge ( f ’ {h} ’ , f ’ {2∗h} ’ , s t y l e=” i n v i s ” )
61
62 my tree . append ( [
63 str (h) ,
64 str (2∗h) ,
65 str ( l [ 0 ] ) ,
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66 str ( l [ 0 ] ) ,
67 ” i n v i s ”
68 ] )
69
70 g . node ( f ’ {2∗h+1} ’ , f ’ { r [ 0 ] } ’ , s t y l e=” i n v i s ” )
71 g . edge ( f ’ {h} ’ , f ’ {2∗h+1} ’ , s t y l e = ” i n v i s ” )
72 my tree . append ( [
73 str (h) ,
74 str (2∗h+1) ,
75 str ( l [ 0 ] ) ,
76 str ( r [ 0 ] ) ,
77 ” i n v i s ”
78 ] )
79
80 return l
81
82 g . node ( f ’ {h} ’ , f ’ { form [ f l o o r ( log2 (h) ) ]} ’ )
83 g . node ( f ’ {2∗h} ’ , f ’ { form [ f l o o r ( log2 (2∗h) ) ]} ’ i f l [ 1 ] else f ’ { l [ 0 ] } ’ , s t y l e=None i f l [ 0 ]

else ” i n v i s ” )
84 g . edge ( f ’ {h} ’ , f ’ {2∗h} ’ , s t y l e=”dashed” i f l [ 0 ] else ” i n v i s ” )
85
86 my tree . append ( [
87 str (h) ,
88 str (2∗h) ,
89 str ( form [ f l o o r ( log2 (h) ) ] ) ,
90 str ( form [ f l o o r ( log2 (2∗h) ) ] i f l [ 1 ] else l [ 0 ] ) ,
91 ”dashed” i f l [ 0 ] else ” i n v i s ”
92 ] )
93
94 g . node ( f ’ {2∗h+1} ’ , f ’ { form [ f l o o r ( log2 (2∗h+1) ) ]} ’ i f r [ 1 ] else f ’ { r [ 0 ] } ’ , s t y l e=None i f r

[ 0 ] else ” i n v i s ” )
95 g . edge ( f ’ {h} ’ , f ’ {2∗h+1} ’ , s t y l e=None i f r [ 0 ] else ” i n v i s ” )
96
97 my tree . append ( [
98 str (h) ,
99 str (h∗h+1) ,

100 str ( form [ f l o o r ( log2 (h) ) ] ) ,
101 str ( form [ f l o o r ( log2 (2∗h+1) ) ] i f r [ 1 ] else r [ 0 ] ) ,
102 # None i f r [ 0 ] e l s e ” i n v i s ”
103 ” i n v i s ” i f r [ 0 ] else ” i n v i s ”
104 ] )
105
106 return (1 , 1)
107
108 return (1 , 0) i f type ( t r e e ) == int else (0 , 0)
109
110 def c l e a n t r e e ( t r e e ) :
111 index = 0
112
113 r e s t r e e = [ item for item in t r e e ]
114
115 removed = 0
116
117 for item in t r e e :
118 i f item [ 2 ] == ’ 0 ’ or item [ 3 ] == ’ 0 ’ :
119 del r e s t r e e [ index − removed ]
120 removed = removed + 1
121 i f item [ 2 ] == ’ 1 ’ and item [ 3 ] == ’ 1 ’ :
122 del r e s t r e e [ index − removed ]
123 removed = removed + 1
124
125 index = index+1
126
127 return r e s t r e e
128
129 i f name == ” main ” :
130 weight = {
131 f u l l t r e e [ 0 ] : f i n d b e s t p o l y ( l i s t ( i t e r t o o l s . combinat ions ( combf , 2) ) ,merge ( f u l l t r e e [ 1 ] ) )
132 for f u l l t r e e in matrix . i tems ( )
133 }
134 form = l i s t ( weight . keys ( ) ) [ l i s t ( weight . va lue s ( ) ) . index (max( weight . va lue s ( ) ) ) ]
135 g = gvz . Graph ( format=”png” , f i l ename=” btree . gv” )
136 t r e e = make form ( combf , matrix [ form ] )
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Table 2: T. B. T with 3 variables T (f, x, y, z)

x y z f(x, y, z)

0 0 0 f1(x, y, z) = 0
0 0 1 f2(x, y, z) = 0
0 1 0 f3(x, y, z) = 1
0 1 1 f4(x, y, z) = 1
1 0 0 f5(x, y, z) = 1
1 0 1 f6(x, y, z) = 1
1 1 0 f7(x, y, z) = 0
1 1 1 f8(x, y, z) = 1

137 draw ( tree , g , form )
138
139 my tree = c l e a n t r e e ( my tree )
140 node added = 0
141
142 x = 0
143 for value in my tree :
144 i f value [ 3 ] == ’ 1 ’ :
145 y = 0
146 reached to x = [ ]
147 for value2 in my tree :
148 i f value2 [ 0 ] == value [ 0 ] :
149 r eached to x . append ( value2 )
150 y = y + 1
151 i f len ( r eached to x ) == 1 :
152 g . node ( ’ o ’+str (100+node added ) , ’ 0 ’ )
153 g . edge ( va lue [ 0 ] , ’ o ’+str (100+node added ) , s t y l e=”dashed” i f ( r eached to x [ 0 ] [ 4 ] ==

’ i n v i s ’ ) else None)
154 node added = node added + 1
155 x = x + 1
156
157 g . view ( )

In the following example, we first extract the binary decision hypertree manually for the given T.B.T table.
Then, using Python programming, the binary decision hypertree corresponding to a T.B.T in Figure 7 is obtained.
We can see that the output of the Python programming and the output of the manual method are the same.

Example 3.3. Let H = {x, y, z, x′, y′, z′} and consider a (T.B.T ), T (f, x, y, z) in Table 2. By Theorem 2.3, we get
an undirected hypergraph H′ = (H,E1, E2, E3, E4, E5), where E1 = {x′, y, z′}, E2 = {x′, y, z}, E3 = {x, y′, z′}, E4 =
{x, y′, z} and E5 = {x, y, z}. Since

E1 ∩ E2 = {x′, y}, E1 ∩ E3 = {z′}, E1 ∩ E4 = ∅, E1 ∩ E5 = {y}, E2 ∩ E3 = ∅, E2 ∩ E4 = {z},
E2 ∩ E5 = {y, z}, E3 ∩ E4 = {x, y′}, E3 ∩ E5 = {x} and E4 ∩ E5 = {x, z},

we get that minimum Boolean expression h(x, y, z) = x′y+yz+xy′+xz. By Lemma 3.3, h(x, y, z) = x′y+xy′+xyz
and so the (1⋉ 0)-BDHT (T (f)) are obtained in Figure 6.

4. Application of Binary Decision Hypertree Based on a T.B.T

In this section, we apply Python programming and introduce two samples of real-life applications of binary decision
hypertree.

Fighter jet refueling: Numerous missions for fighter jets in naval air defense, escorting other fighters, sup-
pressing enemy air defenses, strike attacks, bombing land and sea targets, air superiority missions, intercepting
fighters and bombers, and Enemy missiles, close air support and air reconnaissance are defined. The design of
the new generation of fighter jets to carry out round-the-clock missions in any kind of weather conditions and the
ability to refuel in the air and to land and fly from aircraft carriers is of particular importance. The fighter jet
refuels at least twice during the mission. If we consider the different refueling modes of a fighter jet, three inputs
are required.
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Figure 6: (1⋉0)-BDHT (T (f)) corresponding to T.B.T
Table 2.

Figure 7: (1 ⋉ 0)-BDHT (T (f)) corresponding to
T.B.T Table 2.

Table 3: T. B. T with 3 variables T (f, x, y, z)

x y z f(x, y, z)

0 0 0 f1(x, y, z) = 0
0 0 1 f2(x, y, z) = 0
0 1 0 f3(x, y, z) = 0
0 1 1 f4(x, y, z) = 1
1 0 0 f5(x, y, z) = 0
1 0 1 f6(x, y, z) = 1
1 1 0 f7(x, y, z) = 1
1 1 1 f8(x, y, z) = 1

x := fighter jet refueling in the air (1=fuel, 0=do not fuel), y:= fighter jet refueling in the aircraft carrier (1=fuel,
0=do not fuel) and z:= fighter jet refueling in the nest. (1=fuel, 0=do not fuel). We want to find the binary
decision hypertree in such a way that it is determined in which modes the jet is refueling in the air. Therefore,
based on the T.B.T 3 and using Python programming, we get the binary decision hypertree as shown in Figure 8.

Football Matches: After the draw, the football team in the World Cup is placed in a group of four, which
must compete with the teams in the same group. According to the rules of the matches, in case of two consecutive
defeats, the team will be removed from the matches. Using Python programming, the binary decision hypertree (in
Figure 9) corresponding to a T.B.T 4, shows the number of elimination modes of the football team:

Table 4: T. B. T with 3 variables T (f, x, y, z)

x y z f(x, y, z)

0 0 0 f1(x, y, z) = 1
0 0 1 f2(x, y, z) = 1
0 1 0 f3(x, y, z) = 0
0 1 1 f4(x, y, z) = 0
1 0 0 f5(x, y, z) = 1
1 0 1 f6(x, y, z) = 0
1 1 0 f7(x, y, z) = 0
1 1 1 f8(x, y, z) = 0

128



M. Hamidi et al., AUT J. Math. Comput., 5(2) (2024) 117-130, DOI:10.22060/AJMC.2023.21639.1094

Figure 8: BDHT (T (f)) corresponding to T.B.T Table
3.

Figure 9: BDHT (T (f)) corresponding to T.B.T
Table 4.

5. Conclusions and future works

The current paper has introduced a novel concept of (BDHT) binary decision hypertree (hyperdiagram) via min-
imum Boolean expression and presents some conditions on T.B.T for the isomorphism of binary decision hyper-
diagrams and binary decision hypertrees. Finally, for faster calculations and more complex functions, we present
an algorithm and so Python programming (with complete and original codes) such that for any given T.B.T, it
introduces a binary decision hypertree(hyperdiagram). The main achievement of this study is a fundamental doc-
umentary to truly evaluate the base of algorithms and codes of Python programming. We firstly proved some
theorems in this regard and evaluate some types of any given T.B.T with these theorems and Python programs,
so we extracted some algorithms and codes of Python programs based on these proved theorems. Indeed, the
input of the Python programs is any given T.B.T and the output of the Python programs is a binary decision
tree the method is based on the mathematical theorems which are proved in this paper which were algorithmized
and codes were written based on these algorithms. We hope that these results are helpful for further studies
in the theory of graphs, hypergraphs, superhypergraphs, and decision (super)(hyper)graphs, also known as influ-
ence (hyper)diagrams. In our future studies, we hope to obtain more results regarding decision-making based on
hypergraphs, superhypergraphs, and their applications in the real world.
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